Hot X-Ray Onsets of Solar Flares

Total Page:16

File Type:pdf, Size:1020Kb

Hot X-Ray Onsets of Solar Flares MNRAS 000, 000{000 (0000) Preprint 13 July 2020 Compiled using MNRAS LATEX style file v3.0 Hot X-ray Onsets of Solar Flares Hugh S. Hudson,1;2? Paulo J. A. Sim~oes,3;1 Lyndsay Fletcher,1;4 Laura A. Hayes,5 Iain G. Hannah1 1SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 2Space Sciences Laboratory, U.C. Berkeley, CA USA 3Centro de R´adio Astronomia e Astrof´ısica Mackenzie, Escola de Engenharia, Universidade Presbiteriana Mackenzie, S~aoPaulo, Brazil 4Rosseland Centre for Solar Physics, University of Oslo, P.O.Box 1029 Blindern, NO-0315 Oslo, Norway 5Solar Physics Laboratory, Code 671, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA June 23, 2020 ABSTRACT The study of the localized plasma conditions before the impulsive phase of a solar flare can help us understand the physical processes that occur leading up to the main flare energy release. Here, we present evidence of a hot X-ray `onset^aA˘Z´ interval of enhanced isothermal plasma temperatures in the range of 10-15 MK up to tens of seconds prior to the flare^aA˘Zs´ impulsive phase. This `hot onset^aA˘Z´ interval occurs during the initial soft X-ray increase and prior to the detectable hard X-ray emission. The isothermal temperatures, estimated by the Geostationary Operational Environmental Satellite (GOES) X-ray sensor, and confirmed with data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), show no signs of gradual increase, and the `hot onset' phenomenon occurs regardless of flare classification or configuration. In a small sample of four representative flare events we identify this early hot onset soft X-ray emission mainly within footpoint and low-lying loops, rather than with coronal structures, based on images from the Atmospheric Imaging Assembly (AIA). We confirm this via limb occultation of a flaring region. These hot X-ray onsets appear before there is evidence of collisional heating by non-thermal electrons, and hence they challenge the standard flare heating modeling techniques. 1 INTRODUCTION 12-25 keV for weaker ones) by the Reuven Ramaty High En- ergy Solar Spectroscopic Imager (RHESSI, Lin et al. 2002). Often flare initiation, as seen in soft X-ray (SXR) data from Our main finding is that the GOES isothermal temperatures the X-ray Sensor (XRS) on Geostationary Operational En- are significantly elevated from the very beginning of the on- vironmental Satellite (GOES), begins with a slow `precur- set phase, i.e. well before we have evidence for collisional sor' development phase. This can sometimes be identified heating by non-thermal electrons. We cannot preclude the with non-thermal activity (e.g. F´arn´ıket al. 2003) or with possibility of undetectable HXR emission, especially with a non-thermal velocity distributions (Harra et al. 2013). The softer spectrum, in the onset time interval. We note that preflare interval is often also taken as evidence for a `pre- Awasthi & Jain(2011) had already reported similar phe- heating' phase in which a gradual process heats a volume nomena via the independent dataset from the Solar X-Ray of flare plasma without a detectable hard X-ray signature Spectrometer (SOXS) spectrometer experiment (Jain et al. (e.g. Cheng et al. 1985), implying a very low flux of non- 2006), in a sample of 13 events. arXiv:2007.05310v1 [astro-ph.SR] 10 Jul 2020 thermal electrons, if any. Systematic studies of soft X-ray images suggested that in most cases any precursor source could not be directly identified with the main flare (F´arn´ık & Savy 1998; Hudson et al. 2008), appearing near but not exactly at the flare site. Previous conclusions about the relationship between `precursors' and flares mostly have dealt with image struc- We have used extreme ultraviolet (EUV) images to ture. Here we study the X-ray spectral evolution, focusing search out the spatial patterns of the onset sources (Sec- on a sample of four representative events. We examine flare tion 2.5). We have also studied the RHESSI data for the onset emission, where we define the term `onset' as the pre- four sample events (Section 3.2), finding satisfactory qual- flare interval during which elevated GOES soft X-ray flux itative agreement during the flare development, specifically is detected, but prior to the detection of any elevated hard in matching the isothermal-fit GOES parameters with the X-ray (HXR) emission (at >25 keV for stronger events, and more complete spectroscopy possible with RHESSI. c 0000 The Authors 2 H.S. Hudson et al. 2 DATA arbitrarily to represent fast, slow, strong, and weak flares respectively, crudely bracketing the parameter space of rise 2.1 GOES soft X-ray data time and flare energy. \Fast/slow" refers to the event