Gamma-Ray and Neutrino Astronomy

Gamma-Ray and Neutrino Astronomy

Sp.-V/AQuan/1999/10/07:19:58 Page 207 Chapter 10 γ -Ray and Neutrino Astronomy R.E. Lingenfelter and R.E. Rothschild 10.1 Continuum Emission Processes ............. 207 10.2 Line Emission Processes ................. 208 10.3 Scattering and Absorption Processes .......... 213 10.4 Astrophysical γ -Ray Observations ........... 216 10.5 Neutrinos in Astrophysics ................ 235 10.6 Current Neutrino Observatories ............. 237 10.1 CONTINUUM EMISSION PROCESSES Important processes for continuum emission at γ -ray energies are bremsstrahlung, magneto- bremsstrahlung, and Compton scattering of blackbody radiation by energetic electrons and positrons [1–6]. 10.1.1 Bremsstrahlung The bremsstrahlung luminosity spectrum of an optically thin thermal plasma of temperature T in a volume V is [3] 1/2 π 6 π 2 32 e 2 mc 2 L(ν)brem = Z neniVg(ν, T ) exp(−hν/kT), 3m2c4 3kT where the index of refraction is assumed to be unity, m is the electron mass, Z is the mean atomic 1/2 charge, ne and ni are the electron and ion densities, and the Gaunt factor g(ν, T ) ≈ (3kT/πhν) for hν>kT and T > 3.6 × 105 Z 2 K, or −38 2 −1/2 −1 −1 L(ν)brem ≈ 6.8 × 10 Z neniVg(ν, T )T exp(−hν/kT) erg s Hz . 207 Sp.-V/AQuan/1999/10/07:19:58 Page 208 208 / 10 γ -RAY AND NEUTRINO ASTRONOMY 10.1.2 Magnetobremsstrahlung The synchrotron luminosity spectrum of an isotropic, optically thin nonthermal distribution of −S relativistic electrons with a power-law spectrum, N(γ ) = N0γ , interacting with a homogeneous magnetic field of strength, H,is[5] . 3 (S−1)/2 0 8e 3e (S+1)/2 (1−S)/2 L(ν)synch ≈ VN0 H ν 3mc2 4πmc or −23 (S+1)/2 6 (S−1)/2 −1 −1 L(ν)synch ≈ 3.60 × 10 VN0 H (4.2 × 10 /ν) erg s Hz . 10.1.3 Compton-Scattered Blackbody Radiation The Compton-scattering (cs) luminosity spectrum of an optically thin, isotropic nonthermal distribution −S of relativistic electrons with a power-law spectrum, N(γ ) = N0γ , interacting with blackbody photons having a temperature T is [5] 4 (3−S)/2 4e h (S−3)/2 (1−S)/2 L(ν)cs ≈ VN0wbbT ν 3m2c3 3.6k or −26 (S−3)/2 10 (S−1)/2 −1 −1 L(ν)cs ≈ 4.22 × 10 VN0wbbT (7.5 × 10 /ν) erg s Hz , where wbb is the energy density of the blackbody radiation. 10.2 LINE EMISSION PROCESSES Important processes for line emission at γ -ray energies are electron–positron annihilation, nuclear deexcitation, decay of radio nuclei, and radiative capture (see Tables 10.1–10.3). 