<<

Sp.-V/AQuan/1999/10/07:19:58 Page 207

Chapter 10

γ -Ray and

R.E. Lingenfelter and R.E. Rothschild

10.1 Continuum Emission Processes ...... 207 10.2 Line Emission Processes ...... 208 10.3 Scattering and Absorption Processes ...... 213 10.4 Astrophysical γ -Ray Observations ...... 216 10.5 in ...... 235 10.6 Current Neutrino Observatories ...... 237

10.1 CONTINUUM EMISSION PROCESSES

Important processes for continuum emission at γ -ray energies are bremsstrahlung, magneto- bremsstrahlung, and Compton scattering of blackbody radiation by energetic electrons and positrons [1–6].

10.1.1 Bremsstrahlung

The bremsstrahlung luminosity spectrum of an optically thin thermal plasma of temperature T in a volume V is [3]   1/2 π 6 π 2 32 e 2 mc 2 L(ν)brem = Z neniVg(ν, T ) exp(−hν/kT), 3m2c4 3kT

where the index of refraction is assumed to be unity, m is the electron mass, Z is the mean atomic 1/2 charge, ne and ni are the electron and ion densities, and the Gaunt factor g(ν, T ) ≈ (3kT/πhν) for hν>kT and T > 3.6 × 105 Z 2 K, or

−38 2 −1/2 −1 −1 L(ν)brem ≈ 6.8 × 10 Z neniVg(ν, T )T exp(−hν/kT) erg s Hz .

207 Sp.-V/AQuan/1999/10/07:19:58 Page 208

208 / 10 γ -RAY AND NEUTRINO ASTRONOMY

10.1.2 Magnetobremsstrahlung The synchrotron luminosity spectrum of an isotropic, optically thin nonthermal distribution of −S relativistic electrons with a power-law spectrum, N(γ ) = N0γ , interacting with a homogeneous magnetic field of strength, H,is[5]   . 3 (S−1)/2 0 8e 3e (S+1)/2 (1−S)/2 L(ν)synch ≈ VN0 H ν 3mc2 4πmc or −23 (S+1)/2 6 (S−1)/2 −1 −1 L(ν)synch ≈ 3.60 × 10 VN0 H (4.2 × 10 /ν) erg s Hz .

10.1.3 Compton-Scattered Blackbody Radiation The Compton-scattering (cs) luminosity spectrum of an optically thin, isotropic nonthermal distribution −S of relativistic electrons with a power-law spectrum, N(γ ) = N0γ , interacting with blackbody photons having a temperature T is [5]   4 (3−S)/2 4e h (S−3)/2 (1−S)/2 L(ν)cs ≈ VN0wbbT ν 3m2c3 3.6k or −26 (S−3)/2 10 (S−1)/2 −1 −1 L(ν)cs ≈ 4.22 × 10 VN0wbbT (7.5 × 10 /ν) erg s Hz ,

where wbb is the energy density of the blackbody radiation.

10.2 LINE EMISSION PROCESSES

Important processes for line emission at γ -ray energies are electronÐpositron annihilation, nuclear deexcitation, decay of radio nuclei, and radiative capture (see Tables 10.1Ð10.3).

10.2.1 Electron–Positron Annihilation Radiation Positron annihilation can occur either via a direct interaction with a free electron or via positronium formed by charge exchange with a bound electron or by radiative combination with a free electron (e.g., [7Ð12]). See Figure 10.1. Direct annihilation (da) leads to line emission, e+e− → 2γ , at a mean energy,  7 +kTe/2, Te  10 K, ν = 2 + / , 7 < < 10 , h da mec  3kTe 4 10 Te 10 K 10 +kTe, Te > 10 K,

2 where mec = 510.9991 keV and Te is the temperature of the annihilating electrons and positrons. The direct-annihilation line spectrum can be approximated by a Gaussian with a linewidth [12] 4 0.50 9 da ≈ 0.87(Te/10 K) keV, for Te  10 K, and at higher temperatures the width [10] da ≈ kTe, 9 for Te  10 K. 2 The cross section for direct annihilation of a positron of energy γ mec with an electron at rest [1] is   σ γ 2 + γ + γ + 3 T 4 1 2 3 σ(γ)da = ln(γ + γ − 1) − , 8(γ + 1) γ 2 − 1 γ 2 − 1

4 2 4 where the Thomson cross section, σT = 8πe /(3m c ) = 0.6652 barn (b). Sp.-V/AQuan/1999/10/07:19:58 Page 209

10.2 LINE EMISSION PROCESSES / 209

Figure 10.1. Positron-annihilation rates in a thermal medium per unit density as a function of temperature, for annihilation directly with free electrons (Rda/ne) or with bound electrons (Rda/nH), and via positronium formation by radiative combination with free electrons (Rrc/ne) or by charge exchange with neutral hydrogen (Rce/nH), from [8].

Annihilation via positronium formation leads to line emission only from the singlet parapositron- ium, para-Ps → 2γ , which forms 25% of the time. The mean energy of the positronium line,

2 2 hνps = mec − (R/4n ), where the Rydberg R = 0.0136 keV, and n is 1 for the ground state. The parapositronium annihilation line spectrum can be approximated by a Gaussian with a 4 0.44 linewidth rc ≈ 0.80(T/10 K) keV for radiative combination (rc), valid at least from 8 000 to 6 10 K, and a Gaussian linewidth ce ≈ 6.4 keV for charge exchange (ce), since the parapositronium mean life of ∼ 10−10 s is much less than the energy loss time [12]. The total number of 511 keV line photons emitted per positron annihilation, + γ511/e = 2 − 1.5 fps,

where fps is the fraction of positrons that annihilate via positronium. Annihilation via positronium formation leads to three-photon continuum emission from the triplet orthopositronium, ortho-Ps → 3γ , which forms 75% of the time. The spectrum [7] of this emission is   2 η(1 − η) 2(1 − η) 2(1 − η)2 2 − η ( ν) γ = + ( − η) − ( − η) + , P h 3 2 2 2 2 ln 1 3 ln 1 (π − 9)mec (2 − η) η (2 − η) η

where η = hν/mc2 is the photon energy, and the spectrum is normalized to unity. Sp.-V/AQuan/1999/10/07:19:58 Page 210

210 / 10 γ -RAY AND NEUTRINO ASTRONOMY

, Table 10.1. Nuclear deexcitation γ -ray lines.a b Energy Emission Excitation Mean life (MeV) mechanism processes (s) ∗ . ∗ − 0.429 1 7Be 0 429 → g.s. 4He(α, n)7Be 1.9 × 10 13 ∗ . ∗ − 0.477 6 7Li 0 478 → g.s. 4He(α, p)7Li 1.1 × 10 13 ∗ 4He(α, n)7Be()7Li (10%) 6.6 × 106 ∗ . ∗ − 0.718 3 10B 0 718 → g.s. 12C(p, x)10B 1.0 × 10 9 ∗ − 16O(p, x)10B 1.0 × 10 9 + ∗ 12C(p, x)10C(e )10B 27.78 + ∗ 16O(p, x)10C(e )10B 27.78 ∗ . ∗ − 0.846 8 56Fe 0 847 → g.s. 56Fe(p, p )56Fe 9.1 × 10 12 + ∗ 56Fe(p, n)56Co(e ; )56Fe 9.6 × 106 ∗ . ∗ . ∗ − 1.238 3 56Fe 2 085 → 56Fe 0 847 56Fe(p, p )56Fe 1.0 × 10 12 + ∗ 56Fe(p, n)56Co(e ; )56Fe (67%) 9.6 × 106 ∗ . ∗ − 1.274 5 22Ne 1 275 → g.s. 22Ne(p, p )22Ne 5.2 × 10 12 ∗ − 22Ne(α, α’)22Ne 5.2 × 10 12 + ∗ 22Ne(p, n)22Na(e ; )22Ne 1.2 × 108 + ∗ 24Mg(p, x)22Na(e ; )22Ne 1.2 × 108 + ∗ 25Mg(p, x)22Na(e ; )22Ne 1.2 × 108 + ∗ 28Si(p, x)22Na(e ; )22Ne 1.2 × 108 ∗ . ∗ − 1.368 5 24Mg 1 369 → g.s. 24Mg(p, p )24Mg 1.9 × 10 12 ∗ − 24Mg(α, α )24Mg 1.9 × 10 12 ∗ − 28Si(p, x)24Mg 1.9 × 10 12 ∗ . ∗ − 1.408 3 55Fe 1 408 → g.s. 56Fe(p, pn)55Fe 5.5 × 10 11 + ∗ 56Fe(p, 2n)55Co(e ; )55Fe (18%) 9.1 × 104 ∗ . ∗ − 1.408 4 54Fe 1 408 → g.s. 56Fe(p, x)54Fe 1.2 × 10 12 ∗ . ∗ − 1.434 1 52Cr 1 434 → g.s. 56Fe(p, x)52Cr 9.8 × 10 13 ∗ + ∗ 56Fe(p, x)52Mn (e ; )52Cr 1.8 × 103 + ∗ 56Fe(p, x)52Mn(e ; )52Cr 7.0 × 105 ∗ . ∗ − 1.633 6 20Ne 1 634 → g.s. 20Ne(p, p )20Ne 1.0 × 10 12 ∗ − 20Ne(α, α )20Ne 1.0 × 10 12 + ∗ − 20Ne(p, n)20Na(e )20Ne (80%) 6.4 × 10 1 ∗ − 24Mg(p, x)20Ne 1.0 × 10 12 ∗ − 28Si(p, x)20Ne 1.0 × 10 12 ∗ . ∗ . ∗ − 1.635 2 14N 3 948 → 14N 2 313 14N(p, p )14N 6.9 × 10 15 ∗ − 14N(α, α )14N 6.9 × 10 15 ∗ − 16O(p, x)14N 6.9 × 10 15 ∗ . ∗ − 1.779 0 28Si 1 779 → g.s. 28Si(p, p )28Si 6.8 × 10 13 ∗ − 28Si(α, α )28Si 6.8 × 10 13 ∗ − 32S(p, x)28Si 6.8 × 10 13 ∗ . ∗ − 1.808 6 26Mg 1 809 → g.s. 26Mg(p, p )26Mg 6.9 × 10 13 ∗ − 26Mg(α, α )26Mg 6.9 × 10 13 + ∗ 26Mg(p, n)26Al(e ; )26Mg 3.2 × 1013 + ∗ 27Al(p, pn)26Al(e ; )26Mg 3.2 × 1013 + ∗ 28Si(p, x)26Al(e ; )26Mg 3.2 × 1013 ∗ . ∗ − 2.230 2 32S 2 230 → g.s. 32S(p, p )32S 2.4 × 10 13 ∗ − 32S(α, α )32S 2.4 × 10 13 ∗ . ∗ − 2.312 6 14N 2 313 → g.s. 14N(p, p )14N 9.8 × 10 14 ∗ − 14N(α, α )14N 9.8 × 10 14 + ∗ 14N(p, n)14O(e )14N 101.9 ∗ − 16O(p, x)14N 8.7 × 10 14 + ∗ 16O(p, x)14O(e )14N 101.9 Sp.-V/AQuan/1999/10/07:19:58 Page 211

10.2 LINE EMISSION PROCESSES / 211

Table 10.1. (Continued.)

Energy Emission Excitation Mean life (MeV) mechanism processes (s) ∗ . ∗ . ∗ − 2.613 8 20Ne 4 248 → 20Ne 1 634 20Ne(p, p )20Ne 9.2 × 10 14 ∗ − 20Ne(α, α )20Ne 9.2 × 10 14 ∗ − 24Mg(p, x)20Ne 9.2 × 10 14 ∗ − 28Si(p, x)20Ne 9.2 × 10 14 ∗ . ∗ . ∗ − 2.741 2 16O 8 872 → 16O 6 130 16O(p, p )16O 1.8 × 10 13 ∗ . ∗ . ∗ − 2.754 0 24Mg 4 123 → 24Mg 1 369 24Mg(p, p )24Mg 3.5 × 10 14 ∗ − 24Mg(α, α )24Mg 3.5 × 10 14 ∗ . ∗ − 3.736 5 40Ca 3 737 → g.s. 40Ca(p, p )40Ca 6.8 × 10 11 ∗ − 40Ca(α, α )40Ca 6.8 × 10 11 ∗ . ∗ − 4.438 0 12C 4 439 → g.s. 12C(p, p )12C 6.1 × 10 14 ∗ − 12C(α, α )12C 6.1 × 10 14 ∗ − 14N(p, x)12C 6.1 × 10 14 ∗ − 14N(α, x)12C 6.1 × 10 14 ∗ − 16O(p, x)12C 6.1 × 10 14 ∗ − 16O(α, x)12C 6.1 × 10 14 ∗ . ∗ − 4.443 9 11B 4 445 → g.s. 12C(p, 2p)11B 1.1 × 10 15 ∗ − 12C(α, x)11B 1.1 × 10 15 ∗ . ∗ − 5.104 9 14N 5 106 → g.s. 14N(p, p )14N 6.3 × 10 12 ∗ − 14N(α, α )14N 6.3 × 10 12 ∗ − 16O(p, x)14N 6.3 × 10 12 ∗ − 16O(α, x)14N 6.3 × 10 12 ∗ . ∗ − 6.129 1 16O 6 130 → g.s. 16O(p, p )16O 2.7 × 10 11 ∗ − 16O(α, α )16O 2.7 × 10 11 ∗ − 20Ne(p, x)16O 2.7 × 10 11 ∗ . ∗ − 6.877 8 28Si 6 879 → g.s. 28Si(p, p )28Si 2.6 × 10 12 ∗ − 28Si(α, α )28Si 2.6 × 10 12 ∗ . ∗ − 6.917 4 16O 6 919 → g.s. 16O(p, p )16O 6.8 × 10 15 ∗ − 16O(α, α )16O 6.8 × 10 15 ∗ . ∗ − 7.115 2 16O 7 117 → g.s. 16O(p, p )16O 1.2 × 10 14 ∗ − 16O(α, α )16O 1.2 × 10 14

Notes aUpdated from Ramaty, R., Kozlovsky, B., & Lingenfelter, R.E. 1979, ApJS, 40, 487, with data from Firestone, R.B. et al. 1996, Table of Isotopes (Wiley, New York).

bBecause of recoil the observed γ -ray energy hν = hν(1−hν/2Mc2), where hν is the transition energy and M is nuclear mass.

Table 10.2. Nucleosynthetic lines.a

Radioactive Dominant decay Line energy Branching ratio decay mean life (MeV) (%) 56Ni()56Co 8.80 days 0.1584 98.8 0.8119 86.0 0.7500 49.5 0.2695 36.5 0.4805 36.5 1.5618 14.0 Sp.-V/AQuan/1999/10/07:19:58 Page 212

212 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Table 10.2. (Continued.)