rise The GOES series of missions has provided soft X-ray mea- time and \strong/weak" refers to the GOES 1-8 A˚ peak flux surements via its X-ray Sensor (XRS) instrument in two values. These typical events are from the 2011-2014 time nominal wavelength bands, (1{8 A˚ and 0.5-4 A),˚ for many frame and do not represent different flare classes as such, decades now. Such observations began as early as 1960 with since the parameters generally have broad, continuous dis- ionization chambers on board SOLRAD and other satel- tributions (e.g. Lee et al. 1993). lites (Dere et al. 1974; Thomas et al. 1985; White et al. The hot onset sources appear substantially before the 2005). The two passbands of the GOES/XRS, 1{8 and 0.5{ beginning of the impulsive phase (indicated by the dotted 4 A,˚ allow for the determination of an isothermal temper- vertical lines in the left column panels in Fig.1), as deter- ature and emission measure, interpreted here in terms of mined by RHESSI hard X-rays above 25 keV where possible, the CHIANTI atomic-physics package (Dere et al. 1997) and above 12 keV where not. The correlation between tem- as implemented in the SolarSoft (Freeland & Handy 1998) perature and emission measure (right column in Figure1) code GOES TEM.pro. These parameters usually describe shows a roughly clockwise circulation during the main phase the coronal part of the flare, and specifically the plasma of the flare, ending with the cooling of the coronal loops. The trapped in the system of magnetic loops made visible in soft hot onset emission precedes these features, appearing at the X-rays by the injection of new plasma expanding upwards lowest emission measure but an elevated temperature. The from the lower atmosphere due to the sudden energy re- cooling phase passes through the onset temperature range lease. The GOES data also have sufficient sensitivity and smoothly, establishing that the 10-15 MK level is not an ar- signal contrast to study the onset phase of a flare, often tifact. The data points are colour-coded and mapped to the many minutes prior to the impulsive phase (Kane & Ander- temperature curves in the middle column of Figure1 to indi- son 1970). In this paper we use these simple GOES/XRS cate the time-evolution of this correlation. These panels in- observations to characterize the onset temperatures, at the dicate that the hot onset (with temperatures around 10 ∼ 15 earliest possible times permitted by the observations, and MK) is associated with a low amount of plasma, with emis- 47 −3 then follow up with EUV images, taken by the Atmospheric sion measure values below 10 cm . In the flare sample Imaging Assembly (AIA, Lemen et al. 2012) on board the discussed here, the \fast strong" event SOL2014-01-07 (bot- Solar Dynamics Observatory (SDO, Pesnell et al. 2012). tom row of Fig.1), for example, has a hot onset detectable We also examine a flare series in which limb occultation dis- more than a minute prior to the detectable HXR emission. tinguishes the coronal and chromospheric components (e.g. The GOES isothermal onset temperatures, i.e. the first ob- Hudson 1978). servable measurements lie well above the low-temperature Because the GOES data integrate over the whole disk range of the these data (e.g. Sterling et al. 1997; White et al. (Sun-as-a-star), all of the concurrent soft X-ray sources will 2005). So far as the data permit us to tell, the first detected contribute to the background level for a given flare. In prin- emission at these hot onset times already has a measurable ciple there is no exact way to estimate this background level temperature significantly above any observational limit. for such Sun-as-a-star observations, since an independent source(s) could occur at any time, in any active region that 2.3 Uncertainties on GOES temperature might be coincidentally present. In the present work we es- measurements timate the flare background level by simply taking the local minimum of the 0.5-4 A˚ channel immediately prior to the The error bars in Figure1 reflect both random errors, as flare onset; the nearer the better. The actual epoch of the estimated from the scatter of data at an intermediate flux hot onset will depend upon flare brightness and detection level, and the digital uncertainty resulting from undersam- threshold; for an X-class flare occurring in low-background pling the true background noise, as discussed in Sim~oes et al. conditions, the GOES photometers can already detect the (2015a). The digital step size varies from epoch to epoch, source at a level 0.1-1% of flare maximum flux. since the different GOES satellites have different properties, We can also check the background source locations via For GOES-15 in the 0.5-4 A˚ channel it was 6 × 10−10 W/m2 the EUV images from SDO/AIA.
