Dear Astronomers, What Is It That You Do in the Practice of Your Science?

Total Page:16

File Type:pdf, Size:1020Kb

Dear Astronomers, What Is It That You Do in the Practice of Your Science? Dear Astronomers, What is it that you do in the practice of your science? This email is an invitation to participate in a research study that explores the activities in which astronomers currently engage. The goal of the study is to characterize what it is that you do as a practicing astronomer. The results will provide educators, curriculum developers, and others a valuable tool as they work to create more authentic (real-world) experiences, improving astronomy learning for all. Participants in the survey must meet the following 4 requirements: • have one or more science or science related degrees, with at least one at the Masters Degree level or higher, • work primarily in one or more of the astronomy sub-disciplines (if you are unsure, please see definition of astronomy sub-disciplines at the end of this letter), • currently engaged in, or have engaged in, at least one astronomy related research project within the past two years, • and, be an astronomer primarily based in the United States, a U.S. territory, or a U.S. facility in another country. This research study is being conducted by Tim Spuck, a doctoral candidate in Curriculum and Instruction under the supervision of Dr. James Rye, professor in the West Virginia University College of Education and Human Services. This research study is part of a dissertation that is being conducted in partial fulfillment of the requirements of the Curriculum and Instruction Doctoral Program at West Virginia University. Your participation in this study is completely voluntary and consists of completing an online survey, which will take approximately 15 minutes. Your involvement in this research study will be kept as confidential as legally possible. It is not necessary for you to provide your name in order to participate in the study, and all data will appear as an aggregate in the final report without any association to participant names. However, at the end of the survey you will be given the option to answer several additional open-ended questions. If you chose to respond to these additional questions, you may choose to do so via the online survey, or you may request to respond via a telephone interview. If you chose the phone interview, you will be asked to provide your name and contact information, so that a phone interview can be arranged. Your name and contact information will remain confidential. Although your response to all questions is encouraged, you may skip any question that you do not wish to answer, and you may discontinue the survey at any time. West Virginia University's Institutional Review Board acknowledgement of this project is on file. LINK to the Online Survey: https://www.surveymonkey.com/r/Astro_Survey Thank you for your willingness to participate. If you have any questions, please contact me at [email protected] or 814-758-9527 (Cell). Sincerely, Tim Spuck Astronomy Sub-disciplines Defined • Archaeoastronomy • Astrobiology • Astrochemistry • Astroengineering • Astrometry • Astronomy Education • Astrophysics • Celestial mechanics • Computational astronomy • Physical cosmology • Extragalactic astronomy • Galactic astronomy • Gamma-ray astronomy • Gravitational-wave astronomy • Neutrino astronomy • Observational astronomy • Planetary science • Radio astronomy • Solar Astronomy • Stellar astronomy • X-ray astronomy .
Recommended publications
  • Neutrino Astronomy
    Astrophysics from Antarctica Proceedings IAU Symposium No. 288, 2012 c International Astronomical Union 2013 M. G. Burton, X. Cui & N. F. H. Tothill, eds. doi:10.1017/S1743921312016729 Neutrino Astronomy: An Update Francis Halzen Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison email: [email protected] Abstract. Detecting neutrinos associated with the still enigmatic sources of cosmic rays has reached a new watershed with the completion of IceCube, the first detector with sensitivity to the anticipated fluxes. In this review, we will briefly revisit the rationale for constructing kilometer-scale neutrino detectors and summarize the status of the field. Keywords. Neutrinos, cosmic rays, astrophysics 1. Introduction Soon after the 1956 observation of the neutrino (Reines, 1956), the idea emerged that it represented the ideal astronomical messenger. Neutrinos reach us from the edge of the Universe without absorption and with no deflection by magnetic fields. Neutrinos have the potential to escape unscathed from the inner neighborhood of black holes, and, the subject of this update, from the cosmic accelerators where cosmic rays are born. Their weak interactions also make cosmic neutrinos very difficult to detect. Immense parti- cle detectors are required to collect cosmic neutrinos in statistically significant numbers (Klein, 2008). Already by the 1970s, it had been understood that a kilometer-scale de- tector was needed to observe the “cosmogenic” neutrinos produced in the interactions of cosmic rays with background microwave photons (Roberts, 1992). Today’s estimates of the sensitivity for observing potential cosmic accelerators such as Galactic supernova remnants, active galactic nuclei (AGN), and gamma-ray bursts (GRB) unfortunately point to the same exigent requirement (Gaisser, 1995).