10.2.1 Electron–Positron Annihilation Radiation Positron annihilation can occur either via a direct interaction with a free electron or via positronium formed by charge exchange with a bound electron or by radiative combination with a free electron (e.g., [7–12]). See Figure 10.1. Direct annihilation (da) leads to line emission, e+e− → 2γ , at a mean energy, 7 +kTe/2, Te 10 K, ν = 2 + / , 7 < < 10 , h da mec 3kTe 4 10 Te 10 K 10 +kTe, Te > 10 K, 2 where mec = 510.9991 keV and Te is the temperature of the annihilating electrons and positrons. The direct-annihilation line spectrum can be approximated by a Gaussian with a linewidth [12] 4 0.50 9 da ≈ 0.87(Te/10 K) keV, for Te 10 K, and at higher temperatures the width [10] da ≈ kTe, 9 for Te 10 K. 2 The cross section for direct annihilation of a positron of energy γ mec with an electron at rest [1] is σ γ 2 + γ + γ + 3 T 4 1 2 3 σ(γ)da = ln(γ + γ − 1) − , 8(γ + 1) γ 2 − 1 γ 2 − 1 4 2 4 where the Thomson cross section, σT = 8πe /(3m c ) = 0.6652 barn (b). Sp.-V/AQuan/1999/10/07:19:58 Page 209 10.2 LINE EMISSION PROCESSES / 209 Figure 10.1. Positron-annihilation rates in a thermal medium per unit density as a function of temperature, for annihilation directly with free electrons (Rda/ne) or with bound electrons (Rda/nH), and via positronium formation by radiative combination with free electrons (Rrc/ne) or by charge exchange with neutral hydrogen (Rce/nH), from [8]. Annihilation via positronium formation leads to line emission only from the singlet parapositron- ium, para-Ps → 2γ , which forms 25% of the time. The mean energy of the positronium line, 2 2 hνps = mec − (R/4n ), where the Rydberg R = 0.0136 keV, and n is 1 for the ground state. The parapositronium annihilation line spectrum can be approximated by a Gaussian with a 4 0.44 linewidth rc ≈ 0.80(T/10 K) keV for radiative combination (rc), valid at least from 8 000 to 6 10 K, and a Gaussian linewidth ce ≈ 6.4 keV for charge exchange (ce), since the parapositronium mean life of ∼ 10−10 s is much less than the energy loss time [12]. The total number of 511 keV line photons emitted per positron annihilation, + γ511/e = 2 − 1.5 fps, where fps is the fraction of positrons that annihilate via positronium. Annihilation via positronium formation leads to three-photon continuum emission from the triplet orthopositronium, ortho-Ps → 3γ , which forms 75% of the time. The spectrum [7] of this emission is 2 η(1 − η) 2(1 − η) 2(1 − η)2 2 − η ( ν) γ = + ( − η) − ( − η) + , P h 3 2 2 2 2 ln 1 3 ln 1 (π − 9)mec (2 − η) η (2 − η) η where η = hν/mc2 is the photon energy, and the spectrum is normalized to unity. Sp.