Recommended publications
  • STUDIES on HARD X-RAY EMISSION from SOLAR FLARES and on Cyclotrop ~- RADIATION from a COLD Magnelt)Pllima
    STUDIES ON HARD X-RAY EMISSION FROM SOLAR FLARES AND ON CYCLOTROp ~- RADIATION FROM A COLD MAGNElt)PLliMA PETER HOYNG 30VST: Solar flare of 7 August 1972, taken 0.5 A offband Ha at UT 1520:20. field of viev 3' x 4' (courtesy Big Bear Solar Observatory) STELLINGEN Het elektromagnetische veld in een willekeurig medium is op na- tuurlijke -wijze splitsbaar in stralingsvelden (index s) en Coulomb- velden (index c) -. ->->-->-->- 1 S •"*• **•_ p = D [p ^ o] ; J=J + J ; J =--— -r— D [div J - o] ; c s sec 4TT dt c s -> -+.-•-»•-* -+• E - E + E ; B = 3 [B Ho]. se s c Beide deelvelden met hun bronnen voldoen aan de volledige Maxwell vergelijkingen: div. D = o; div B ~ o div D = 4TTO s 3 c ' c -* 13-* rot E = -—•=— B rot E = o s c at s c * 4T -* 1 J •* rot H = J + — T— D s c s c ót s Het verdient aanbeveling bij de behandeling van elektromagnetische problemen deze splitsing vóóraf uit te voeren en (zonodig) beide vergelijkingssystemen gescheiden op te lossen. II Het leidt ir. principe tot onjuiste resultaten wanneer men bij de berekening van het uitgestraalde vermogen per eenheid van ruimte- hoek een scalaire uitdrukking als uitgangspunt neemt -- zoals bij- .-r -f 3-f- •+• voorbeeld . E"J d r, de arbeid verricht door het door J opgewekte elektrische veld. dit proefschrift, hoofdstuk VI. UI Het onlangs door Molodensky gegeven bewijs van de stabiliteit van het randwaardeprobleem van een krachtvrij magnetisch veld is onjuist; veeleer wordt nogmaals aangetoond dat zeer kritische beoordeling onontbeerlijk is om een tijdschrift op peil te houden.
    [Show full text]
  • 19710023003.Pdf
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) X-625-71-308 PkEFRlil NASA T1:1 X- ELECTRON AND POSITIVE ION DENSITY ALTITUDE DISTRIBUTIONS IN THE EQUATORIAL Q REGION A. C. AIKIN R. A. GOLDBERG Y. V. SOMAYAJULU Aq ^F q "9,>/ #44#i4 a^F/j/F C-r; AI!riICT 1471 Jp ,32479 Ole °o (ACCESSi JN N MBCR) (THR 0 'i (NASA CR R TMX OR AD NUMBER) (CATEGORY) --- GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND - it %0 ELECTRON AND POSITIVE ION DENSITY ALTITUDE DISTRIBUTIONS IN THE EQUATORIAL D REGION by A. C. Aikin R. A. Goldberg • Laboratory for .Planetary Atmospheres NASA/Goddard !7nace Flight Center Greenb?.. , Maryland and Y. V. Somayajulu National Physical Laboratory New Delhi, India ABSTRACT Three simultaneous rocket measurements of P region ionization sources and electron and ion densities have been made in one day.