Radioactive Dominant decay Line energy Branching ratio decay mean life (MeV) (%) + 48V(e ; )48Ti 23.0 days 0.9835 100. 1.3121 96.6 0.5110 50.0nc + 56Co(e ; )56Fe 111.3 days 0.8468 99.9 1.2383 68.4 0.0064b 21.7 0.5110 19.0nc 2.5986 17.4 1.7715 15.5 1.0379 14.1 3.244 12.4 2.029 11.3 + 65Zn(e ; )65Cu 352.4 days 1.1155 50.6 0.0080 34.2

57Co()57Fe 392.1 days 0.1221 85.5 0.0064 48.9 0.1365 10.3 0.0144 9.5 + 22Na(e ; )22Ne 3.754 yr 1.2745 99.9 0.5110 89.4nc − 125Sb(e )125Te 3.979 yr 0.0274 62.1 0.4279 29.4 0.6006 17.8 0.6360 11.3 0.4634 10.5

44Ti()44Sc 91 ± 4 yr 0.0679 100 0.0783 99.3 0.0041 16.7 + 44Sc(e ; )44Ca (0.236 day) 1.1570 99.9 0.5110 94.0nc − 60Fe(e )60Co 2.2 × 106 yr 0.0586 2.0 − 60Co(e )60Ni (7.60 yr) 1.3325 100 1.1732 99.9 + 26Al(e ; )26Mg 1.03 × 106 yr 1.8086 99.7 0.5110 82.1nc

40K()40Ar 1.84 × 109 yr 1.4608 10.7

Notes aBased on data from Browne E., & Firestone, R.B. 1986, Table of Radioactive Isotopes (Wiley, New York), Firestone, R.B. 1996, Table of Isotopes (Wiley, New York), and Norman, E.B. et al. 1997, Nuc. Phys., A621, 92 for the 44Ti mean-life. bBracketted line energies are the mean of two or more close lines. c The number of 0.5110 MeV photons per positron annihilation, n = 2−1.5 fps, where fps is the fraction of annihilation occurring via positronium formation. Sp.-V/AQuan/1999/10/07:19:58 Page 213

10.3 SCATTERING AND ABSORPTION PROCESSES / 213

Table 10.3. Radiative capture γ -ray lines.a

Radiative Thermal Line energy Branching ratio capture cross section (b) (MeV) (%)

1H(n,γ)2H 0.332 2.2233 100

56Fe(n,γ)57Fe 2.6 0.0144 64 7.6316 30 7.6456 24 0.3525 12 5.9205 9 6.0185 9 1.7252 9

Note aBased on data Nuclear Data Group, 1973, Nuclear Level Schemes A = 45 through A = 257 from Nuclear Data Sheets (Academic Press, New York).

10.3 SCATTERING AND ABSORPTION PROCESSES

γ -Ray emission spectra can be modified by several processes: photoelectric absorption, electronÐ positron pair production, Compton scattering, and Landau-level electron scattering in intense magnetic fields [1Ð4, 13Ð21]. See Figure 10.2.

10.3.1 Photoelectric Absorption

The cross section for photoelectric absorption of a photon by the ejection of a K -shell electron from an atom of nuclear charge Z is [1]   5 5 4 2 3σ Z α mc / σ(hν) = T (γ 2 − 1)3 2 K 2 hν    4 γ(γ − 2) 1 γ + γ 2 − 1 × + 1 − ln , 3 γ + 1 2γ γ 2 − 1 γ − γ 2 − 1

4 2 4 where the Thomson cross section, σT = 8πe /(3m e ) = 0.665 2 b, and the Lorenz factor of the ejected electron γ = 1 + hν/mc2.

10.3.2 Pair Production

The cross section for electronÐpositron pair production (pp) by a photon in the presence of a nucleus of charge Z is [14]     2 3αZ σT 7 2hν 109 σ(hν)pp = ln − 2π 9 mc2 54 for no screening when 1  hν/mc2  1/αZ 1/3, and     2 3αZ σT 7 183 1 σ(hν)pp = ln − 2π 9 Z 1/3 54

for complete screening when hν/mc2  1/αZ 1/3. Sp.-V/AQuan/1999/10/07:19:58 Page 214

214 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Figure 10.2. Macroscopic cross sections for γ -ray attenuation by photoelectric absorption, Compton scattering and pair production in hydrogen, air, NaI, and Ge, as a function of photon energy from [21].

The cross section for electronÐpositron pair production by the interaction of two photons of energy hν and hν when hνhν > m2c4 is [1]

   3σ 1 + β σ(hν, hν ) = T (1 − β2) 2β(β2 − 2) + (3 − β4) ln , pp 16 1 − β

where β = (1 − m2c4/hνhν )1/2. Sp.-V/AQuan/1999/10/07:19:58 Page 215

10.3 SCATTERING AND ABSORPTION PROCESSES / 215

The attenuation coefficient for electronÐpositron pair production by a photon in a strong magnetic field, in the limit h2ν2/2m2c4 B∗  1 with B∗ = B/4.414 × 1013 G, is [15]     4 α  . − ,χ , mc 0 377 exp χ 1 R1γ = B∗ sin θ = 3 2h  0.6χ −1/3,χ 1,

where χ ≡ (hν/2mc2)B∗ sin θ and the threshold energy is 2mc2/ sin θ.

10.3.3 Compton Scattering

The cross section for Compton scattering (cs) of photons by electrons is [13]    3σT 2η + 2 1 4 1 σ(hν)cs = 1 − ln(2η + 1) + + − , 8η η2 2 η 2(2η + 1)2

where η = hν/mc2 is the initial photon energy. The angular distribution of the scattered photons, in terms of the scattering angle φ,is   σ ( + η + η2 − η φ)( + 2 φ) − η2 φ ( φ) = 3 T 1 cos 1 cos 2 cos . f cos 3 8σ(hν)cs (1 + η − η cos φ) The energy of the Compton-scattered photon hν relative to the initial photon energy hν is

r = hν hν = 1/(1 + η − η cos φ),

and the energy distribution of the Compton-scattered photons is

σ (η + − )2 ( ) = 3 T − + 1 + r r 1 , f r r 1 2 2 8ησ(hν)cs r η r

for 1/(2η + 1) ≤ r ≤ 1, corresponding to scattering angles 0◦ ≤ φ ≤ 180◦, and f (r) = 0 for other values of r. In a magnetic field, where the electron energies are quantized in Landau states, the total scattering cross section for unpolarized photons in the Thomson limit is [16]   σ 2ν2 2ν2 σ = T 2 θ + 1 ( + 2 θ) h + h , sin 2 1 cos 2 2 2 (hν + hνB) (hν − hνB)

where θ and hν are the angle and energy of the incident photon with respect to the magnetic field in 12 the electron rest frame, and hνB = eB/mc is the cyclotron frequency. When (hν/hνB)B > 10 G, relativistic effects modify the cross section [17, 18].

10.3.4 Cyclotron Absorption

In a magnetic field, the cross section for absorption of photons by electron scattering from ground state to higher Landau levels is [19]   απ2 ¯ 2 2 −Z n−1 σ n (θ) = h c δ( ν − ν ) e Z ( + 2 θ)+ Z 2 θ , abs h h n 1 cos sin En (n − 1)! n Sp.-V/AQuan/1999/10/07:19:58 Page 216

216 / 10 γ -RAY AND NEUTRINO ASTRONOMY

2 2 2 2 2 4 2 2 2 2 4 1/2 where Z = h ν sin θ/2mc B∗, En = (m c + h ν cos θ + 2nB∗m c ) , and B∗ = B/4.414 × 1013 G. The photons are absorbed at the resonant energies

2 2 1/2 2 hνn = mc [(1 + 2nB∗ sin θ) − 1]/ sin θ.

In the nonrelativistic limit, nB∗ = nB/4.414 × 1013 G  1, the absorption cross section is [20]   n−1 απ2 2 2 2 + 2 θ n h¯ c n 2 1 cos σ (θ) ≈ B∗ sin θ , abs m 2 (n − 1)!

where photons are absorbed at harmonics hνn = neB/mc.

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS

The γ -ray sky is extremely variable. Unlike the sources seen at longer wavelengths, most of the astrophysical γ -ray sources have been seen only in their transient emission. Out of roughly a thousand γ -ray sources less than 10% are relatively steady, persistent sources. The latter include a wide variety of sources such as the , supernova remnants, the interstellar medium, and the cosmic background emission, but they are mostly compact objects: radio pulsars, accreting neutron stars, and blackhole candidates, ranging from stellar mass objects in our own galaxy to supermassive, active galactic nuclei.

Figure 10.3. Total Crab Nebula and pulsar emission from 10 keV to 2 GeV. The Crab flux is the de facto standard for the expression of source fluxes, e.g., 10 milliCrabs. This figure is provided to relate Crab fluxes at various − − − energies to the more useful photons cm 2 s 1 1keV. The plot is from Graser, U., & Schonfelder,¬ V. 1982, ApJ, 263, 677, and references to observations contained within the plot can be found in that paper. Sp.-V/AQuan/1999/10/07:19:58 Page 217

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 217

The vast majority of γ -ray sources, however, have been seen only briefly for times as short as a few milliseconds to as much as 1000 s. These are collectively known as γ -ray bursts, but because of their diverse properties, they may arise from a variety of sources and processes. General reviews of astrophysical γ -ray sources are given in [22Ð25]. Figure 10.3 displays the famous Crab Nebula spectrum. Many γ -ray bursts are reviewed in [26Ð31]. The locations and properties of selected galactic and extragalactic γ -ray sources are listed in Tables 10.4Ð10.9 and basic data on the major hard X-ray and γ -ray instruments are included in Tables 10.10Ð10.12.

Table 10.4. Selected galactic sources > 100 keV. Source Typea αc l II d name periodb δ bII Dist.e Flux f Energy Lum.g Refs. − X Persei XRBe 58.06 163.08 0.35 4 × 10 5 30 keV 8 × 1032 [1] − 0352+308 835 s +30.90 −17.14 1 × 10 5 100 keV 2 × 1033 [1] − 0422+328 BHC 64.63 165.89 2 2 × 10 2 30 keV 1 × 1037 [2] − +32.79 −11.91 2 × 10 3 100 keV 1 × 1037 [2] − 1 × 10 4 300 keV 6 × 1036 [2] − Crab (total) SNR and 82.88 184.56 2 8 × 10 3 30 keV 5 × 1036 [3] − 0531+219 Pulsar +21.98 −5.79 6 × 10 4 100 keV 5 × 1036 [3] − 5 × 10 5 300 keV 3 × 1036 [3] − 5 × 10 6 1 MeV 4 × 1036 [3] − 2 × 10 8 10 MeV 2 × 1036 [3] − 6 × 10 11 100 MeV 5 × 1035 [3] − 2 × 10 13 1 GeV 2 × 1035 [3] − Crab (pulsar) Pulsar 82.88 184.56 2 1 × 10 3 30 keV 7 × 1035 [4] − 0531+219 0.0332 s +21.98 −5.79 1 × 10 4 100 keV 8 × 1035 [3] − 2 × 10 5 300 keV 1 × 1036 [3] − 6 × 10 7 1 MeV 5 × 1035 [3] − 5 × 10 9 10 MeV 4 × 1035 [3] − 2 × 10 11 100 MeV 2 × 1035 [3] − 2 × 10 13 1 GeV 2 × 1035 [3] − 1 × 10 15 10 GeV 8 × 1034 [5] − 3 × 10 21 1 TeV 2 × 1033 [6] − 0535+262 XRBe 84.06 181.47 1.8 1 × 10 2 30 keV 6 × 1036 [7] − 104 s +26.32 −2.54 5 × 10 5 100 keV 3 × 1035 [7] − SN1987A SNh 83.96 279.71 50 2 × 10 4 30 keV 1 × 1038 [8] − 0536−693 (in LMC) −69.30 −31.94 4 × 10 5 100 keV 2 × 1038 [8] − 7 × 10 6 300 keV 3 × 1038 [8] − 0620−00 BHC 95.05 209.96 0.87 3 × 10 3 30 keV 4 × 1035 [9] − −0.32 −6.54 2 × 10 4 100 keV 3 × 1035 [9] − Geminga Pulsar 97.75 195.14 < 0.4† 3 × 10 11 100 MeV < 6 × 1033 [10] − 0630+178 0.2371 s +17.81 +4.27 6 × 10 13 1GeV < 2 × 1034 [10] Sp.-V/AQuan/1999/10/07:19:58 Page 218

218 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Table 10.4. (Continued.)

Source Typea αc l II d name periodb δ bII Dist.e Flux f Energy Lum.g Refs. − Vela (pulsar) Pulsar 128.40 263.58 0.5 4 × 10 7 100 keV 2 × 1032 [11] − 0833−45 0.0892 s −45.05 −2.82 2 × 10 7 300 keV 1 × 1033 [11] − 1 × 10 8 3 MeV 5 × 1033 [11] − 3 × 10 9 10 MeV 2 × 1034 [12] − 6 × 10 10 30 MeV 3 × 1034 [12] − 1 × 10 10 100 MeV 5 × 1034 [12] − 2 × 10 12 1 GeV 8 × 1034 [12] − 1009−45 BHC 153.37 275.85 3† 1 × 10 4 100 keV 2 × 1036 [13] − −45.06 +9.35 7 × 10 6 300 keV 1 × 1036 [13] − 1055−52 Pulsar 164.50 286.00 1.53 2 × 10 12 100 MeV 1 × 1034 [14] −52.45 6.65 − Nova Muscae BHC 171.08 295.31 1† 4 × 10 3 30 keV 7 × 1035 [15] − 1124−684 −68.40 −7.07 2 × 10 4 100 keV 4 × 1035 [15] − 1 × 10 5 300 keV 2 × 1035 [15] − 1509−58 Pulsar 227.50 320.33 1† 3 × 10 5 30 keV 5 × 1033 [16] − 0.1502 s −58.95 −1.16 4 × 10 6 100 keV 8 × 1033 [16] − 8 × 10 7 300 keV 1 × 1034 [16] − 1543−47 BHC 235.96 330.92 4 8 × 10 3 30 keV 2 × 1037 [17] − −47.56 +5.43 2 × 10 4 100 keV 6 × 1036 [17] − 1655−40 BHC 253.50 344.98 3.2 2 × 10 4 100 keV 4 × 1036 [13] − −39.85 +2.46 1 × 10 5 300 keV 2 × 1036 [13] − Her X−1 LMXB 254.01 58.15 5 1 × 10 3 30 keV 4 × 1036 [18] − 1656+354 1.24 s +35.42 +37.52 1 × 10 5 100 keV 5 × 1035 [18] − 3 × 10 20 1 TeV 1 × 1035 [6] − GX 339−4 BHC 254.76 338.94 10† 2 × 10 3 30 keV 4 × 1037 [17] − 1659−487 −48.72 −4.33 2 × 10 4 100 keV 4 × 1037 [17] − 1 × 10 5 300 keV 2 × 1037 [17] − 1700−37 HMXB 255.14 347.76 1.7 1 × 10 3 30 keV 5 × 1035 [19] − −37.78 +2.17 3 × 10 5 100 keV 2 × 1035 [19] − Nova Oph ‘77 BHC 256.29 358.59 10† 2 × 10 3 30 keV 3 × 1037 [20] − 1705−250 −25.03 +9.06 1 × 10 4 100 keV 2 × 1037 [20] − 1706−44 Pulsar 256.52 343.10 1.82 7 × 10 12 100 MeV 3 × 1034 [5] − 0.1024 s −44.42 −2.68 1 × 10 13 1 GeV 6 × 1034 [5] − 1716−249 BHC 259.94 0.20 2.4 4 × 10 4 100 keV 5 × 1036 [13] − −24.97 +6.99 2 × 10 5 300 keV 2 × 1036 [13] − Terzian 2 LMXB 261.08 356.32 14† 2 × 10 4 40 keV 1 × 1037 [21] − 1724−308 −30.76 +2.30 3 × 10 5 100 keV 1 × 1037 [21] − GX 1+4 LMXB 262.15 1.90 10† 2 × 10 3 30 keV 3 × 1037 [19] − 1728−247 114 s −24.70 +4.87 4 × 10 5 100 keV 8 × 1036 [19] − 1737.9−2952 BHC 264.48 358.97 10† 1 × 10 3 30 keV 2 × 1037 [22] − −29.52 +0.52 4 × 10 4 100 keV 8 × 1037 [22] Sp.-V/AQuan/1999/10/07:19:58 Page 219

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 219

Table 10.4. (Continued.)