-V/AQuan/1999/10/07:19:58 Page 210 210 / 10 γ -RAY AND NEUTRINO ASTRONOMY , Table 10.1. Nuclear deexcitation γ -ray lines.a b Energy Emission Excitation Mean life (MeV) mechanism processes (s) ∗ . ∗ − 0.429 1 7Be 0 429 → g.s. 4He(α, n)7Be 1.9 × 10 13 ∗ . ∗ − 0.477 6 7Li 0 478 → g.s. 4He(α, p)7Li 1.1 × 10 13 ∗ 4He(α, n)7Be()7Li (10%) 6.6 × 106 ∗ . ∗ − 0.718 3 10B 0 718 → g.s. 12C(p, x)10B 1.0 × 10 9 ∗ − 16O(p, x)10B 1.0 × 10 9 + ∗ 12C(p, x)10C(e )10B 27.78 + ∗ 16O(p, x)10C(e )10B 27.78 ∗ . ∗ − 0.846 8 56Fe 0 847 → g.s. 56Fe(p, p )56Fe 9.1 × 10 12 + ∗ 56Fe(p, n)56Co(e ; )56Fe 9.6 × 106 ∗ . ∗ . ∗ − 1.238 3 56Fe 2 085 → 56Fe 0 847 56Fe(p, p )56Fe 1.0 × 10 12 + ∗ 56Fe(p, n)56Co(e ; )56Fe (67%) 9.6 × 106 ∗ . ∗ − 1.274 5 22Ne 1 275 → g.s. 22Ne(p, p )22Ne 5.2 × 10 12 ∗ − 22Ne(α, α’)22Ne 5.2 × 10 12 + ∗ 22Ne(p, n)22Na(e ; )22Ne 1.2 × 108 + ∗ 24Mg(p, x)22Na(e ; )22Ne 1.2 × 108 + ∗ 25Mg(p, x)22Na(e ; )22Ne 1.2 × 108 + ∗ 28Si(p, x)22Na(e ; )22Ne 1.2 × 108 ∗ . ∗ − 1.368 5 24Mg 1 369 → g.s. 24Mg(p, p )24Mg 1.9 × 10 12 ∗ − 24Mg(α, α )24Mg 1.9 × 10 12 ∗ − 28Si(p, x)24Mg 1.9 × 10 12 ∗ . ∗ − 1.408 3 55Fe 1 408 → g.s. 56Fe(p, pn)55Fe 5.5 × 10 11 + ∗ 56Fe(p, 2n)55Co(e ; )55Fe (18%) 9.1 × 104 ∗ . ∗ − 1.408 4 54Fe 1 408 → g.s. 56Fe(p, x)54Fe 1.2 × 10 12 ∗ . ∗ − 1.434 1 52Cr 1 434 → g.s. 56Fe(p, x)52Cr 9.8 × 10 13 ∗ + ∗ 56Fe(p, x)52Mn (e ; )52Cr 1.8 × 103 + ∗ 56Fe(p, x)52Mn(e ; )52Cr 7.0 × 105 ∗ . ∗ − 1.633 6 20Ne 1 634 → g.s. 20Ne(p, p )20Ne 1.0 × 10 12 ∗ − 20Ne(α, α )20Ne 1.0 × 10 12 + ∗ − 20Ne(p, n)20Na(e )20Ne (80%) 6.4 × 10 1 ∗ − 24Mg(p, x)20Ne 1.0 × 10 12 ∗ − 28Si(p, x)20Ne 1.0 × 10 12 ∗ . ∗ . ∗ − 1.635 2 14N 3 948 → 14N 2 313 14N(p, p )14N 6.9 × 10 15 ∗ − 14N(α, α )14N 6.9 × 10 15 ∗ − 16O(p, x)14N 6.9 × 10 15 ∗ . ∗ − 1.779 0 28Si 1 779 → g.s. 28Si(p, p )28Si 6.8 × 10 13 ∗ − 28Si(α, α )28Si 6.8 × 10 13 ∗ − 32S(p, x)28Si 6.8 × 10 13 ∗ . ∗ − 1.808 6 26Mg 1 809 → g.s. 26Mg(p, p )26Mg 6.9 × 10 13 ∗ − 26Mg(α, α )26Mg 6.9 × 10 13 + ∗ 26Mg(p, n)26Al(e ; )26Mg 3.2 × 1013 + ∗ 27Al(p, pn)26Al(e ; )26Mg 3.2 × 1013 + ∗ 28Si(p, x)26Al(e ; )26Mg 3.2 × 1013 ∗ . ∗ − 2.230 2 32S 2 230 → g.s. 32S(p, p )32S 2.4 × 10 13 ∗ − 32S(α, α )32S 2.4 × 10 13 ∗ . ∗ − 2.312 6 14N 2 313 → g.s. 14N(p, p )14N 9.8 × 10 14 ∗ − 14N(α, α )14N 9.8 × 10 14 + ∗ 14N(p, n)14O(e )14N 101.9 ∗ − 16O(p, x)14N 8.7 × 10 14 + ∗ 16O(p, x)14O(e )14N 101.9 Sp.-V/AQuan/1999/10/07:19:58 Page 211 10.2 LINE EMISSION PROCESSES / 211 Table 10.1. (Continued.) Energy Emission Excitation Mean life (MeV) mechanism processes (s) ∗ . ∗ . ∗ − 2.613 8 20Ne 4 248 → 20Ne 1 634 20Ne(p, p )20Ne 9.2 × 10 14 ∗ − 20Ne(α, α )20Ne 9.2 × 10 14 ∗ − 24Mg(p, x)20Ne 9.2 × 10 14 ∗ − 28Si(p, x)20Ne 9.2 × 10 14 ∗ .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us