    [Show full text]
  • Solar Radiation (SOLRAD) Satellite Summary Table As of 26 March 2004
    Solar Radiation (SOLRAD) Satellite Summary Table as of 26 March 2004 Satellite Name Launch Date Transmitter(s) Vanguard 3 18 September 1959 108.00 Mc/s 30 mW FM/PM IRIG 2, 3, 4 & 5 Explorer 7 13 October 1959 19.9915 Mc/s 660 mW FM/AM IRIG 2, 3, 4 & 5 Solrad Dummy 13 April 1960 Inert Test Article Sun Ray 1 22 June 1960 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 Sun Ray 2 30 November 1960 (Failure) 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 here Sun Ray 3 29 June 1961 (Partial failure) 108.00 Mc/s Sun Ray 4 24 January 1962 (Failure) 108.09 Mc/s 100 mW FM/AM Sun Ray 4B 26 April 1962 (Failure) 108.00 Mc/s 100 mW FM/AM 20 inch sp Sun Ray 5 Not Launched Sun Ray 6 15 June 1963 136.890 MHz 100 mW FM/AM SolRad 7A 11 January 1964 136.887 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 7B 9 March 1965 136.800 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 8 19 November 1965 137.41 MHz 1W Stored data playback Explorer 30 136.44 MHz 100mW 24 inch sphere Solar Explorer A 136.53 MHz 100mW SolRad 9 5 March 1968 136.41 MHz 500 mW Stored data playback Explorer 37 136.52 MHz 150 mW Primary RT FM/AM IRIG 3 to 8 Solar Explorer B 137.59 MHz 150 mW RT FM/AM IRIG 3 to 7, 12 PCM SolRad 10 8 July 1971 136.38 MHz 250 mW 5W on cmd TM2 - PCM/PM or Stored Data or Stellrad on cmd Explorer 44 137.71 MHz 250 mW TM1 - PAM/PCM/FM/PM RT analog (chs 4-8, COSPAR Ch 7) Solar Explorer-C and digital PCM (ch 12) SolRad 11A & 14 March 1976 137.44 MHz 5W (11A), 136.53 MHz 5W (11B) SolRad 11B 102.4 bps PCM/BiØ-L/PM convolutional encoded (R=½, k=7) Early X-ray missions Name Vanguard 3 Launch Date 1959 September 18.22 UTC SAO ID 1959 ? (Eta) COSPAR ID 1959-07A Catalog No.
    [Show full text]
  • Gamma-Ray and Neutrino Astronomy
    Sp.-V/AQuan/1999/10/07:19:58 Page 207 Chapter 10 γ -Ray and Neutrino Astronomy R.E. Lingenfelter and R.E. Rothschild 10.1 Continuum Emission Processes ............. 207 10.2 Line Emission Processes ................. 208 10.3 Scattering and Absorption Processes .......... 213 10.4 Astrophysical γ -Ray Observations ........... 216 10.5 Neutrinos in Astrophysics ................ 235 10.6 Current Neutrino Observatories ............. 237 10.1 CONTINUUM EMISSION PROCESSES Important processes for continuum emission at γ -ray energies are bremsstrahlung, magneto- bremsstrahlung, and Compton scattering of blackbody radiation by energetic electrons and positrons [1–6]. 10.1.1 Bremsstrahlung The bremsstrahlung luminosity spectrum of an optically thin thermal plasma of temperature T in a volume V is [3] 1/2 π 6 π 2 32 e 2 mc 2 L(ν)brem = Z neniVg(ν, T ) exp(−hν/kT), 3m2c4 3kT where the index of refraction is assumed to be unity, m is the electron mass, Z is the mean atomic 1/2 charge, ne and ni are the electron and ion densities, and the Gaunt factor g(ν, T ) ≈ (3kT/πhν) for hν>kT and T > 3.6 × 105 Z 2 K, or −38 2 −1/2 −1 −1 L(ν)brem ≈ 6.8 × 10 Z neniVg(ν, T )T exp(−hν/kT) erg s Hz . 207 Sp.-V/AQuan/1999/10/07:19:58 Page 208 208 / 10 γ -RAY AND NEUTRINO ASTRONOMY 10.1.2 Magnetobremsstrahlung The synchrotron luminosity spectrum of an isotropic, optically thin nonthermal distribution of −S relativistic electrons with a power-law spectrum, N(γ ) = N0γ , interacting with a homogeneous magnetic field of strength, H,is[5] .