Source Typea αc l II d name periodb δ bII Dist.e Flux f Energy Lum.g Refs. − 1740.7−2942 BHC 265.18 359.12 10† 5 × 10 4 40 keV 2 × 1037 [23] − −29.71 −0.10 7 × 10 5 100 keV 1 × 1037 [23] − 1 × 10 5 300 keV 2 × 1037 [23] − “Galactic BHC 266.24 359.89 10† 3 × 10 3 30 keV 5 × 1037 [24] − Center” −29.38 −0.71 1 × 10 4 100 keV 2 × 1037 [24] − 1742−294 2 × 10 5 300 keV 3 × 1037 [25] − 1743−322 XRT 265.44 357.13 10† 6 × 10 4 30 keV 1 × 1037 [19] − −32.21 −1.61 4 × 10 5 100 keV 8 × 1036 [19] − GX 5−1 LMXB 269.51 5.08 10† 8 × 10 4 30 keV 1 × 1037 [19] − 1758−250 −25.08 −1.02 4 × 10 5 100 keV 8 × 1036 [19] − 1758−258 BHC 269.53 4.52 10† 4 × 10 4 30 keV 7 × 1036 [25] − −25.74 −1.36 6 × 10 5 100 keV 1 × 1037 [25] − 3 × 10 6 300 keV 5 × 1036 [25] − 1915+105 BHC 288.80 45.37 12.5 8 × 10 5 100 keV 3 × 1037 [13] − +10.95 −0.22 2 × 10 6 300 keV 6 × 1036 [13] − Cyg X−1 BHC 299.04 71.29 2.5 9 × 10 3 30 keV 1 × 1037 [26] − 1956+350 +35.05 +3.12 1 × 10 3 100 keV 1 × 1037 [26] − 4 × 10 5 300 keV 4 × 1036 [27] − 1 × 10 5 1 MeV 1 × 1037 [27] − 2000+25 BHC 300.18 63.38 2† 2 × 10 3 30 keV 1 × 1036 [28] − +25.10 −3.00 2 × 10 4 100 keV 2 × 1036 [28] − 2 × 10 5 300 keV 1 × 1036 [28] − 2023+338 BHC 305.53 73.13 2† 1 × 10 2 30 keV 7 × 1036 [13] − +33.71 −2.09 1 × 10 3 100 keV 8 × 1036 [13] − 1 × 10 4 300 keV 7 × 1036 [13] − Cyg X−3 HMXB 307.52 79.76 10† 1 × 10 3 30 keV 2 × 1037 [18] − 2030+407 +40.76 +0.77 2 × 10 5 100 keV 4 × 1036 [18] − 5 × 10 20 1 TeV 1 × 1036 [6] − 2 × 10 26 1 PeV 4 × 1035 [6]

Notes aBHC, black hole candidate; HMXB, high mass X-ray binary; LMXB, low-mass X-ray binary system; SN, supernova; SNR, supernova remnant; XRBe denotes Be star plus collapsed object binary system; XRT, X-ray transient. bPulsar periods in seconds are from Taylor, J.H., Manchester, R.N., & Lyne, A.G. 1993, ApJS, 88, 529, and an update to be found at pulsar.princeton.edu. Binary pulse periods are from Nagase, F. 1989, PASJ, 41,1. cCelestial coordinates in degrees from Wood, K.S. et al. 1984, ApJS, 56, 507, except for SN1987A (West, R. 1987, ESO Workshop on the SN1987A, 5); A0620−00 (Boley, F.I. et al. 1976, ApJ, 203, L13); Geminga (Bignami, G.F. et al. 1983, ApJ, 272, L9); Vela Pulsar (Forman, W.R. et al. 1978, ApJS, 38, 357); Nova Muscae (West, R. 1991, IAU Circ. No. 5165); GRS1227+0229 (Jourdain, E. et al. 1991, Int. Conf., 1, 173); PSR1509−58 (Princeton Pulsar List, 1992); A1524−62 (Murdin, P. et al. 1977, MNRAS, 178, 27); 4U1700−37 (Forman, W.R. et al. 1978, ApJS, 38, 357); PSR1706−44 (Princeton Pulsar List, 1992); Terzian 2 (Hertz, P.L., & Grindlay, J.E. 1983, ApJ, 275, 105); 1740.7−2942 (Hertz, P.L., & Grindlay, J.E. 1984, ApJ, 278, 137); GRS1758−258 (Sunyaev, R. et al. 1991, Sov. Astron. Lett., 17, 50); Briggs Source (Briggs, M.S. et al. 1995, ApJ, 442, 638); GS2000+25 (Tsunemi, H. et al. 1989, ApJ, 337, L81); GS2023+338 (Wagner, R.M. et al. 1989, IAU Circ. No. 4783). d Galactic coordinates in degrees. eAll distances in kiloparsecs. Those marked with a dagger (†) are assumptions, some of which are based on optical limitations and some of which are unknown in which case the value of 10 kpc is used. Known distance references are Crab (Trimble, V. 1968, AJ, 73, 535); X Persei (Brucato, R.J., & Kristian, J. 1972, ApJ, 173, L105); A0535+26 (Giangrande, A. et al. 1980, A&AS, 40, 289); SN1987A (Arnett, W.D. et al. 1989, ARA&A, 27, 629); A0620−00 (Oke, Sp.-V/AQuan/1999/10/07:19:58 Page 220

220 / 10 γ -RAY AND NEUTRINO ASTRONOMY

J.B. 1977, ApJ, 217, 181); Vela (Grenier, I.A. et al. 1988, A&A, 204, 117); A1524−62 (Murdin, P. et al. 1977, MNRAS, 178, 27); Her X-1 (Bahcall, N.A. 1973, Sixth Texas Symp., 224, 178); 4U1700−37 (Bradt, H.V., & McClintock, J.E. 1983, ARA&A, 21, 13); Terzian 2 (Malkan, M.A. et al. 1980, ApJ, 237, 432); GX 1+4 (Davidsen, A.F. et al. 1977, ApJ, 211, 866); Cyg X-1 (Margon, B.H. et al. 1973, ApJ, 185, L117); Cyg X-3 (Breas, L.L.E. et al. 1973, NaturePS, 242, 66). f Observed flux in photons/cm2 s keV. gInferred luminosity per logarithmic interval assuming isotropic emission, E2 × (Flux) = E2 (keV2) × Distance2 (kpc2) × Flux (phot./cm2 s keV) × 2 × 1035 erg/slnE. hPeak flux from supernova explosion in the Large Magellanic Cloud (LMC). References 1. Worrall, D.M. et al. 1981, ApJ, 247, L31 2. Paciesas, W.S. et al. 1992, IAU Circ. No. 5580; Harmon, B.A. et al. 1992, IAU Circ. No. 5584; McCrosky, R.E. 1992, IAU Circ. No. 5597 3. Graser, U., & Schonfelder, V. 1982, ApJ, 263, 677 4. Knight, F.K. 1982, ApJ, 260, 538 5. Kniffen, D.A. et al. 1992, ApJ, 383, L49 6. Weekes, T.C. 1988, Phys. Rep., 160, 1; Weekes, T.C. 1992, Space Sci. Rev., 59, 315 7. Ricker, G.R. et al. 1976, ApJ, 204, L73 8. Sunyaev, R. et al. 1988, Sov. Astron. Lett., 14, 247 9. Coe, M.J. et al. 1976, Nature, 259, 544 10. Hermsen, W. 1980, Ph.D. thesis, Leiden University; Bertsch, D.L. et al. 1992, Nature, 357, 306 11. Strickman, M.S. et al. 1996, ApJ, 460, 735 12. Hermsen, W. et al. 1992, AIP Conf. Proc., 280, 204 13. Grove, J.E. et al. 1997, AIP Conf. Proc., 410, 122 14. Thompson, D.J. et al. 1995, ApJS, 101, 259 15. Sunyaev, R. et al. 1992, ApJ, 389, L75 16. Ulmer, M.P. et al. 1992, ApJ, 417, 738; Matz, S.M. et al. 1994, ApJ, 434, 288; Marsden, D.C. et al. 1996, ApJ, 491, L39 17. Harmon, B.A. et al. 1992, AIP Conf. Proc., 280, 314, 350 18. Trumper, J. et al. 1978, ApJ, 219, L105 19. Levine, A.M. et al. 1984, ApJS, 54, 581 20. Wilson, C.S., & Rothschild, R.E. 1983, ApJ, 274, 717 21. Barret, P.E. et al. 1991, ApJ, 379, L21 22. Grindlay, J.E. et al. 1992, A&AS, 97, 155 23. Cook, M.C. et al. 1991, ApJ, 372, L75; Sunyaev, R. et al. 1992, ApJ, 383, L49 24. Slassi, S. et al. 1991, 22nd International Cosmic Ray Conference, 1, OG3.2.8 25. Sunyaev, R. et al. 1991, Sov. Astron. Lett., 17,50 26. Nolan, P.L., & Matteson, J.L. 1983, ApJ, 265, 389 27. Ling, J.C. et al. 1987, ApJ, 321, L117 28. Sunyaev, R. et al. 1988, Sov. Astron. Lett., 14, 327

Table 10.5. Brightest annihilation and nuclear line sources.

Line E FWHM Line Max. flux Lum. Process (MeV) (keV) source (ph./cm2 s) (erg/s) Refs. ± e Annihilation Radiation − 0.511 2 Interstellar gas 1.5 × 10 3 a 7 × 1036 [1] − 0.511 3 BH? near GCb 2 × 10 3 1 × 1037 [2] − 0.511 < 10c Solar flares 2 × 10 2 5 × 1019 [3] Redshifted 0.430 100 GBS 0526−66 100 2 × 1043 [4] − Redshifted 0.480 240 1E 1740.7−2942 1 × 10 2 6 × 1037 [5] − Redshifted 0.481 60 Nova Muscae 6 × 10 3 6 × 1035 d [6] − Redshifted 0.404 3 CrabPulsar transient 7 × 10 3 2 × 1036 [7] − Redshifted 0.413 15 10June74 transient 7 × 10 3 6 × 1035 d [8] − Blueshifted 0.500Ð2.0 Cygnus X-1 2 × 10 2 2 × 1037 [9] − Backscattered 0.170 12 BH? near GCb 7 × 10 4 2 × 1034 [10] − Backscattered 0.19 40 Nova Muscae 2 × 10 3 7 × 1034 d [6] Sp.-V/AQuan/1999/10/07:19:58 Page 221

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 221

Table 10.5. (Continued.)

Line E FWHM Line Max. flux Lum. Process (MeV) (keV) source (ph./cm2 s) (erg/s) Refs.

Radioactive Decay + − 56Co(γ,β γ )56Fe 0.847 ∼ 9 Supernova 1987A 1×10 3 4 × 1038 [11] − 1.238 ∼ 11 Supernova 1987A 1×10 3 6 × 1038 [11] − 2.598 ∼ 26c Supernova 1987A 3×10 4 4 × 1038 [12] − 3.244 ∼ 32c Supernova 1987A 2×10 4 3 × 1038 [12] − 57Co(γ)57Fe 0.122 ∼ 1c Supernova 1987A 4×10 5 3 × 1036 [13] − 44Ti(γ)44Sc 0.068 ∼ 2c SN Remnant CasA 4×10 5 4 × 1033 [14] − 0.078 ∼ 2c SN Remnant CasA 4×10 5 5 × 1033 [14] + − 44Sc(γ,β γ )44Ca 1.157 ∼ 30c SN Remnant CasA 4×10 5 8 × 1034 [15] + − 26Al(β γ )26Mg 1.809 5.4 Interstellar medium 4.5 × 10 4 a 8 × 1036 [16] Nuclear Excitation ∗ − 4He(α, n)7Be 0.429 25c Solar flares 3 × 10 2 6 × 1019 [17] ∗ − 4He(α, p)7Li 0.478 30c Solar flares 3 × 10 2 7 × 1019 [17] − 56Fe(p, p γ ) 0.847 5c Solar flares 1 × 10 2 4 × 1019 [2] ∗ − 12C, 16O(p, x)10B 1.023 30c Solar flares 5 × 10 3 2 × 1019 [2] − 56Fe(p, p γ ) 1.238 7c Solar flares 1 × 10 2 6 × 1019 [2] − 24Mg(p, p γ ) 1.369 15c Solar flares 2 × 10 2 1 × 1020 [2] − 20Ne(p, p γ ) 1.634 22c Solar flares 4 × 10 2 3 × 1020 [2] − 28Si(p, p γ ) 1.779 20c Solar flares 5 × 10 2 4 × 1020 [2] − 12C(p, p γ ) 4.438 97c Solar flares 5 × 10 2 1 × 1021 [2] − 16O(p, p γ ) 6.129 114c Solar flares 4 × 10 2 1 × 1021 [2] Neutron Capture 1H(n,γ)2H 2.223 < 0.1c Solar flares ∼ 11× 1022 [2, 18] − 2.223 70 10June74 transient 1.5 × 10 2 6 × 1036 d [8] − Redshifted 1.790 95 10June74 transient 3 × 10 2 1 × 1037 d [8] − 56Fe(n,γ)57Fe 5.947 25 10June74 transient 1.5 × 10 2 2 × 1037 d [8] Redshifted