    [Show full text]
  • Astrometry and Optics During the Past 2000 Years
    1 Astrometry and optics during the past 2000 years Erik Høg Niels Bohr Institute, Copenhagen, Denmark 2011.05.03: Collection of reports from November 2008 ABSTRACT: The satellite missions Hipparcos and Gaia by the European Space Agency will together bring a decrease of astrometric errors by a factor 10000, four orders of magnitude, more than was achieved during the preceding 500 years. This modern development of astrometry was at first obtained by photoelectric astrometry. An experiment with this technique in 1925 led to the Hipparcos satellite mission in the years 1989-93 as described in the following reports Nos. 1 and 10. The report No. 11 is about the subsequent period of space astrometry with CCDs in a scanning satellite. This period began in 1992 with my proposal of a mission called Roemer, which led to the Gaia mission due for launch in 2013. My contributions to the history of astrometry and optics are based on 50 years of work in the field of astrometry but the reports cover spans of time within the past 2000 years, e.g., 400 years of astrometry, 650 years of optics, and the “miraculous” approval of the Hipparcos satellite mission during a few months of 1980. 2011.05.03: Collection of reports from November 2008. The following contains overview with summary and link to the reports Nos. 1-9 from 2008 and Nos. 10-13 from 2011. The reports are collected in two big file, see details on p.8. CONTENTS of Nos. 1-9 from 2008 No. Title Overview with links to all reports 2 1 Bengt Strömgren and modern astrometry: 5 Development of photoelectric astrometry including the Hipparcos mission 1A Bengt Strömgren and modern astrometry ..
    [Show full text]
  • Columbiaieinstein Observations of Extragalactic X-Ray Sources
    COLUMBIAIEINSTEIN OBSERVATIONS OF EXTRAGALACTIC X-RAY SOURCES William H. -M. Ku Columbia Astrophysics Laboratory I would like to report on the preliminary results of our analysis of data from the first 3 months of the Columbia Astrophysics Laboratory's (CAL) observations of extragalactic objects with the imaging proportional counter (IPC) on board the Einstein Observatory. CAL has an extensive program of extragalactic astronomy planned with the Einstein Observatory including surveys of normal galaxies, radio galaxies, active galaxies, quasars and BL Lacs, and cluste~sof galaxies. Early results from each one of these surveys have been received and analyzed at CAL. These observations have already allowed us to look as far out to the edge of the Universe as any observer in history, and they have improved our understanding of how our own Galaxy may have evolved through time. NORMAL GALAXIES X-ray observations of normal galaxies should aid us in the under- standing of our own Galaxy. Observations of the galaxies in the Local Group, such as the Large Magellanic Cloud discussed by Dr. Long, allow us to study the population of discrete X-ray sources in detail, as well as to examine diffuse emission associated with large-scale structures. Galaxies just outside the Local Group may also be studied in this way. For example, a 13 000 sec IPC image of M101, a normal spiral Sc galaxy, reveals the presence of three or four discrete sources associated with the beautiful spiral arm structure of the galaxy (Fig. 1). Possible diffuse or unresolved emission is also noticeable in the IPC image.
    [Show full text]
  • Astronomy (ASTR) 1
    Astronomy (ASTR) 1 ASTR 5073. Cosmology. 3 Hours. Astronomy (ASTR) An introduction to modern physical cosmology covering the origin, evolution, and structure of the Universe, based on the Theory of Relativity. (Typically offered: Courses Spring Odd Years) ASTR 2001L. Survey of the Universe Laboratory (ACTS Equivalency = PHSC ASTR 5083. Data Analysis and Computing in Astronomy. 3 Hours. 1204 Lab). 1 Hour. Study of the statistical analysis of large data sets that are prevalent in the Daytime and nighttime observing with telescopes and indoor exercises on selected physical sciences with an emphasis on astronomical data and problems. Includes topics. Pre- or Corequisite: ASTR 2003. (Typically offered: Fall, Spring and Summer) computational lab 1 hour per week. Corequisite: Lab component. (Typically offered: Fall Even Years) ASTR 2001M. Honors Survey of the Universe Laboratory. 1 Hour. An introduction to the content and fundamental properties of the cosmos. Topics ASTR 5523. Theory of Relativity. 3 Hours. include planets and other objects of the solar system, the sun, normal stars and Conceptual and mathematical structure of the special and general theories of interstellar medium, birth and death of stars, neutron stars, and black holes. Pre- or relativity with selected applications. Critical analysis of Newtonian mechanics; Corequisite: ASTR 2003 or ASTR 2003H. (Typically offered: Fall) relativistic mechanics and electrodynamics; tensor analysis; continuous media; and This course is equivalent to ASTR 2001L. gravitational theory. (Typically offered: Fall Even Years) ASTR 2003. Survey of the Universe (ACTS Equivalency = PHSC 1204 Lecture). 3 Hours. An introduction to the content and fundamental properties of the cosmos. Topics include planets and other objects of the solar system, the Sun, normal stars and interstellar medium, birth and death of stars, neutron stars, pulsars, black holes, the Galaxy, clusters of galaxies, and cosmology.