    [Show full text]
  • NASA Astronauts
    PUBLISHED BY Public Affairs Divisio~l Washington. D.C. 20546 1983 IColor4-by-5 inch transpar- available free to information lead and sent to: Non-informstionmedia may obtain identical material for a fee through a photographic contractor by using the order forms in the rear of this book. These photqraphs are government publications-not subject to copyright They may not be used to state oiimply the endorsement by NASA or by any NASA employee of a commercial product piocess or service, or used in any other manner that might mislead. Accordingly, it is requested that if any photograph is used in advertising and other commercial promotion. layout and copy be submitted to NASA prior to release. Front cover: "Lift-off of the Columbia-STS-2 by artist Paul Salmon 82-HC-292 82-ti-304 r 8arnr;w u vowzn u)rorr ~ nsrvnv~~nrnno................................................ .-- Seasat .......................................................................... 197 Skylab 1 Selected Pictures .......................................................150 Skylab 2 Selected Pictures ........................................................ 151 Skylab 3 Selected Pictures ........................................................152 Skylab 4 Selected Pictures ........................................................ 153 SpacoColony ...................................................................183 Space Shuttle ...................................................................171 Space Stations ..................................................................198 \libinn 1 1f.d Apoiio 17/Earth 72-HC-928 72-H-1578 Apolb B/Earth Rise 68-HC-870 68-H-1401 Voyager ;//Saturn 81-HC-520 81-H-582 Voyager I/Ssturian System 80-HC-647 80-H-866 Voyager IN~lpiterSystem 79-HC-256 79-H-356 Viking 2 on Mars 76-HC-855 76-H-870 Apollo 11 /Aldrin 69-HC-1253 69-H-682 Apollo !I /Aldrin 69-HC-684 69-H-1255 STS-I /Young and Crippen 79-HC-206 79-H-275 STS-1- ! QTPLaunch of the Columbia" 82-HC-23 82-H-22 Major Launches NAME UUNCH VEHICLE MISSIONIREMARKS 1956 VANGUARD Dec.
    [Show full text]
  • Multi-Wavelength Observations of the Spatio-Temporal Evolution of Solar
    Multi-Wavelength Observations of the Spatio-Temporal Evolution of Solar Flares with AIA/SDO: II. Hydrodynamic Scaling Laws and Thermal Energies Markus J. Aschwanden Lockheed Martin Advanced Technology Center, Org. ADBS, Bldg.252, 3251 Hanover St., Palo Alto, CA 94304, USA; e-mail: [email protected] and Toshifumi Shimizu Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210, Japan; e-mail: [email protected] ABSTRACT In this study we measure physical parameters of the same set of 155 M and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a differential emission measure (DEM) analysis to determine the flare peak emission measure EMp, peak temperature Tp, electron density np, and thermal energy Eth, in addition to the spatial scales L, areas A, and volumes V measured in Paper I. The parameter ranges for M and X-class flares are: log(EMp)= 47.0 50.5, T =5.0 17.8 MK, n =4 109 9 1011 cm−3, and thermal energies of E = − p − p × − × th 1.6 1028 1.1 1032 erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) × − × scaling law T 2 n L and H T 7/2L−2 during the peak time t of the flare density n , when p ∝ p ∝ p p energy balance between the heating rate H and the conductive and radiative loss rates is achieved for a short instant, and thus enables the applicability of the RTV scaling law. The application of the RTV scaling law predicts powerlaw distributions for all physical parameters, which we demonstrate with numerical Monte-Carlo simulations as well as with analytical calculations.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Journal Vol21 No106 Pp311-340
    Vol. Vol. 21 No. 106 Journal of the Radio Research Laboratories 1974 Printed Printed in Tokyo, Japan pp. 311-340 UDC 523. 7: 525 “1972.08 ” SOLAR-TERRESTRIAL DISTURBANCES OF AUGUST 1972 4. 4. SOLAR X-RAY FLARES AND THEIR CORRESPONDING SUDDEN IONOSPHERIC DISTURBANCES By Mitsuo OHSHIO (Received (Received Feb. 22, 1973) ABSTRACT Four Four solar X-ray flares which occurred early in August, 1972, were large, being being inferred from sudden ionospheric disturbances caused by the pertinent flares. The time variations of the solar X-ray flux intensity observed could not be obtained obtained at the maximum stage of these four events owing to the artificial satel- lite lite eclipse and/or the saturation of the detector. Both of estimation from extra- polation polation in the shape of time variation and from the maximum phase deviation of of the normalized sudden phase anomaly (SP A) observed show that the maximum solar solar X-ray (1 ~8 A) flare flux intensities or the maximum enhanced ones for August August 4 and 7 were as large as to exceed 1 erg cm-2 s-1. Their decreasing stages stages were as long as to last more than half a day. The use of a flare model valid valid for the arrival of solar ionizing agents of the largest class during the pertinent pertinent period showed that the enhanced electron density in the ionosphere was larger larger than the quiet one by about two orders at the altitude of 70 km and by 2 to to 1 times at the altitude of 90 to 120 km.