Notes aPer radian of longitude in the Galactic Plane. bBlack hole? Near Galactic Center. cTheoretical widths for unresolved lines. d For a nominal distance of 1 kpc. References 1. Haymes, R.C. et al. 1975, ApJ, 201, 593; Leventhal, M. et al. 1978, ApJ, 225, L11; Riegler, G.R. et al. 1981, ApJ, 248, L13; Share, G.H. et al. 1988, ApJ, 326, 717; Wallyn, P. et al. 1993, ApJ, 403, 621; Leventhal, M. et al. 1993, ApJ, 405, L25; Purcell, W.R. et al. 1997, ApJ, 491, 725; Harris, M.J. et al. 1998, ApJ, 501, L55 2. Riegler, G.R. et al. 1981, ApJ, 248, L13; Leventhal, M. et al. 1982, ApJ, 260, L1; Leventhal, M. et al. 1986, ApJ, 302, 459 3. Chupp, E.L. et al. 1973, Nature, 241, 333; Chupp, E.L. 1984, ARA&A, 22, 359; Murphy, R. et al. 1990, ApJ, 358, 298 4. Mazets, E.P. et al. 1982, Ap&SS, 84, 173 5. Bouchet, F.R. et al. 1991, ApJ, 383, L45 6. Goldwurm, A. et al. 1992, ApJ, 389, L79; Sunyaev, R. et al. 1992, ApJ, 389, L75 7. Leventhal, M. et al. 1977, ApJ, 216, 491; Ayre, C.A. et al. 1983, MNRAS, 205, 285 8. Ling, J.C. et al. 1982, AIP Conf. Proc., 77, 143 9. Nolan, P.L., & Matteson, J.L. 1983, ApJ, 265, 389; Ling, J.C. et al. 1987, ApJ, 321, L117; Ling, J.C., & Wheaton, W.A. 1989, ApJ, 343, L57 10. Leventhal, M., & MacCallum, C.J. 1980, Ann. N.Y. Acad. Sci., 336, 248; Matteson, J. et al. 1991, AIP Conf. Proc., 232, 45; Lingenfelter, R.E., & Hua, X.M. 1991, ApJ, 381, 426; Smith, D. et al. 1993, ApJ, 414, 165 11. Mahoney, W.A. et al. 1988, ApJ, 334, L81; Matz, S.M. et al. 1988, Nature, 331, 416; Sandie, W.G. et al. 1988, ApJ, 334, L91; Rester, A.C. et al. 1989, ApJ, 342, L71; Tueller, J. et al. 1990, ApJ, 351, L41 Sp.-V/AQuan/1999/10/07:19:58 Page 222

222 / 10 γ -RAY AND NEUTRINO ASTRONOMY

12. Tueller, J. et al. 1990, ApJ, 351, L41; Leising, M.D., & Share, G.H. 1990, ApJ, 357, 638 13. Kurfess, J.D. et al. 1992, ApJ, 399, L137 14. Rothschild, R.E. et al. 1998, NucPhys B Proc. Suppl. 69, 68 15. Iyudin, A.F. et al. 1994, A&A, 284,L1 16. Mahoney, W.A. et al. 1984, ApJ, 286, 578; Harris, M.J. et al. 1990, ApJ, 362, 135; Diehl, R. et al. 1995, A&A. 298, 445; Naya, J. et al. 1991, Nature, 384,44 17. Murphy, R. et al. 1990, ApJ, 351, 299 18. Hudson, H.S. et al. 1980, ApJ, 236, L91; Prince, T.A. et al. 1982, ApJ, 255, L81

Table 10.6. Cyclotron line sources. Source Object α (deg) l (deg) Centroid FWHM Field name type δ (deg) b (deg) (keV) (keV) (1012 G) Refs. 0115+634 X ray 19.82 126.00 12.1 ± 0.23.1 ± 0.6 1.0 [1] Binary +63.82 +1.11 22.6 ± 0.44.3 ± 0.9 0332+530 X ray 53.75 146.05 28.5 ± 0.511.0 ± 0.9 2.5 [2] Binary +53.18 −2.19 52.6 ± 1.410± 3 , NP0531 Pulsar 83.63 184.56 73.3 ± 1.0a b < 4.9 6.7 [3] 0531+219 +22.01 −5.79 0535+262 X ray 83.95 181.09 ∼ 55 4.3 [4] Pulsar +26.29 −3.24 ∼ 110 Vel X-1 X ray 135.53 263.06 25.6 ± 0.97.2 ± 2.6 2.2 [5] 0900−403 Binary −40.56 3.93 57.9 ± 1.024.0 ± 1 Cen X-3 X ray 170.31 292.09 28.5 ± 0.56.3 ± 2.0 2.5 [6] 1119−603 Binary −60.62 0.34 1538−522 X ray 235.60 327.42 20.9 ± 0.2c 5.1 ± 0.3c 1.7 [7] Binary −52.39 +2.16

4U1626−67 X ray 248.07 321.79 ∼ 7 ± 1b ··· ∼3 [8] 1627−673 Binary −67.46 −13.09 ∼ 18 ± 1b ∼ 15 36.5 ± 1.07± 2.8 Her X-1 X ray 254.46 58.15 34.7 ± 0.9c 12.0 ± 2.0c 2.9 [9] 1656+354 Binary +35.34 +37.52 1907+097 X ray 287.41 43.74 20.0 ± 1.04.1 ± 2.6 1.7 [10] Binary +9.83 0.48 Cep X-4 X ray 324.88 99.68 30.5 ± 0.415.0 ± 1.4 2.6 [11] 2137+579 Binary +57.99 +4.06 GRB870303 γ burst ··· ··· 20.4 ± 0.73.5 ± 2.7 ∼ 1.7 [12] 40.6 ± 2.612.3 ± 6.3 GRB880205 γ burst ··· ··· 19.3 ± 0.74.1 ± 2.2 ∼ 1.7 [12] 38.6 ± 1.614.4 ± 4.6 γ ··· ··· . ± . +4.5 ∼ . GRB890929 burst 26 3 1 5 7.5−4.1 2 1 [13] . ± . +5.8 46 6 1 7 12.7−5.1

Notes aTransient line seen between 73 and 79 keV. bEmission line. cLine centroid and width are observed to vary with pulse phase. Sp.-V/AQuan/1999/10/07:19:58 Page 223

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 223

References 1. Nagase, F. et al. 1991, ApJ, 375, L49 2. Makishima, K. et al. 1990, ApJ, 365, L59 3. Ling, J.C. et al. 1979, ApJ, 231, 896; Ayre, C.A. et al. 1983, MNRAS, 205, 285 4. Grove, J.E. et al. 1995, ApJ, 438, L25; Maisack, M. et al. 1997, A&A, 325, 212 5. Makishima, K., & Mihara, T. 1992, Frontiers of X-Ray Astronomy (University Academy Press, Tokyo) p. 23; Mihara, T. 1995, Thesis, University of Tokyo; Kretschmar, P. et al. 1997, A&A, 325, 623; Dal Fiume, D. et al. 1998, Nuc Phys B Proc. Suppl., 69, 145 6. Dal Fiume, D. et al. 1998, Nuc Phys B Proc. Suppl., 69, 145 7. Clark, G.W. et al. 1990, ApJ, 353, 274 8. Pravdo, S.H. et al. 1979, ApJ, 231, 912; Orlandini, M. 1998, ApJ, 500, L163 9. Mihara, T. et al. 1990, Nature, 346, 250 10. Makishima, K., & Mihara, T. 1992, Frontiers of X-Ray Astronomy (University Academy Press, Tokyo) p. 23; Mihara, T. 1995, Thesis, University of Tokyo 11. Mihara, T. et al. 1991, ApJ, 379, L61 12. Murakami, T. et al. 1988, Nature, 335, 234 13. Yoshida, A. et al. 1991, PASJ, 43, L69

, Table 10.7. γ -Ray burst source positions < 100 arcmin2.a b Burst Date Time F > 30 keV αδ lbError box source (yr mo day) (s) (erg/cm2) (deg) (deg) (deg) (deg) (arcmin2) − GBS0010−160 79 11 16 51 400 2 × 10 4 3.20 −15.69 82.85 −75.46 4 − GBS0026−630 98 01 09e 4 341 4 × 10 6 6.48 −63.02 307.50 −53.86 50 − GBS0117−289 78 11 19 34 021 3 × 10 4 19.72 −28.64 228.50 −83.75 8 − GBS0502+118 97 02 28d 10 681 1 × 10 5 75.43 +11.78 188.91 −17.95 2 − GBS0526−661 79 03 05bc 57 125 1 × 10 3 81.51 −66.08 276.09 −33.24 0.05 − GBS0615−461 79 03 13 62 636 6 × 10 5 94.1 −46.1 253.8 −25.0 24 − GBS0625−346 79 10 14 40 412 1 × 10 5 96.7 −34.6 242.6 −19.7 82 − GBS0653+793 97 05 08d 78 106 4 × 10 6 103.37 +79.29 134.94 +26.71 28 − GBS0702+388 98 03 29d 13 478 5 × 10 5 105.65 +38.84 178.12 +18.65 3 − GBS0723−271 91 11 09 12 458 7 × 10 6 110.8 −27.1 240.6 −5.6 6 − GBS0813−326 92 05 01 76 695 4 × 10 5 123.34 −32.59 250.80 +0.96 4 − GBS0836−189 98 03 26d 76 733 1 × 10 6 129.14 −18.86 242.37 +13.03 80 − GBS0847−361 92 03 11 08 423 1 × 10 4 131.8 −36.1 257.8 +4.5 4 − GBS0912−510 91 05 22 44 036 3 × 10 5 137.9 −51.0 271.9 −1.9 4 − GBS1028+459 79 03 29 80 512 7 × 10 5 157.8 +45.6 169.9 +56.6 41 − GBS1104−229 91 11 18 68 252 5 × 10 5 166.0 −22.9 272.9 +33.6 20 − GBS1156+652 97 12 14d 84 041 1 × 10 5 179.13 +65.20 132.02 +50.95 48 − GBS1205+239 78 11 24 14 130 4 × 10 5 181.94 +23.65 229.93 +79.54 48 − GBS1257+592 97 12 27d 30 187 7 × 10 7 194.31 +59.40 121.55 +57.71 7 − GBS1327+375 92 07 20 11 524 2 × 10 5 201.8 +37.5 89.2 +77.2 6 − GBS1330−164 92 05 17 11 875 4 × 10 5 202.6 −16.4 316.3 +45.5 12 − GBS1400−468 79 03 07 80 330 2 × 10 4 210.69 −46.99 315.37 +14.15 10 − GBS1407+353 91 11 04 54 282 1 × 10 5 211.8 +35.3 64.4 +71.9 16 − GBS1412+789 79 06 13 50 755 4 × 10 7 213.1 +78.9 118.0 +37.7 0.8 − GBS1450−693 97 04 02e 80 352 ∼ 10 5 222.53 −69.33 313.11 −8.84 2 − GBS1528+196 97 01 11e 35 040 ∼ 10 5 232.06 +19.60 29.63 +53.39 28 − GBS1625−583 91 07 17 16 378 7 × 10 6 246.3 −58.3 328.1 −6.3 10 − GBS1630−765 79 01 13 27 360 1 × 10 4 249.2 −76.6 314.7 −19.2 78 − GBS1703+006 78 11 21a 05 736 9 × 10 5 256.4 +0.5 20.7 +23.6 ∼ 100 − GBS1730+491 96 07 20 41 813 3 × 10 6 262.65 +49.10 75.76 +33.09 28 − GBS1756−261 91 04 21 33 246 4 × 10 6 268.9 26.1 51.5 +23.2 ∼ 100 − GBS1806−207 79 01 07c 20 155 1 × 10 6 272.17 −20.41 10.0 −0.24 6 Sp.-V/AQuan/1999/10/07:19:58 Page 224

224 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Table 10.7. (Continued.)

Burst Date Time F > 30 keV αδ lbError box source (yr mo day) (s) (erg/cm2) (deg) (deg) (deg) (deg) (arcmin2) − GBS1808+593 97 08 28e 63 877 ∼ 10 5 272.13 +59.13 87.95 +28.45 0.8 − GBS1810+314 79 03 25b 49 500 5 × 10 5 273.0 +31.4 58.2 +21.6 2 − GBS1847+728 92 07 11 58 166 8 × 10 6 281.8 +72.8 103.7 +26.1 100 − GBS1900+145 79 03 24c 58 010 1 × 10 6 286.83 +9.45 43.08 +0.81 7 − GBS1912−577 92 04 06 09 915 1 × 10 4 288.0 −57.7 339.0 −25.3 4 − GBS1926+036 79 03 31 76 172 8 × 10 5 292.0 +3.7 40.4 −6.4 20 − GBS2000−427 92 05 25 12 427 1 × 10 4 300.0 −42.7 357.2 −30.1 6 − GBS2006−216 78 11 04b 58 667 3 × 10 4 302.2 −21.5 21.1 −26.2 14 − GBS2142−414 79 06 22 02 665 7 × 10 5 326.4 −41.2 0.3 −49.6 ∼ 100 − GBS2252−025 79 11 05b 48 862 1 × 10 5 343.55 −2.26 69.45 −52.51 35 − GBS2311+319 79 05 04 31 464 6 × 10 6 348.4 +32.1 99.9 −26.3 58 − GBS2311−499 79 04 06 42 447 1 × 10 6 348.51 −49.66 336.03 −60.74 0.3 − GBS2320+128 92 03 25 62 261 3 × 10 5 349.9 +12.8 90.8 −44.3 7