    [Show full text]
  • Session: Neutrino Astronomy
    Session: Neutrino Astronomy Chair: Takaaki Kajita, Institute for Cosmic Ray Research, Univ. of Tokyo Basic natures of neutrinos Neutrino was introduced in 1930 by W. Pauli in order to save the energy conservation law in nuclear beta decay processes, in which the emitted electron exhibits a continuous energy spectrum. It was assumed that the penetration power of neutrinos is much higher than that of the gamma rays. More than 20 years later, the existence of neutrinos was experimentally confirmed by an experiment that measured neutrinos produced by a nuclear power reactor. Since then, the basic nature of neutrinos has been understood through various theoretical and experimental studies: Neutrinos interact with matter extremely weakly. The number of neutrino species is three. They are called electron-neutrino, muon-neutrino and tau-neutrino. In addition, recent neutrino experiments discovered that neutrinos have very small masses. Observing the Universe by neutrinos (1) Because of the extremely high penetration power of neutrinos, neutrinos produced at the center of a star easily penetrate to the outer space. Theories of astrophysics predict that there are various processes that neutrinos play an essential role at the center of stars. For example, the Sun is generating its energy by nuclear fusion processes in the central region. In these processes, low energy electron neutrinos with various energy spectra are generated. Thus the observation of solar neutrinos directly probes the nuclear fusion reactions in the Sun. Another example is the supernova explosion. While the optical measurements observe an exploding star, what is happening in the central region of the star is the collapse of the core of a massive star.
    [Show full text]
  • Multi-Messenger Astrophysics with the First Lines of the Km3net Neutrino Telescopes
    MULTI-MESSENGER ASTROPHYSICS WITH THE FIRST LINES OF THE KM3NET NEUTRINO TELESCOPES PHD SUPERVISOR : THIERRY PRADIER (MAÎTRE DE CONFÉRENCES) INSTITUT PLURIDISCIPLINAIRE HUBERT CURIEN, DÉPARTEMENT RECHERCHES SUBATOMIQUES 23 RUE DU LOESS BP 28 67037 STRASBOURG CEDEX 2 TEL : 03 88 10 6620 ; E-MAIL : [email protected] The proposed PhD thesis will be performed in the framework of the european collaborations KM3NeT, which use underwater « neutrino telescopes » in the Mediterranean Sea, to detect and study GeV to PeV atmospheric/cosmic neutrinos. IceCube has revealed in 2013 the existence of cosmic neutrinos, yielding information on the origin of cosmic rays. In July 2018, a possible connection of these cosmic neutrinos with astrophysical sources such as blazars was revealed. Moreover, the observation of gravitational waves and electromagnetic radiations from the merger of two neutron stars in 2017, and the search for coincident neutrinos, has opened the field of multi-messenger astrophysics : the combination of photons from all wavelengths, neutrinos, cosmic-rays and gravitational waves to improve our knowledge of astrophysical sources and discover new sources, in which IPHC has taken an active part. In 2019, the next-generation neutrino telescopes built by the KM3NeT collaboration will begin their deployment and data taking, with more than 300 lines on 2 sites to be deployed over a few years. The french site in Toulon will be dedicated to low energy GeV neutrinos, to determine the unknown neutrino mass hierarchy, with ORCA (Oscillation Research with Cosmics in the Abyss). The italian site, in Sicily, will host ARCA (Astroparticle Research with Cosmics in the Abyss), dedicated, like ANTARES, to TeV-PeV neutrino astronomy.