    [Show full text]
  • Voyager Dans L'espace
    Extrait de la publication ’aventure spatiale ne date pas Ld’hier. Tout a commencé avec un pigeon et des feux d’artifice avant que la Seconde Guerre mondiale puis la Guerre froide n’ouvrent l’âge des fusées et n’offrent à l’humanité de réaliser son vieux rêve : aller dans l’espace. L’espace est à la fois proche – cent kilomètres à peine au-dessus de nous – et presque hors de portée. En effet, ce sont cent kilomètres qu’il faut parcourir verticalement, en bravant la loi de la gravité. Quand s’arracher du sol quelques secondes n’est déjà pas une mince affaire, le quitter complètement est un défi, relevé depuis quelques décennies seulement. Aujourd’hui, alors qu’aller fureter dans le Système solaire paraît presque banal, chaque départ de lanceur reste un véritable exploit technologique et humain. Le livre de Yaël Nazé explique quels innom- brables problèmes il faut résoudre pour se lancer dans cette aventure : comment choisir la bonne route dans un univers où tout est en mouvement et où les lignes droites n’existent pas ? Pourquoi faut-il décoller à un moment, pas à un autre ? Quel est le prix de la conquête spatiale ? Quels en sont les risques pour les hommes et les machines ? Et d’ailleurs… pourquoi aller dans l’espace ? Un guide passionnant pour tous les amoureux de l’astronautique et des étoiles. Spécialiste des étoiles massives, récompensée plusieurs fois pour ses actions de vulgarisation scientifique, Yaël Nazé est astrophysicienne FNRS au « Liège Space Research Institute » de l’Université de Liège. JEU DISPONIBLE SUR LA VERSION PAPIER.
    [Show full text]
  • Case File Copy
    NASA TECHNICAL MEMORANDUM NASA TA4 X-53991. CASE FILE COPY A SOLAR X-RAY ASTRONOMY SUMMARY AND B I BL IOGRAPHY By Robert M. Wilson John M. Reynolds Stanley A. Fields Space Sciences Laboratory January 1970 NASA George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama MSFC - Form ,3190 (September 1968) TABLE OF CONTENTS Page INTRODUCTION .................................... 1 BIBLIOGRAPHY.................................... 3 AUTHORINDEX .................................... 83 SUBJECTINDEX ................................... 87 APPENDIX ....................................... 90 LIST OF TABLES Table Title Page A.1 . Tabulation of Rocket and Balloon Solar X-Ray Flight Experiments ................................. 91 A.2 . Tabulation of Satellite Solar X-Ray Flight Experiments .... 94 A.3 . Tabulation of Observed Solar Spectral Lines ( 1- to 100-8) by Flight Experiment ........................... 96 0 A.4 . List of Observed Solar Spectral Lines (I- to iOO-A) ...... 114 DEFINITION OF SYMBOLS Symbol Definition Crystals: CaFz Calcium fluoride CaS04:Mn Calcium sulfate: manganese EDDT Ethylene diamine d-tartrate KA P Potassium acid phthallate LiF Lithium fluoride ML 1VIagnesium lignocerate (multilayer film) NaI Sodium iodide NaI(T1) Sodium iodide (thallium ) OHS Octadecyl hydrogen succinate Elements: A1 Aluminum Ar Argon B Boron Be Beryllium C C arbon Ca C alc ium C I Chlorine Cr Chronlium DEFINITION OF SYMBOLS (Continued) Symbol Definition Elements: F Fluorine Fe Iron H Hydrogen He Helium Li Lithium Mg Magnesium Mn Manganese
    [Show full text]
  • National Security and the U.S. Naval Research Laboratory, Seventy Years of Scince for the Navy and the Nation (1923-1993)