Notes aQuiescent X-ray counterparts have been suggested for the three repeater burst sources GBS0526−661, GBS1806−207 and GBS1900+145, which are associated with supernova remnants N49, G10.0−0.3, and G42.8+0.6 (see note c below and Rothschild, R.E., & Lingenfelter, R.E. 1996, High Velocity Neutron Stars and Gamma-Ray Bursts (AIP, New York)). No quiescent counterparts have been identified for the “classical” bursts, but fading afterglow sources have been seen following several bursts (see note d) and underlying “host” galaxies have been reported. bLocations (2000 coordinates) for bursts prior to 1990 are based on catalog of Atteia, J.L. et al. 1987, ApJS, 64, 305, and fluences from Mazets, E.P. et al. 1981, Ap&SS, 80, 1, except as follows: GBS1550+762 data from Hueter, G.J. 1987, Ph.D. Dissertation, University of California, San Diego; GBS1806−207 position from Atteia, J.L. et al. 1987, ApJ, 320, L110, and private communication; GBS1900+145 position also from Mazets, E.P. et al. 1981; GBS0746−672 data from Katoh, T. et al. 1984, in AIP Conf. Proc. 115, 390; locations of bursts after 1990 are from Hurley, K., private communication on behalf of the 3rd Interplanetary Network; and from BeppoSAX burst detections listed in notes d and e. Fluences are from Third BATSE Catalog (Meegan, C.A. et al. 1996, ApJS, 106, 65, and the online update of that catalog. cRepeaters: 17 bursts have been observed from the source GBS0526−661 (Golenetskii, S.V. et al. 1979, Sov. Astron. Lett., 13, 166) associated with supernova remnant N49 in LMC and possibly an X-ray source at α 05h26m0.55s, δ ◦ −66 4 35.56 (Rothschild, R.E., Kulkarni, S.R., & Lingenfelter, R.E. 1994, Nature, 368, 432); > 100 bursts from GBS1806−204 (Atteia, J.L. et al. 1987, ApJ, 320, L105; Laros, J.G. et al. 1987, ApJ, 320, L111) associated with ◦ Galactic supernova remnant G10.0−0.3 and an X-ray source at α 18h8m40.34s, δ −20 24 41.67 (Murakami, T. et al. 1994, Nature, 368, 127), and six bursts from GBS1900+145 (Mazets, E.P. et al. 1979, Sov. Astron. Lett., 5, 343; Kouveliotou, C. et al. 1993, Nature, 362, 728; Hurley, K. et al. 1994, ApJ, 431, L31) associated with Galactic supernova ◦ remnant G42.8+0.6 and possibly an X-ray source at α 19h7m17s, δ +9 19 18 (Vasisht, G. et al. 1994, ApJ, 431, L35). d Fading optical sources have been observed for GRB0502+118 (Costa, E. et al. 1997, IAU Circ. No. 6572) at ◦ V = 21.3 discovered 0.9 days after burst at α 05h01m46.61s, δ +11 46 53.4 (van Paradijs, J. et al. 1997, Nature, 386, 686); GRB0653+793 (Heise, J. et al. 1997, IAU Circ. No. 6654) at V = 20.5 discovered 1.28 days after burst ◦ at α 06h53m49.43s, δ +79 16 19.6 (Bond 1997, IAU Circ. No. 6654) and red-shifted absorption lines observed with z = 0.835 (Metzger, M.R., et al. 1997, Nature, 387, 878); GBS0702+388 (in’t Zand, J. et al. 1998, IAU Circ. ◦ No. 6854) at 250 µJy at 8.4 GHz discovered 2.9 days after burst at α 07h02m38.02170s, δ +38 50 44.0170 (Taylor, G.B. et al. 1998, GCN. No. 40) and at K = 21.4 after 4 days (Metzger, M.R. et al. 1998, IAU Circ. No. 6874) GBS0836−189 (Celidonio, G. et al. 1998, IAU Circ. No. 6851) at R = 21.7 discovered 0.5 days after burst at ◦ α 8h36m34.28s, δ −18 51’23.9” (Groot, P.J. et al. 1998, IAU Circ. No. 6852) GRB1156+652 (Heise, J. et al. 1997, ◦ IAU Circ. No. 6787) at I = 21.2 discovered 0.5 days after burst at α 11h56m26.4s, δ +65 12 00.5 (Halpern, J. et al. 1997, IAU Circ. No. 6788) and red-shifted emission lines observed with z = 3.4 (Kulkarni, S. et al. 1998, Nature, 393, 35) GBS1257+592 (Piro. L. et al. 1997, IAU Circ. No. 6797) at R = 19.5 discovered 0.6 days after burst at ◦ α 12h57m10.6s, δ +59 24 43 (Castro-Tirado, A.J. et al. 1997, IAU Circ. No. 6800) eNo fading optical sources were observed for GBS0026−630 (in’t Zand, J. et al. 1998, IAU Circ. No. 6805) with I < 21 (Sahu, K.C., & Sterken, C. 1998, IAU Circ. No. 6808) GBS1450−693 (Piro. L. et al. 1997, IAU Circ. No. 6617) with V < 22.5 (Pedersen, H. et al. 1997, IAU Circ. No. 6628) GBS1528+196 (in’t Zand, J. et al. 1997, IAU Circ. No. 6569) with R < 22.6 (Castro-Tirado, A.J. et al. 1997, IAU Circ. No. 6598) GBS1808+593 (Murakami, T. et al. 1997, IAU Circ. No. 6732) with R < 24.5 (Odewahn, S.C. et al. 1997, IAU Circ. No. 6735) Sp.-V/AQuan/1999/10/07:19:58 Page 225

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 225

Table 10.8. γ -Ray burst properties.a

Property Observed values Comments References “Soft” Repeating Bursts Energy range ∼ 1keVÐ1 MeV γ Ðγ opacity [1] constraints Energy spectra φ(hν) ∝ exp(−hν/) with  ≥ 25 keV [1] − + Emission features ∼ 430 keV Redshifted e e [2] Annihilation radiation Rise times As short as 0.2 ms Size < 60 km [3] − Durations ∼ 10 2Ð∼ 102 s [1] Periodicity 8.0 s Burst GB790305b [3, 4] ∼ 23 ms Burst GB790305b [5] Source Off-center in high-velocity [6] Supernova remnants neutron stars? “Classical” Bursts Energy range ∼ 1keVÐ20 GeV γ Ðγ opacity [7] constraints s s Energy spectra φ(hν) ∼ (hν) with s ≤−1 for (hν) < Eo [8] s s φ(hν) ∼ (hν) with s ≤−2 for (hν) > Eo Eo ∼ 50Ð1000 keV Absorption features 20Ð50 keV Cyclotron absorption [9] ∼ few 1012 G fields Rise times As short as 0.2 ms Size < 60 km [10] − Durations ∼ 10 2Ð∼ 104 s [7] V/Vmax 0.33 ± 0.01 Spatially nonuniform [11] cos θ−0.01 ± 0.02 Isotropic = 0 [11] Galactocentric angle θ Source Optical transient at z ∼ 0.8Ð3.4 [12] and host galaxies? [12] for several bursts

Note aFor general reviews, see also Higdon, J.C., & Lingenfelter, R.E. 1990, ARA&A, 28, 401; Harding, A.K. 1991, Phys. Rep., 206, 327; Fishman, G.J., & Meegan, C.A. 1995, ARA&A, 33, 415; Rothschild, R.E., & Lingenfelter, R.E. 1995, High Velocity Neutron Star and Gamma-Ray Bursts (American Institute of Physics, New York) 282 pp.; Kouveliotou, C., Briggs, M.F., & Fishman, G.J. 1996, Gamma-Ray Bursts (American Institute of Physics, New York) 1008 pp. References 1. Mazets, E.P. et al. 1981, Ap&SS, 80, 1; Mazets, E.P., & Golenetski, S.V. 1981, Ap&SpPhysRev, 1, 205; Mazets, E.P. et al. 1982, Ap&SS, 82, 261; Atteia, J.L. et al. 1987, ApJ, 320, L105; Laros, J.G. et al. 1987, ApJ, 320, L111; Murakami, T. et al. 1994, Nature, 368, 127 2. Mazets, E.P. et al. 1982, Ap&SS, 84, 173 3. Cline, T.L. et al. 1980, ApJ, 237,L1 4. Mazets, E.P. et al. 1979, Nature, 282, 587; Barat, C. et al. 1979, A&A, 79, L24 5. Barat, C. et al. 1983, A&A, 126, 400 6. Rothschild, R.E., & Lingenfelter, R.E. 1995, High Velocity Neutron Star and Gamma-Ray Bursts (American Institute of Physics, New York) 282 pp.; and previous Table 10.7 7. Mazets, E.P. et al. 1981, Ap&SS, 80, 1; Mazets, E.P., & Golenetski, S.V. 1981, Ap&SpPhysRev, 1, 205; Meegan, C.A. et al. 1996, ApJS, 106, 65; Hurley, K. et al. 1979, Nature, 372, 652 8. Mazets, E.P. et al. 1981, Ap&SS, 80, 1; Band, D. et al. 1993, ApJ, 413, 281; Higdon, J.C., & Lingenfelter, R.E. 1986, ApJ, 307, 197 9. Murakami, T. et al. 1988, Nature, 335, 234; Mazets, E.P. et al. 1982, Ap&SS, 82, 261; Hueter, G.J. 1987, Ph.D. thesis, University of California, San Diego 10. Walker, K.C., & Schaefer, B.E. 1998, “ Bursts,” AIP Conf. Proc., 428, edited by C. Sp.-V/AQuan/1999/10/07:19:58 Page 226

226 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Meegan, R. Preece, and T. Koshut (AIP, New York) p. 34 11. Meegan, C.A. et al. 1996, ApJS, 106,65 12. See previous Table 10.7

Table 10.9. Extragalactic hard X-ray or γ -ray sources.a Source Object αb z name type δ dc Fluxd Energy Lum.e Refs. − NGC 253 Starburst 11.27 0.6 2 × 10 3 100 keV 5 × 1046 [1] 0045−255 galaxy −25.56 0.0036 − 4C+15.05 QSO 30.53 0.833 3 × 10 9e 100 MeV 1 × 1047 [2] 0202+149 +15.00 3.25 − 0208−512 QSO 32.24 1.003 5 × 10 8 30 MeV 3 × 1047 [3] − blazar −51.25 6.0 7 × 10 9 100 MeV 5 × 1047 [3] − 1 × 10 9 300 MeV 6 × 1047 [3] − 1 × 10 10 1 GeV 7 × 1047 [3] − 2 × 10 11 3 GeV 1 × 1048 [3] − 3C 66A BL Lac 34.88 0.833 1 × 10 9 f 100 MeV 1 × 1046 [4] 0219+428 +42.81 3.25 − 4C+28.07 BL Lac 38.73 1.213 3 × 10 9 f 100 MeV 3 × 1047 [4] 0234+285 +28.59 3.97 − 0235+164 BL Lac 38.97 0.94 2 × 10 8 50 MeV 3 × 1047 [5] − +16.40 5.6 6 × 10 9 100 MeV 4 × 1047 [5] − 8 × 10 10 300 MeV 4 × 1047 [5] − 8 × 10 11 1 GeV 5 × 1047 [5] − 1 × 10 11 3 GeV 6 × 1047 [5] − NGC 1275 Seyfert-2 49.12 0.0172 2 × 10 1 30 keV 3 × 1044 [6] − 0316+413 +41.33 0.10 3 × 10 2 100 keV 6 × 1044 [6] − 5 × 10 3 300 keV 1 × 1045 [6] − CTA 26 QSO 54.25 0.852 1 × 10 8 f 100 MeV 5 × 1048 [4] 0336−019 blazar −1.94 3.29 − 3C 111 Seyfert-1 63.75 0.0485 3 × 10 3 f 100 keV 5 × 1044 [7] 0415+379 +37.90 0.283 − OA 129 QSO 65.18 0.915 4 × 10 9 f 100 MeV 2 × 1047 [2] 0420−014 blazar −1.46 5.5 − 3C 120 Seyfert-1 67.63 0.0330 3 × 10 3 f 100 keV 2 × 1044 [7] 0433+052 +5.25 0.194 − NRAO 190 QSO 70.02 0.844 9 × 10 9 f 100 MeV 4 × 1047 [4] 0440−003 blazar −0.39 3.27 − 0454−463 QSO 73.60 0.86 3 × 10 9 f 100 MeV 1 × 1047 [2] −46.34 5.2 − 4C−02.19 QSO 74.67 2.286 3 × 10 9 f 100 MeV 1 × 1048 [4] 0458−020 blazar −2.06 4.98 − 0521−365 BL Lac 81.00 0.055 2 × 10 9 f 100 MeV 4 × 1044 [4] −36.49 0.32 Sp.-V/AQuan/1999/10/07:19:58 Page 227

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 227

Table 10.9. (Continued.)

Source Object αb z name type δ dc Fluxd Energy Lum.e Refs. − 0528+134 QSO 82.03 2.06 3 × 10 7 30 MeV 8 × 1048 [8] − blazar +31.50 12.4 2 × 10 8 100 MeV 6 × 1048 [8] − 1 × 10 9 300 MeV 3 × 1048 [8] − 4 × 10 11 1 GeV 1 × 1048 [8] − 3 × 10 12 3 GeV 8 × 1047 [8] − 0537−441 BL Lac 84.34 0.894 2 × 10 9 100 MeV 1 × 1047 [9] − −44.11 5.4 2 × 10 10 300 MeV 1 × 1047 [9] − 2 × 10 11 1 GeV 1 × 1047 [9] − MCG 8-11-11 Seyfert-1 87.79 0.0205 2 × 10 1 30 keV 5 × 1044 [10] − 0551+464 +46.43 0.12 6 × 10 2 100 keV 2 × 1045 [10] − 2 × 10 2 300 keV 5 × 1045 [10] − 6 × 10 3 1 MeV 2 × 1046 [10] − 3 × 10 5 10 MeV 1 × 1046 [10] − 0716+714 BL Lac 109.05 ··· 2 × 10 9 100 MeV ··· [2] +71.44 − OI 158 BL Lac 113.81 0.424 3 × 10 9 f 100 MeV 4 × 1046 [4] 0735+178 +17.82 2.04 − 0827+243 QSO 127.80 2.046 7 × 10 9 f 100 MeV 2 × 1048 [4] blazar +24.05 4.83 − OJ 49 BL Lac 127.30 0.18 2 × 10 9 f 100 MeV 5 × 1045 [4] 0829+046 +4.66 0.98 − 4C+71.07 QSO 129.09 2.172 3 × 10 9 f 100 MeV 1 × 1048 [2] 0836+710 blazar +71.07 4.92 − 0917+449 QSO 139.43 2.18 3 × 10 9 f 100 MeV 1 × 1048 [4] blazar +44.91 4.51 − MCG -5-23-16 Seyfert-2 146.37 0.0485 4 × 10 3 f 100 keV 2 × 1043 [7] 0945−307 −30.72 0.283 − 4C+55.17 QSO 148.56 0.909 5 × 10 9 f 100 MeV 3 × 1047 [4] 0954+556 blazar +55.62 3.42 − 0954+658 BL Lac 148.74 0.368 2 × 10 9 f 100 MeV 1 × 1046 [4] +65.80 1.82 − MRK 421 BL Lac 165.42 0.0308 1 × 10 1 30 keV 6 × 1044 [11] − 1101+384 +38.48 0.18 4 × 10 2 100 keV 3 × 1045 [11] − 7 × 10 9 50 MeV 1 × 1044 [12] − 2 × 10 9 100 MeV 1 × 1044 [12] − 2 × 10 10 300 MeV 1 × 1044 [12] − 2 × 10 11 1 GeV 1 × 1044 [12] − 2 × 10 12 3 GeV 1 × 1044 [12] − 3 × 10 17 f 500 GeV 5 × 1043 [13] − 4C+29.45 QSO 179.24 0.729 2 × 10 8 f 100 MeV 7 × 1047 [4] 1156+295 blazar +29.52 2.99 Sp.-V/AQuan/1999/10/07:19:58 Page 228

228 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Table 10.9. (Continued.)