    [Show full text]
  • 11 – Neutrino Astronomy
    11 – Neutrino astronomy introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 11.1 – The standard solar model As we discussed in “stellar evolution III”, to obtain a reliable model for the sun, we need to solve four differential equations (in the absence of convection). dM(r) 2 (11.1) dP(r) GM(r)ρ(r) = 4πr ρ(r) = − (11.2) dr dr r2 dT(r) 3 (r) (r) dL(r) 2 (11.3) ρ κ (11.4) = 4πr ρ(r)ε(r) = − 2 3 L(r) dr dr 16πr σT (r) € € Complemented by P = P (, T, chemical composition)€ The equation of state € κ = κ (, T, chemical composition) Opacity ε = ε (, T, chemical composition) Energy generation But we also need to include how the chemical composition changes through nuclear reaction network. For the sun, the pp-chain and the CNO cycle are considered. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 2 General reaction network When the reaction network proceeds via one-body and two-body reactions, such as the pp-chain. and CNO cycle. But 3-body processes such as the triple-alpha reaction are also possible. A general reaction network can be written as dYi i i = ∑N j λ jY j + ∑N jk ρNA < σ v > Y jYk + dt j jk (11.5) 2 i 2 ∑N jkm ρ NA < σ v > Y jYkYm +! jkm i where N j,k,l,... is the number of particles of nuclear species i created or destroyed by the reaction j + k + l + · · · à i. € The reactions listed on the right hand side of the equation above belong to three categories of reactions: (1) decays, photodisintegrations, electron and positron captures and neutrino induced reactions (rj = λjnj), (2) two-particle reactions (rj,k =< σv >j,knjnk), and (3) three-particle reactions 12 (rj,k,l =< σv>j,k,lnjnknl) like the triple-alpha process (α + α + α à C + γ).
    [Show full text]
  • Extragalactic Astronomy: the U Nivcre Bey Nd Our Galaxy
    U1IJT RESUPE EU 1J3 199 021 775 dacon Eenneth Char TITLE Extragalactic Astronomy: The U nivcre Bey nd Our Galaxy. American Astronomical Society, Princeton, N.J. SFONS AGENCY National Aeronautics and Space Administra ashingtonl D.C.; National Science Foundation, Washington, D.C. REPOBT NO NASA-i:T-129 PUB DATE Sep 76 NOTE 44p.; FOF ltEd aocunents, _e SE 021 773-776 AVAII,AULE Superintendent of Documents, U.S. G-vernment Prin ing Office, Washington, D.C. 20402(5 ock Number 033-000-00657-8, $1.30) E.-RS PE10E 1F-$0.03 HC-$2.06 Plus Postige. DESCilIPTORS *Astronomy; Curriculum; *Instructional Materials; Science Education; *Scientific iesearch; Secondary Education; *Secondary School Science; *Space Sciences TIF NASA; National Aeronautics and Space Administration BSTRACT This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers or secondary school chemistry, physics, and earth science. The material is presented in three parts: one section provides the fundamental content of extragalactic astronomy, another section discusses modern discoveries in detail, and the last section summarizes the earlier discussions within the structure of the Big Bang Theory of Evolution. Each of the three sections is followed by student exercises and activities, laboratory projects, and questions and answers. The glossary contains unfamiliar terms used in the text and a collection of teacher aids such as literature references and audiovisual materials. (111) ***** *** * ** ** ***************** ********** Document., acquired by IC include many informal unpublished aterials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and tbis affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the ERIC Document Reproduction Service (EDRS).
    [Show full text]
  • Astronomy (ASTR) 1
    Astronomy (ASTR) 1 ASTR 203 Introduction to Observational Astronomy ASTRONOMY (ASTR) Prerequisites: ASTR 103/ASTR 103H or equivalent Notes: The course consists of 2 lecture hours and three evening ASTR 103 Descriptive Astronomy laboratory hours per week. Description: Approach is essentially nonmathematical. Survey of the Description: Exploration of equipment and techniques needed to observe nature and motions of the planets, the sun, the stars, and their lives, and investigate the motions and objects in the night sky. galaxies, and the structure of the universe. Black holes, pulsars, quasars, Credit Hours: 4 and other objects of special interest included. Max credits per semester: 4 Credit Hours: 3 Max credits per degree: 4 Max credits per semester: 3 Grading Option: Graded with Option Max credits per degree: 3 ASTR 204 Introduction to Astronomy and Astrophysics Grading Option: Graded with Option Prerequisites: PHYS 211/211H; MATH 107/107H; parallel ASTR 224 Prerequisite for: ASTR 113; ASTR 203 Notes: Survey of the sun, the solar system, stellar properties, stellar ACE: ACE 4 Science systems, interstellar matter, galaxies, and cosmology. ASTR 103H Honors: Descriptive Astronomy Description: Survey of the sun, the solar system, stellar properties, stellar Prerequisites: Good standing in the University Honors Program or by systems, interstellar matter, galaxies, and cosmology. invitation Credit Hours: 3 Notes: Broad look at astronomy for non-science majors. Max credits per semester: 3 Description: Approach is essentially non-mathematical, but simple Max credits per degree: 3 algebra is employed where appropriate. Sun and solar system, the stars, Grading Option: Graded with Option galaxies, and cosmology. Black holes, pulsars, quasars, and other objects Prerequisite for: ASTR 224 of special interest included.