    Naval Research Laboratory AD-A277 703 Washington, DC 20375-5320 liilli llllIl1lll1ll1lll1 NRL/FR/1003--94-959 National Security and the U.S. Naval Research Laboratory Seventy Years of Science for the Navy and the Nation (1923-1993) AELECTEDTIC D. J. DEYOUNG APR 011994 Office of Strategic Planning Executive Directorate March 29, 1994 94-09981 [9Approved for public release; distributionunlimited. 9 4 1 29 The Naval Research Laboratory (NRL) was officially established on July 2, 1923, as the Naval Experimental and Research Laboratory. In the following seven decades, research efforts have expanded from the two original areas of scientific endeavor, radio and underwater sound, to 19 broad areas that encompass many diverse fields. NRL is the Navy's Corporate Laboratory and is under the command of the Chief of Naval Research. The Laboratory occupies its original site on the banks of the Potomac River in the southwest corner of Washington, D.C. Since NRL's establishment, the number of buildings has expanded from the original five to more than 170, and the main Laboratory site has expanded from 27.5 to 129 acres. The original group of about 20 employees has grown to more than 3900, including those at the main site and at 14 field sites. On January 14, 1992, the Naval Oceanographic and Atmospheric Research Laboratory (with sites in both Mississippi and California) was merged with NRL as part of the U.S. Navy's post-Cold War research, development, technology, and engineering RDT&E) consolidation efforts. This merger brought facilities and personnel at Bay St. Louis, Mississippi, and Monterey, California, under NRL management.
    [Show full text]
  • NASA-TM-84835) NASA 1981 £ HC10GRAPHY INDEX J(National Aeronautics and Space Administration) 248 P HC A11/MF A01 CSCL I)5B
    , (NASA-TM-84835) NASA 1981 £ HC10GRAPHY INDEX j(National Aeronautics and Space Administration) 248 p HC A11/MF A01 CSCL i)5B, .1 / * B2 32316 TABLE OF SUBJECT Apollo 7 Selected Pictures ............................ XS^i^-Oil^"5^ ............ 141 Apollo 8 Selected Pictures ............................... rTT^T^TT .; .............. 142 Apollo 9 Selected Pictures ...................................................... 143 Apollo 10 Selected Pictures ...................................................... 146 Apollo 1 1 Selected Pictures ...................................................... 147 Apollo 12 Selected Pictures ...................................................... 150 Apollo 13 Selected Pictures ...................................................... 153 Apollo 14 Selected Pictures .................................. .^-^ , : v -^. .......... 155 Apollo 15 Selected Pictures 158 Apollo 16 Selected Pictures 161 Apollo 17 Selected Pictures 165 ASTPSelected Pictures 175 Astronaut Candidates 131 Astronaut Portraits 124 Astronomy 215 Aviation ............... ..................... ... 204 Lunar Surface Photographs ......................... -T. .«»j. n~:'. Vf) .... ^W. 132 TABLE OF CONTENTS PAGE SUBJECT NO. Major Launches 2 Mariner VI 134 Mariner VII 135 Mariner IX 136 Mariner X 138 Pioneer 10 180 Pioneer 11 181 Planets & Other Space Phenomena 193 Skylab 1 Selected Pictures 168 Skylab 2 Selected Pictures 169 Skylab 3 Selected Pictures 171 Skylab 4 Selected Pictures .' 173 Space Colony 214 Space Shuttle 207 Viking 1 195 Viking 2 202 Voyager
    [Show full text]