Source Object αb z name type δ dc Fluxd Energy Lum.e Refs. − NGC 4151 Seyfert-1 182.00 0.003 2 × 10 1 30 keV 1 × 1043 [14] − 1208+396 +39.68 0.018 5 × 10 2 100 keV 3 × 1043 [14] − 1 × 10 2 300 keV 6 × 1043 [14] − 8 × 10 3 1 MeV 5 × 1044 [14] − W Comae BL Lac 184.76 0.102 5 × 10 9 f 100 MeV 4 × 1045 [4] 1219+285 +28.51 0.58 − 4C+21.35 QSO 185.60 0.435 5 × 10 9 f 100 MeV 7 × 1046 [4] 1222+216 blazar +21.66 2.08 − NGC 4388 Seyfert-2 185.81 0.00842 6 × 10 3 f 100 keV 3 × 1043 [7] 1223+126 +12.94 0.051 − 3C 273 QSO 186.64 0.158 1 × 10 1 30 keV 2 × 1046 [15] − 1226+023 +2.33 0.95 1 × 10 2 100 keV 2 × 1046 [15] − 5 × 10 3 300 keV 8 × 1046 [16] − 2 × 10 4 1 MeV 3 × 1046 [17] − 2 × 10 5 3 MeV 3 × 1046 [17] − 2 × 10 6 10 MeV 3 × 1046 [17] − 2 × 10 7 30 MeV 3 × 1046 [17] − 1 × 10 8 100 MeV 2 × 1046 [17] − 1 × 10 9 300 MeV 2 × 1046 [17] − 3 × 10 11 1 GeV 5 × 1045 [17] − 1227+023 QSO 186.83 0.57 3 × 10 1 40 keV 1 × 1048 [18, 19] − +2.41 3.4 2 × 10 2 100 keV 5 × 1047 [18, 19] − 4C−02.55 QSO 187.36 1.045 2 × 10 9 f 100 MeV 1 × 1047 [4] 1229−021 blazar −2.13 3.68 − M87 NELG 187.08 (0.0042) 1 × 10 1 30 keV 1 × 1043 [20] − 1228+124 +12.67 0.025 6 × 10 3 100 keV 7 × 1042 [20] − 3C 279 QSO 193.40 0.538 2 × 10 5 3 MeV 4 × 1047 [17] − 1253−055 −5.52 3.2 3 × 10 6 10 MeV 6 × 1047 [17] − 2 × 10 7 30 MeV 4 × 1047 [21] − 2 × 10 8 100 MeV 4 × 1047 [21] − 3 × 10 9 300 MeV 5 × 1047 [21] − 3 × 10 10 1 GeV 6 × 1047 [21] − 4 × 10 11 3 GeV 7 × 1047 [21] − 4 × 10 12 10 GeV 8 × 1047 [21] − X Comae Seyfert-1 194.49 0.092 2 × 10 1 30 keV 1 × 1046 [22] − 1257+286 +28.67 0.55 3 × 10 2 100 keV 2 × 1046 [22] − 1313−333 QSO 198.33 1.21 2 × 10 9 f 100 MeV 3 × 1047 [4] blazar −33.39 3.96

Cen A Radio 200.74 (0.001825) 1 × 100 30 keV 1 × 1043 [23] − 1322−427 galaxy −42.71 0.0073 1 × 10 1 100 keV 1 × 1043 [23] − 2 × 10 2 300 keV 2 × 1043 [23] − 2 × 10 3 1 MeV 2 × 1043 [24] − 7 × 10 5 10 MeV 7 × 1043 [24] − OP 151 QSO 202.79 2.084 1 × 10 9 f 100 MeV 3 × 1047 [4] 1331+170 blazar +17.07 4.86 Sp.-V/AQuan/1999/10/07:19:58 Page 229

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 229

Table 10.9. (Continued.)

Source Object αb z name type δ dc Fluxd Energy Lum.e Refs. − MCG -6-30-15 Seyfert-1 203.26 0.00775 5 × 10 3 f 100 keV 2 × 1043 [7] 1314−340 −34.04 0.048 − IC 4329A Seyfert-1 206.62 0.01605 7 × 10 3 f 100 keV 1 × 1044 [7] 1346−300 −30.06 0.094 − MRK 279 Seyfert-1 207.97 0.0294 3 × 10 3 f 100 keV 2 × 1044 [7] 1348+700 +69.55 0.175 − OQ−010 QSO 211.58 1.494 1 × 10 8 f 100 MeV 2 × 1048 [4] 1406−076 blazar −7.64 4.34 − NGC 5548 Seyfert-1 214.50 0.0168 4 × 10 3 f 100 keV 8 × 1043 [7] 1415+255 +25.14 0.100 − 1424−418 QSO 216.00 1.522 6 × 10 9 f 100 MeV 1 × 1048 [4] blazar +41.80 4.37 − OR−017 QSO 227.54 0.361 5 × 10 9 f 100 MeV 5 × 1046 [4] 1510-089 blazar −8.91 1.79 − 4C+15.54 BL Lac 241.21 0.357 4 × 10 9 f 100 MeV 4 × 1046 [4] 1604+159 +15.99 1.78 − OS 319 QSO 242.95 1.401 7 × 10 9 f 100 MeV 1 × 1048 [4] 1611+343 blazar +34.34 4.23 − 1622−253 QSO 245.68 0.786 7 × 10 9 f 100 MeV 3 × 1047 [4] blazar −25.35 3.14 − 1622−297 QSO 246.36 0.815 3 × 10 8 f 100 MeV 1 × 1048 [4] blazar −29.92 3.21 − 4C 38.41 QSO 248.38 1.814 2 × 10 8 50 MeV 1 × 1048 [25] − 1633+382 +38.24 10.9 6 × 10 9 100 MeV 1 × 1048 [25] − 7 × 10 10 300 MeV 1 × 1048 [25] − 8 × 10 11 1 GeV 2 × 1048 [25] − 1 × 10 11 3 GeV 2 × 1048 [25] − 1 × 10 12 10 GeV 2 × 1048 [25] − NRAO 530 QSO 262.56 0.902 1 × 10 8e 100 MeV 6 × 1047 [4] 1730−130 blazar −13.05 3.40 − 4C+51.37 QSO 264.87 1.375 4 × 10 9 f 100 MeV 5 × 1047 [4] 1739+522 blazar +52.22 4.19 − OT−68 QSO 265.34 1.054 4 × 10 9 f 100 MeV 3 × 1047 [4] 1741−038 blazar −3.81 3.70 − 3C 390.3 Seyfert-1 281.41 0.0561 3 × 10 3 f 100 keV 7 × 1044 [7] 1845+797 +79.75 0.326 − 1933−400 QSO 293.46 0.966 1 × 10 8 f 100 MeV 7 × 1047 [4] blazar −40.08 3.53 − NGC 6814 Seyfert-1 295.67 0.00521 3 × 10 3 f 100 keV 6 × 1042 [7] 1942−102 −10.32 0.030 − NRAO 629 QSO 305.75 1.388 7 × 10 9 f 100 MeV 9 × 1047 [4] 2022−077 blazar −7.76 4.21 Sp.-V/AQuan/1999/10/07:19:58 Page 230

230 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Table 10.9. (Continued.)

Source Object αb z name type δ dc Fluxd Energy Lum.e Refs. − MRK 509 Seyfert-1 310.36 0.0344 4 × 10 3 f 100 keV 3 × 1044 [7] 2041-107 −10.91 0.203 − 2052-474 QSO 314.52 1.489 3 × 10 9 f 100 MeV 5 × 1047 [4] blazar −46.96 4.33 − 2155−304 BL Lac 328.99 0.116 3 × 10 9 f 100 MeV 3 × 1045 [4] −30.47 0.655 − BL Lacertae BL Lac 330.16 0.0686 4 × 10 9 f 100 MeV 1 × 1045 [4] 2200+420 +42.04 0.398 − 2209+236 QSO 332.51 1.489 1 × 10 9 f 100 MeV 2 × 1047 [4] blazar +23.97 4.33 − CTA 102 QSO 337.53 1.037 4 × 10 9 100 MeV 3 × 1047 [2] 2230+114 +11.47 6.2 − 3CR 454.3 QSO 342.87 0.859 8 × 10 9 100 MeV 4 × 1047 [2] 2251+158 +15.88 5.2 − NGC 7582 Seyfert-2 344.18 0.00525 3 × 10 3 f 100 keV 6 × 1042 [7] 2318−422 −43.23 0.033 − OZ 193 QSO 359.05 1.066 3 × 10 9 f 100 MeV 2 × 1047 [4] 2356+196 blazar +19.64 3.72

Diffuse 5 × 101/sr 30 keV [26] background 2 × 100/sr 100 keV [26] − 1 × 10 1/sr 300 keV [26] − 1 × 10 2/sr 1 MeV [26] − 1 × 10 4/sr 10 MeV [26] − 2 × 10 7/sr 100 MeV [26]

Notes aSource type, position, and redshift are from Hewitt, A., & Burbidge, G. 1987, ApJS, 63, 1; 1989, ApJS, 69,1; and 1991, ApJS, 75, 297, except for M87 and Cen A from Tully, R. 1988, Nearby Galaxies Catalog (Cambridge University Press, Cambridge) for which the redshifts are corrected for local motion, and for GRS1227+0229 from Grindlay, J.E. 1993, A&AS, 97, 113. bPositions in degrees. 2 cDistances in Gpc assume cosmological redshifts with H = 50 km/s Mpc. d (Gpc) = 6 × (1+z) −1 0 (1+z)2+1 d Flux in photons/cm2 s MeV at the energy denoted. eAssuming isotropic emission, E2 × (flux) = E2 (keV2) × z2 × [flux (phot./cm)2 s MeV] × 7 × 1045 ergs/slnE. − f Differential flux determined from flux assuming a differential spectrum of the form E 2. References 1. Bhattacharya, D. et al. 1992, AIP Conf. Proc., 280, 498 2. Fichtel, C.E. et al. 1992, AIP Conf. Proc., 280, 461 3. Bertsch, D.L. et al. 1993, ApJ, 405, L21 4. Hartman, R.C. et al. 1997, AIP Conf. Proc., 410, 307 5. Hunter, S.D. et al. 1992, A&A, 272,59 6. Rothschild, R.E. et al. 1981, ApJ, 243,L9 7. Kurfess, J.D. et al. 1995, NATO ASI Series C, 461, 233 8. Hunter, S.D. et al. 1993, ApJ, 409, 134 9. Thompson, D.L. et al. 1992, ApJ, 410,87 10. Perotti, F. et al. 1981, Nature, 292, 133 11. Ubertini, P. et al. 1984, ApJ, 284,54 12. Lin, Y.C. et al. 1993, ApJ, 401, L61 Sp.-V/AQuan/1999/10/07:19:58 Page 231

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 231

13. Punch, M. et al. 1992, Nature, 358, 477 14. Perotti, F. et al. 1981, ApJ, 247, L63 15. Primini, F.A. et al. 1979, Nature, 278, 234 16. Bassani, L. et al. 1991, 22nd Int. Cosmic Ray Conf., 1, 173 17. Hermsen, W. et al. 1993, A&AS, 97,97 18. Bassani, L. et al. 1991, 22nd Int. Cosmic Ray Conf., 1, 173 19. Grindlay, J.E. 1993, A&AS, 97, 113 20. Lea, S. et al. 1981, ApJ, 246, 369 21. Kniffen, D.A. et al. 1993, ApJ, 411, 133 22. Bazzano, A. et al. 1990, ApJ, 362, L51 23. Baity, W.A. et al. 1981, ApJ, 244, 429 24. von Ballmoos, P. et al. 1987, ApJ, 312, 134 25. Mattox, J.R. et al. 1993, ApJ, 410, 609 26. Rothschild, R.E. et al. 1983, ApJ, 269, 423

Table 10.10. Hard X-ray and γ -ray instruments in space since 1970. Energy range Field of view Area PI Instrument Mission E/E resolution (cm2) Date institution Refs. ◦ Cosmic X-ray OSO-7 6Ð500 keV 6.5 64 1971Ð73 Peterson [1] 33% @ 60 keV UCSD ◦ ◦ Solar X-ray OSO-7 10Ð350 keV 90 × 20 9.6 1971Ð73 Peterson [2] telescope 18% @ 60 keV UCSD ◦ ◦ γ -ray OSO-7 0.3Ð10 MeV 120 × 70 45 1971Ð73 Chupp [3] monitor < 8% @ 662 keV UNH ◦ γ -ray SAS-2 30Ð200 MeV 30 115 1972Ð73 Fichtel [4] ◦ telescope ∼ 50% ∼ 2 GSFC ◦ Scintillator Ariel-V 26 keVÐ1.2 MeV 8 8 1974Ð80 Imperial [5] telescope 30% @ 662 keV College ◦ Celestial OSO-8 15 keVÐ3 MeV 5 28 1975Ð78 Frost [6] X-ray detector 50% @ 60 keV GSFC ◦ γ -ray COS-B 50 MeVÐ2 GeV ∼ 30 75 1975Ð82 Caravane [7] ◦ detector 40% @ 100 MeV ∼ 1 Collaboration ◦ ◦ A-4 LED HEAO-1 15Ð180 keV 1.2 × 20 206 1977Ð79 PetersonÐLewin [8] 25%@60keV UCSDÐMIT ◦ A-4 MED HEAO-1 0.1Ð2 MeV 16.5 160 1977Ð79 Peterson 10%@1MeV UCSD ◦ A-4 HED HEAO-1 0.2Ð10 MeV 40 120 1977Ð79 Peterson 10%@1MeV UCSD ◦ C-1 germanium HEAO-3 50 keVÐ10 MeV 30 64 1979Ð80 Jacobson [9] spectrometer 0.2% @ 1.8 MeV JPL ◦ GRS SMM 0.3Ð9 MeV 180 310 1979Ð89 Chupp [10] 7% @ 662 keV UNH ◦ HXRBS SMM 20Ð260 keV 40 71 1979Ð89 Frost [11] 30% @ 122 keV GSFC ◦ ◦ HEXE MIR 15Ð200 keV 1.6 × 1.6 800 1987Ð Trumper [12] KVANT 30% @ 60 keV MPI ◦ ◦ Pulsar X-1 KVANT 50Ð800 keV 3 × 3 1256 1987Ð Sunyaev [13] IKI ◦ GSPC KVANT 3Ð100 keV 2.3 ∼ 150 1987Ð Schnopper [14] 3%@60 keV SRL Sp.-V/AQuan/1999/10/07:19:58 Page 232

232 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Table 10.10. (Continued.)