    [Show full text]
  • Arxiv:2001.06293V1 [Astro-Ph.GA] 17 Jan 2020 and Minor Mergers and Grow Fed by Matter Along the filaments of the Cosmic Web
    The Quest for Dual and Binary Supermassive Black Holes: A Multi-Messenger View Alessandra De Rosaa, Cristian Vignalib,c, Tamara Bogdanovićd, Pedro R. Capeloe, Maria Charisif, Massimo Dottig,h, Bernd Husemanni, Elisabeta Lussoj,k,l, Lucio Mayere, Zsolt Paragim, Jessie Runnoen,o, Alberto Sesanag,p, Lisa Steinbornq, Stefano Bianchir, Monica Colpig, Luciano Del Valles, Sándor Freyt, Krisztina É. Gabányit,u,v, Margherita Giustiniw, Matteo Guainazzix, Zoltan Haimany, Noelia Herrera Ruizz, Rubén Herrero-Illanaaa,ab, Kazushi Iwasawaac, S. Komossaad, Davide Lenaae,af, Nora Loiseauag, Miguel Perez-Torresah, Enrico Piconcelliai, Marta Volonteris aINAF/IAPS - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere I-00133, Roma, Italy bDipartimento di Fisica e Astronomia, Alma Mater Studiorum, Università degli Studi di Bologna, Via Gobetti 93/2, 40129 Bologna, Italy cINAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Gobetti 93/3, I-40129 Bologna, Italy dCenter for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 eCenter for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland fTAPIR, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA gUniversità degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy hINFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy iMax-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany jCentre for Extragalactic Astronomy, Durham University, South Road, Durham, DH1 3LE, UK kDipartimento di Fisica e Astronomia, Universitá degli Studi di Firenze, Via. G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy lINAF - Osservatorio Astrofisico di Arcetri, Largo E.
    [Show full text]
  • Gamma-Ray and Neutrino Astronomy
    Sp.-V/AQuan/1999/10/07:19:58 Page 207 Chapter 10 γ -Ray and Neutrino Astronomy R.E. Lingenfelter and R.E. Rothschild 10.1 Continuum Emission Processes ............. 207 10.2 Line Emission Processes ................. 208 10.3 Scattering and Absorption Processes .......... 213 10.4 Astrophysical γ -Ray Observations ........... 216 10.5 Neutrinos in Astrophysics ................ 235 10.6 Current Neutrino Observatories ............. 237 10.1 CONTINUUM EMISSION PROCESSES Important processes for continuum emission at γ -ray energies are bremsstrahlung, magneto- bremsstrahlung, and Compton scattering of blackbody radiation by energetic electrons and positrons [1–6]. 10.1.1 Bremsstrahlung The bremsstrahlung luminosity spectrum of an optically thin thermal plasma of temperature T in a volume V is [3] 1/2 π 6 π 2 32 e 2 mc 2 L(ν)brem = Z neniVg(ν, T ) exp(−hν/kT), 3m2c4 3kT where the index of refraction is assumed to be unity, m is the electron mass, Z is the mean atomic 1/2 charge, ne and ni are the electron and ion densities, and the Gaunt factor g(ν, T ) ≈ (3kT/πhν) for hν>kT and T > 3.6 × 105 Z 2 K, or −38 2 −1/2 −1 −1 L(ν)brem ≈ 6.8 × 10 Z neniVg(ν, T )T exp(−hν/kT) erg s Hz . 207 Sp.-V/AQuan/1999/10/07:19:58 Page 208 208 / 10 γ -RAY AND NEUTRINO ASTRONOMY 10.1.2 Magnetobremsstrahlung The synchrotron luminosity spectrum of an isotropic, optically thin nonthermal distribution of −S relativistic electrons with a power-law spectrum, N(γ ) = N0γ , interacting with a homogeneous magnetic field of strength, H,is[5] .
    [Show full text]
  • Index to JRASC Volumes 61-90 (PDF)
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997.
    [Show full text]