Energy range Field of view Area PI Instrument Mission E/E resolution (cm2) Date institution Refs. ◦ ◦ SIGMA GRANAT 30 keVÐ1.3 MeV 4.7 × 4.3 797 1989Ð PaulÐMandrou [15] ◦ 8% @ 511 keV 0.2 CESRÐSaclay WATCH GRANAT 6Ð180 KeV 4 sr 30 1989Ð Lund [16] DSRI ◦ ◦ ART-P GRANAT 4Ð100 keV 1.8 × 1.8 2520 1989Ð Sunyaev [17] ◦ 14%@60keV 0.1 IKI ◦ ◦ ART-S GRANAT 3Ð100 keV 2.1 × 2.1 800 1989Ð Sunyaev [17] 11%@60keV IKI BATSE CGRO 20 keVÐ1.8 MeV 2π sr 1800 1991Ð Fishman [18] ◦ occultation 30% @ 88 keV 1 MSFC ◦ ◦ OSSE CGRO 50 keVÐ10 MeV 3.8 × 11.4 2620 1991Ð Kurfess [19] 8% @ 511 keV NRL COMPTEL CGRO 0.8Ð30 MeV ∼ 1 sr 45 1991Ð Schonfelder [20] ◦ 9% @ 1.3 MeV ∼ 1.5 MPI ◦ EGRET CGRO 20 MeVÐ30 GeV ∼ 40 1600 1991Ð Fichtel [21] ◦ ◦ ∼ 20% 0.1Ð5 GeV 0.1 Ð0.4 GSFC ◦ HEXTE RXTE 15 KeVÐ250 KeV ∼ 1 1600 1995Ð Rothschild [22] 15%@60keV UCSD ◦ PDS BeppoSAX 15 KeVÐ300 KeV ∼ 1.4 800 1996Ð [22] ∼ 15% 60 keV TeSRE/IAS

References 1. Peterson, L.E. 1972, IAU Symp. No. 55,51 2. Harrington, T. et al. 1972, IEEE Trans. Nucl. Sci., NS-19, 596 3. Higbie, P.R. et al. 1972, IEEE Trans. Nucl. Sci., NS-19, 606 4. Derdeyn, S. et al. 1972, Nucl. Instrum. Methods, 98, 557 5. Engel, A.R., & Coe, M.J. 1977, Space Sci. Instrum., 3, 407 6. Dennis, B.R. et al. 1977, Space Sci. Instrum., 3, 325 7. Bignami, G.F. et al. 1975, Space Sci. Instrum., 1, 245 8. Jung, G.V. 1989, ApJ, 338, 972; Knight, F.K. 1982, ApJ, 260, 538 9. Mahoney, W.A. et al. 1980, Nucl. Instrum. Methods, 178, 363 10. Forrest, D.J. et al. 1980, Solar Phys., 65,15 11. Orwig, L. et al. 1980, Solar Phys., 65,25 12. Reppin, C. et al. 1985, in Nonthermal and Very High Temperature Phenomena in X-ray Astronomy, edited by G.C. Perola and M. Salvati (Instituto Astronomico, Roma) p. 279 13. Sunyaev, R. et al. 1990, Adv. Space Sci., 10,41 14. Smith, A. 1985, in Nonthermal and Very High Temperature Phenomena in X-ray Astronomy, edited by G.C. Perola and M. Salvati (Instituto Astronomico, Roma) p. 271 15. Paul, J.A. et al. 1991, Adv. Space Res., 11, (8) 289 16. Lund, N. 1991, Adv. Space Res., 11, (8) 17 17. Sunyaev, R. et al. 1990, Adv. Space Res., 10, (2) 233 18. Fishman, G.J. et al. 1992, NASA Conf. Publ. 3137,26 19. Kurfess, J.D. et al. 1991, Adv. Space Res., 11, (8) 323 20. Schonfelder, V. 1991, Adv. Space Sci., 11, (8) 313 21. Kanbach, G. et al. 1988, Space Sci. Instrum., 49,69 22. Rothschild, R.E. et al. 1998, ApJ, 496, 538 23. Frontera, F. et al. 1997, A&AS, 122, 357 Sp.-V/AQuan/1999/10/07:19:58 Page 233

10.4 ASTROPHYSICAL γ -RAY OBSERVATIONS / 233

Table 10.11. γ -Ray burst instruments.

Trigger Energy Time range resolution Time Energy Dates Orbita Detectors (MeV) (s) (s) (MeV) Refs.

Vela 5A/B 5/69Ð3/84 GC 6Ð10 cm3 CsI 0.2Ð1 ≥ 0.016 0.25, 1.5 0.03Ð0.1.5 [1] Vela 6A/B

Helios-2 1/76Ð12/79 H 21.5 cm3 CsI > 0.1 ≥ 0.004 0.004 > 0.1 [2] 0.032 0.250

Solrad-11A/B 4/76Ð6/77 GC 2Ð43 cm3 CsI 0.2Ð2 ≥ 0.000 3 0.625 0.2Ð2 [3]

Signe-3 6/77Ð3/78 GC 950 cm2 CsIb > 0.06 0.008 [4]

HEAO-1 8/77Ð2/79 GC 2000 cm2 CsIb 0.1Ð1.6 ≥ 0.05 ∼ 0.3 0.13Ð1.7 [5] 280 cm2 NaI 0.03Ð6 0.32 [5] 3300 cm2 PC 0.000 5-0.02 0.1 [6]

Prognoz-6 9/77Ð3/78 G 63 cm2 NaI 0.08Ð1 ≥ 0.002 0.02 0.08Ð0.4 [7] 750 cm2 CsIb > 0.3 4 [7] 16 cm3 NaI 0.02Ð> 0.3 0.25 [7]

ICE 8/78Ð3/87 H 22 cm2 NaI 0.02Ð1.25 ≥ 0.004 0.000 25Ð 0.132Ð1.25 [8] 0.008 (ISEEÐ3) 35 cm3 Ge 0.2Ð3 0.001 0.000 13Ð 0.2Ð3 [9] 0.001

PVO 5/78Ð9/92 V 2Ð36 cm3 NaI 0.1Ð2 ≥ 0.012 0.25, 1, 4 0.1Ð2 [10]

Venera 11/12 9/78Ð1/80 H 2Ð63 cm3 NaI 0.1Ð2.5 > 0.002 0.02 0.08Ð0.4 [11] (Konus) 6Ð50 cm2 NaI 0.03Ð2 ≥ 0.016 0.25, 1.5 0.05Ð0.15 [12]

Prognoz-7 11/78Ð6/79 G 63 cm2 NaI 0.1Ð2.5 ≥ 0.002 0.25 0.08Ð0.4 [7] 750 cm2 CsIb > 0.1 0.002 [7]

Venera 13/14 11/81Ð4/83 H 2Ð63 cm2 NaI 0.05Ð1 ≥ 0.002 0.25 0.08Ð0.4 [11] (Konus) 6Ð50 cm2 NaI 0.03Ð2 ≥ 0.004 0.25, 1.5 0.05Ð0.15 [13]

Prognoz-9 7/83Ð2/84 G 2Ð178 cm2 NaI 0.04Ð8 ≥ 0.016 0.5, 2 0.073Ð0.966 [14]

Ginga 2/87Ð11/91 GC 60 cm2 NaI 0.014Ð0.40 0.031 0.25, 1, 4 0.014Ð0.4 [15] 63 cm2 PC 0.002Ð0.030 0.031 1, 4 0.002Ð0.03 [15]

GRANAT 12/89Ð G ÐSIGMA 800 cm2 NaI 0.03Ð2 ··· 0.25, 2 0.03Ð2 [16] ÐSIGMA 8Ð2400 cm2 CsI 0.1Ð1 ≥ 0.000 008 0.25, 2 0.1Ð1 [16] ÐWATCH 4Ð30 cm2 NaI/CsI 0.006Ð0.18 ≥ 0.000 1 0.004Ð32 0.006Ð0.18 [17] ÐKonus-B 12/89Ð2/90 6Ð314 cm2 NaI 0.01Ð8 0.002 0.25, 1.5 0.05Ð0.2 [18] ÐPhebus 6Ð573 cm3 BGO 0.1Ð100 ≥ 0.000 03 0.008 0.075Ð1.6 [19]

Ulysses 11/90Ð H41cm2 CsI 0.015Ð0.150 ≥ 0.008 0.125-4.0 0.015Ð0.150 [20] Compton 4/91Ð GC GRO BATSEÐLAD 8Ð2025 cm2 NaI 0.03Ð1.9 ≥ 0.000 002 0.06, 0.25, 1 0.06Ð0.3 [21] BATSEÐSD 8Ð127 cm2 NaI 0.015Ð110 0.000 128 [21] BeppoSAX 4/96Ð GC WFC 2-250 cm2 Xe 0.002Ð0.028 0.000 5 — 0.002Ð0.028 [22]

Notes aG, geocentric; GC, geocentric circular; H, heliocentric; V: venuscentric. bAnticoincidence shield used as burst detector. References 1. Klebesadel, R.W. et al. 1973, ApJ, 182, L85 2. Cline, T.L. et al. 1979, ApJ, 229, L47 3. Laros, J.G. et al. 1977, Nature, 267, 131 Sp.-V/AQuan/1999/10/07:19:58 Page 234

234 / 10 γ -RAY AND NEUTRINO ASTRONOMY

4. Chambon, G. et al. 1979, X-Ray Astronomy (Pergamon, Oxford), p. 509 5. Hueter, G.J. 1987, Ph.D. thesis, University of California, San Diego 6. Wood, K.S. et al. 1984, ApJS, 56, 507 7. Chambon, G. et al. 1979, Space Sci. Instrum., 5,73 8. Anderson, R.D. et al. 1978, IEEE Trans., GE-16, 157 9. Teegarden, B., & Cline, T.L. 1980, ApJ, 236, L67 10. Klebesadel, R.W. et al. 1980, IEEE Trans., GE-18,76 11. Barat, C. et al. 1981, Space Sci. Instrum., 5, 229 12. Mazets, E.P. et al. 1981, Ap&SS, 80,3 13. Mazets, E.P. et al. 1983, AIP Conf. Proc. No. 101,36 14. Boer, M. et al. 1986, Adv. Space Sci., 6,97 15. Murakami, T. et al. 1989, PASJ, 41, 405 16. Guerry, H. et al. 1986, Adv. Space Sci., 6, 103 17. Brandt, S. et al. 1990, Adv. Space Sci., 10, 239 18. Golenetskii, S.V. et al. 1991, Adv. Space Sci., 11, 125 19. Terekhov, O. et al. 1991, Adv. Space Sci., 11, 129 20. Hurley, K. et al. 1992, A&ASS, 92, 401 21. Fishman, G.J. et al. 1989, Proc. Gamma Ray Observatory Sci. Workshop,2Ð39 22. Jager, R. et al. 1997, A&AS, 125, 557

Table 10.12. Very-high-energy and ultrahigh-energy γ -ray experiments: Atmospheric Cherenkov and particle arrays.a

Lat. Long. Elev. Area Threshold Array Country (deg) (deg) (km) (104 m2) (TeV) (deg) Began Themis France 43N 1W 1.5 0.1 1986 Albuquerque USA 35N 107W 1.5 0.2 1986 Mt. Hopkins USA 32N 111W 2.3 0.3 0.1 1983 Narrabri Australia 31S 145E 0.21 0.3 1986 Haleakala USA 21N 156W 3.0 0.5 1985 Pachmarchi India 23N 78E 1.1 0.5 1987 Gulmarg India 35N 77E 2.7 1 1985 Potchefstroom South Africa 27S 27E 1.4 1 1985 White Cliffs Australia 32S 143E 0.16 1 1986 Crimea Ukraine 45N 34E 0.6 3.5 1 1.4 1986 Beijing China 40N 117E 1.0 1 1987 Plateau Rosa Italy 46N 8E 3.5 1 10 5.5 1981 Gran Sasso Italy 42N 14E 2.0 10 10 1 1988 Tibet China 30N 90E 4.2 2.0 10 0.8 1990 Tien Shan Kirghiz 42N 75E 3.3 0.5 100 3 1974 Ooty India 11N 77E 2.2 0.5 100 3 1984 Mt. Hopkins USA 32N 111W 2.3 ∼ 0.5 100 1 1985 La Palma Spain 29N 18W 2.2 4 100 1 1986 Mt. Aragats Armenia 40N 44E 3.2 100 1 1987 South Pole Antarctica 90S 0W 2.5 ∼ 1 100 1 1988 Mt. Norikura Japan 36N 137E 2.8 ≤ 1 100 1 1988 Dugway USA 40N 112W 1.5 ∼ 2/25 100 0.5Ð1 1989 Mt. Chacaltaya Bolivia 16S 68W 5.2 > 0.5 200 1Ð3 1986 Cygnus USA 36N 106W 2.1 > 8 200 1 1986 Baksan Kab-Balkar 43N 43E 1.7 0.5 300 1.5 1984 Kolar India 13N 78E 0.9 1.66 500 1.5 1984 Haverah Park UK 54N 1W 0 > 1 500 1 1986 Akeno Ranch Japan 35N 138E 0.9 ∼ 1 1000 3 1981 Moscow Russia 56N 37E 0 1000 3 1982 Buckland Park Australia 35S 138W 0 1.0 1000 2.5 1984 Janzos New Zealand 41N 172E 0.9 > 0.23 1000 2 1988

Note aBased on Weekes, T.C. 1988, Phys. Rep., 160, 1; Yodh, G. 1992, private communication; and Stepanian, A.A. 1992, private communication. Sp.-V/AQuan/1999/10/07:19:58 Page 235

10.5 NEUTRINOS IN ASTROPHYSICS / 235

10.5 NEUTRINOS IN ASTROPHYSICS by Wick C. Haxton

Perhaps the original motivation for studying astrophysical neutrinos was the prospect of directly probing the interior of our Sun: neutrinos produced as a byproduct of nuclear fusion pass undistorted through the outer layers of the Sun, carrying in their flux and spectrum a detailed memory of the nuclear reactions that produced them. As the competition between the three cycles comprising the pp chain (the process that dominates solar burning of four protons into 4He) depends sensitively on the solar core temperature Tc, one can deduce Tc by measuring the various components of the solar neutrino flux. Results from the 37Cl detector, which has operated for nearly 30 years, and from three more recent experiments, SAGE and GALLEX (radiochemical detectors containing 71Ga) and Kamioka II/III (an active water Cerenkov detector sensitive to higher energy solar neutrinos), have revealed some surprises. The results are consistent with a flux of high-energy 8B neutrinos reduced to about 50% of the standard solar model value and a greatly suppressed flux of neutrinos produced from electron 7 8 capture on Be. This is a surprising pattern because a reduction in Tc tends to suppress the B solar neutrino flux more than the 7Be flux, not less. In fact, detailed fits seem to show that the 7Be neutrinos must be completely absent to account the experimental results. One popular explanation for this puzzle is the phenomenon of neutrino oscillations: if neutrinos have nonzero masses and mix (so that the electron, muon, and tauon neutrinos are not identical to the mass eigenstates, but linear combinations of these), solar electron neutrinos can oscillate into muon neutrinos and escape detection. While once it was thought that neutrino oscillations would most likely produce only a small reduction in the solar electron neutrino flux, it was discovered about a decade ago that oscillation effects can be greatly enhanced within the Sun. This phenomenon, known as the MikheyevÐSmirnovÐWolfenstein or MSW mechanism, arises because the effective masses of neutrinos change when the neutrinos pass through matter. The MSW solution that best reproduces the results of the 37Cl, SAGE/GALLEX, and KamiokaII/III experiments is consistent with oscillations of a very light electron neutrino into a muon neutrino with a mass of about 0.003 electron volts (eV). Two new detectors, SuperKamiokande and the Sudbury Neutrino Observatory (SNO), should be able to confirm or rule out neutrino oscillations as a solution to the solar neutrino problem. Su- perKamiokande is an enormous (22.5 kiloton fiducial volume) ultrapure water Cerenkov detector lo- cated in a Japanese mine. It began operations in the Spring of 1996. By making a precision measure- ment of the spectrum of recoil electrons following neutrinoÐelectron scattering, the experimentalists hope to find subtle distortions characteristic of the MSW mechanism. SNO, which should be fully operational by the end of 1998, is a CanadianÐUSÐUK detector located deep within a nickel mine in Sudbury, Ontario. The inner volume of this water Cerenkov detector contains heavy water. Reactions on the deuterium nuclei provide separate charged and neutral current signals. Thus, in addition to spectrum distortions, the experimentalists hope to measure directly the neutrinos of a different flavor that are generated by the MSW mechanism. SuperKamiokande, SNO, and similar detectors are sensitive to another source of neutrinos, those produced in the atmosphere by the interactions of cosmic rays impinging on the Earth. For some years most such detectors have found a puzzling result, an unexpected ratio of muon neutrino to electron neutrino events given our understanding of cosmic ray neutrino production. Very recently the SuperKamiokande group, by comparing upward- to downward-going neutrinos, have claimed that this anomaly is definitive evidence for neutrino oscillations and thus of massive neutrinos. Another source of neutrinos is associated with one of the most spectacular events in astrophysics, the sudden collapse of the core of a massive star. This collapse triggers the ejection of the star’s mantle, producing the spectacular display known as a supernova. However 99% of the energy released in such Sp.-V/AQuan/1999/10/07:19:58 Page 236

236 / 10 γ -RAY AND NEUTRINO ASTRONOMY

a collapse, an enormous 3 × 1053 ergs, is invisible optically as it is carried by an intense three-second burst of neutrinos emitted by the cooling protoneutron star forming at the star’s center. We were extremely fortunate to have two large water Cerenkov detectors, Kamioka II and IMB, operating at the time of Supernova 1987A. The free protons in water absorb electron antineutrinos, emitting relativistic positrons that can be detected readily in such detectors. In each detector approximately 10 events were detected from a star that collapsed in the Large Magellanic Cloud 150 000 light years from earth. The characteristics of the detected neutrinos—the number of events, the spectrum, the duration of the neutrino pulse—were in good accord with supernova theory. There were no detectors operating that had the necessary characteristics and sensitivities to record the electron neutrinos or the muon and tauon neutrinos and antineutrinos. This was unfortunate because supernova electron neutrinos may hold the key to one of the central problems in cosmology, the dark matter. Studies on a variety of astrophysical scales—galaxies, clusters of galaxies, etc.—indicate that at least 90% of the mass in the Universe is dark, not emitting or absorbing electromagnetic radiation. Most estimates of the dark matter lead to a minimum mean density in the Universe of 20% of the closure density, the density that would keep the Universe from expanding forever. As the standard theory of big bang nucleosynthesis argues that at least some of this dark matter is nonbaryonic, massive neutrinos seem a natural explanation for this component. In particular, a heavy tauon neutrino with a mass of about 5Ð10 eV could comprise an important fraction of the dark matter and would also help to explain how galaxies and other structures in the Universe formed. Such a mass is quite consistent with a theoretical model for generating neutrino masses known as the seesaw mechanism. If the solar neutrino problem involves oscillations between the electron neutrino and a 0.003 eV muon neutrino, then the seesaw mechanism predicts that the tauon neutrino mass might be in the range required to explain large scale structure. How can one test the hypothesis of a tauon neutrino mass of a few eV? Just as the densities available in the Sun enhance oscillations between electron and muon neutrinos, the much larger densities found near the core of a supernova can enhance oscillations between electron neutrinos and massive tauon neutrinos. Because the tauon neutrinos emitted by a supernova tend to be substantially more energetic than supernova electron neutrinos, such oscillations would produce an anomalously energetic electron neutrino spectrum. Thus the detection of these electron neutrinos could demonstrate that massive tauon neutrinos make up an important component of the dark matter. As the standard model of electroweak interactions cannot accommodate massive neutrinos, such a discovery would also have a profound impact on particle physics. Neutrinos also play a crucial role in nuclear astrophysics. Arguments based on big-bang nucleosynthesis provided early evidence that there were only a few (three or four) light neutrino flavors, a result now beautifully confirmed by measurements of the width of the Z0. Neutrinos govern much of the nucleosynthesis that occurs in a supernova. For example, the process of rapid neutron capture, by which about half of the heavy elements and all of the transuranics are synthesized, is now believed to depend on conditions in the hot bubble that resides just above the surface of the protoneutron star. The entropy and neutron/proton ratio in this bubble are largely determined by neutrino interactions. Neutrinos also directly synthesize nuclei like 19F and 11B by scattering off the neon and carbon in the mantle of the collapsing star. The subsequent supernova explosion is the mechanism by which these newly synthesized metals are ejected into the interstellar medium. Finally, there is an enormous density of very low energy neutrinos—about 300/cm3—throughout the Universe, a relic of the big bang similar to the background microwave photons. Recent precision measurements of the microwave background allow us to look backward to the time of recombination, when electrons condensed on nuclei to form neutral atoms, providing a snapshot of conditions in the early Universe, 100 000 years after the big bang. Were we ever to find a method to detect the relic neutrinos, this would provide a probe of the Universe at the time the neutrinos decoupled from matter, early in the first minute in the history of the Universe. Detection of these relic neutrinos is likely to remain a challenge for many decades. Sp.-V/AQuan/1999/10/07:19:58 Page 237

10.6 CURRENT NEUTRINO OBSERVATORIES / 237

10.6 CURRENT NEUTRINO OBSERVATORIES by Thomas J. Bowles

Table 10.13 lists the existing neutrino observatories and a description of each one. Some of these are still under development.

Table 10.13. Existing neutrino observatories.

Main “Size” of Depth Sensorsc Detector aimsa target (mwe)b Detection techniques Remarks

Antarctica Heν 9 000 m2 1 800Ð2 400 Cerenkovˇ Under development AMANDA Baksan, Caucusus SN, HEν 330 tons ≈ 1 000 LS One of the oldest underground Russia 250 m2 neutrino observatories Homestake Mine HEν, ND 140 ton 4 000 LS Experiment no longer in operation S. Dakota Artyomovsk SN 100 ton LS Ukraine Mt. Blanc, Italy ND, SN 150 ton 5 000 Plastic tubes in limited Experiment no longer in operation NUSEX streamer mode Mt. Blanc, Italy ND, SN 90 ton 5 000 LS Experiment no longer in operation LSD Frejus ND, SN 912 ton 4 850 Flash chambers, Experiment no longer in operation France Geiger tubes Gran Sasso, Italy SN, HEν 3 240 m2 3 800 LS, streamer tubes Full operation began in 1996 MACRO Gran Sasso, Italy SN, HEν 1 800 ton 3 800 LS, streamer tubes LVD Greece HEν 1 × 104 m2 3 700 Cerenkovˇ Under development NESTOR Hawaii HEν 2 × 104 m2 4 700 Cerenkovˇ Under development DUMAND Lake Baikal, Siberia HEν 500 m2 1 000 Cerenkovˇ “NT” stands for neutrino telescope NT-200 Soudan, Minnesota ND, HEν 1 100 ton 7 200 Honeycomb Iron calorimeter SOUDAN II drift chamber Soudan, Minnesota ND, HEν, LB 10 000 ton 7 200 Honeycomb Iron calorimeter MINOS drift chamber Under development Kolar Gold Fields (2) ND, HEν 140 ton 7 200 Proportional counters, Experiment no longer in operation India calorimeter Kamiokande ND, SN, HEν 4 500 ton 2 400 Cerenkovˇ Detected νe from SN 1 987a Japan Detects 8B neutrinos Experiment no longer in operation SuperKamiokande ND, SN, 50 000 ton 2 400 Cerenkovˇ Detects 8B neutrinos Japan NEν, LB Operational in 1996 IMB, Ohio ND, SN, HEν 3 300 ton 1 580 Cerenkovˇ Detected νe from SN 1 987a Experiment no longer in operation 37 37 − Homestake Mine, sol 615 ton 4 900 Radiochemical Cl + νe → Ar + e S. Dakota (perchlorethylene) Detects 7Be and 8B neutrinos 127 127 − Homestake mine sol 100 tons 4 900 Radiochemical I+νe → Xe + e S. Dakota (NaI solution) Detects 7Be and 8B neutrinos 71 37 − Baksan, Russia sol 60 tons Ga 4 815 Radiochemical Ga + νe → Ar + e SAGE Detects pÐp neutrinos − − Gran Sasso, Italy sol 300 tons 3 800 LS νx + e → νx + e Borexino Detects 7Be neutrinos Operational in 2001 Gran Sasso, Italy sol 30 tons Ga 3 800 Radiochemical Detects pÐp neutrinos GALLEX Experiment completed in 1997 Gran Sasso, Italy sol 30 tons Ga 3 800 Radiochemical Detects pÐp neutrinos GNO Operation began in 1998 Gran Sasso, Italy sol, ND, LB 1 600 tons 3 800 Liquid argon Time production chamber ICARUS Under development Sp.-V/AQuan/1999/10/07:19:58 Page 238

238 / 10 γ -RAY AND NEUTRINO ASTRONOMY

Table 10.13. (Continued.)

Main “Size” of Depth Sensorsc Detector aimsa target (mwe)b Detection techniques Remarks − Sudbury, Canada sol, SN 100 ton D2O 5 900 Cerenkovˇ νe + d → p + p + e SNO 5 000 ton H2O νx + d → n + p + νx − − νx+c + e → νx + e + νe + d → n + n + e Operational in 1998

Notes aSN, supernova bursts; ND, nucleon decay; HEν, high-energy neutrinos; sol, solar neutrinos; LB, long baseline experiment using an accelerator neutrino source. bmwe, meters water equivalent. cSensors means detectors of neutrino secondaries, e.g., muons; LS, liquid scintillator; Cerenkovˇ light from charged secondaries is observed by photomultipliers.

ACKNOWLEDGMENTS

We wish to thank Ed Chupp, Carl Fichtel, Gerry Fishman, Alice Harding, Wick Haxton, Jim Higdon, Kevin Hurley, John Laros, Chip Meegan, Larry Peterson, Reuven Ramaty, A. Stepanian, and Trevor Weekes for valuable comments and contributions.

REFERENCES

1. Heitler, W. 1954, The Quantum Theory of Radiation 20. Canuto, V., & Ventura, J. 1977, Fund. Cosmic Phys., 2, (Clarendon Press, Oxford) 203 2. Jauch, J.M., & Rohrlich, F. 1976, The Theory of Pho- 21. Chupp, E.L. 1972, Gamma-Ray Astronomy (Reidel, tons and Electrons (Springer-Verlag, Berlin) Dordrecht) 3. Rybicki, G.B., & Lightman, A.P. 1979, Radiative 22. Ramaty, R., & Lingenfelter, R.E. 1982, Ann. Rev. Nucl. Processes in Astrophysics (Wiley, New York) Part. Phys., 32, 235 4. Lang, K.R. 1980, Astrophysical Formulae (Springer- 23. Bignami, G.F., & Hemsen, W. 1983, ARA&A, 21,67 Verlag, Berlin). 24. Chupp, E.L. 1984, ARA&A, 22, 359 5. Felten, J.E., & Morrison, P. 1966, ApJ, 146, 686 25. Ramaty, R., & Lingenfelter, R.E. 1994, Chapter 3 6. Blumenthal, G.R., & Gould, R.J. 1970, Rev. Mod. Phys., in High Energy Astrophysics (World Scientific, New 42, 237 York), p. 32 7. Ore, A., & Powell, J.L. 1949, Phys. Rev. 75, 1696 26. Harding, A.K. 1991, Phys. Rep, 206, 327 8. Bussard, R.W. et al. 1979, ApJ, 228, 928 27. Higdon, J.C., & Lingenfelter, R.E. 1991, ARA&A, 28, 9. Zdziarski, A.A. 1980, Acta Astron., 30, 371 401 10. Ramaty, R., & Meszaros, P. 1981, ApJ, 250, 384 28. Fishman, G.J., & Meegan, C.A. 1995, ARA&A, 33, 415 11. Gould, R.J. 1989, ApJ, 344, 232 29. Rothschild, R.E., & Lingenfelter, R.E. 1995, High Ve- 12. Guessoum, N. et al. 1991, ApJ, 378, 170 locity Neutron Star and Gamma-Ray Bursts (American 13. Klein, O., & Nishina, Y. 1929, Z. Phys. 52, 853 Institute of Physics, New York), 282 pp. 14. Marmier, P., & Sheldon, E. 1969, Physics of Nuclei and 30. Kouveliotou, C., Briggs, M.F., & Fishman, G.J. 1996, Particles (Academic Press, New York) Gamma-Ray Bursts (American Institute of Physics, 15. Erber, T. 1966, Rev. Mod. Phys., 38, 626 New York), 1008 pp. 16. Canuto, V. et al. 1971, Phys. Rev. D, 3, 2303 31. Rees, M.J. 1998, Proc. 18th Texas symposium Rel. As- 17. Bussard, R.W. et al. 1986, Phys. Rev. D, 34, 440 trophys.. edited by A.V. Olinto, J.A. Frieman, and D.N. 18. Daugherty, J.K., & Harding, A.K. 1986, ApJ, 309, 362 Schramm (World Scientific, Singapore) p. 34; Rees, 19. Harding, A.K., & Daugherty, J.K. 1991, ApJ, 374, 687 M.J. 1999, NucPhys B, Proc. Suppl., 69 681