UNIT-III Design of Combinational Circuits Using Programmable Logic Devices (Plds)

Total Page:16

File Type:pdf, Size:1020Kb

UNIT-III Design of Combinational Circuits Using Programmable Logic Devices (Plds) UNIT-III Design of combinational circuits using Programmable Logic Devices (PLDs) PLA- Programmable logic array: • The PLA consists of two programmable planes AND and OR . The AND plane consists of programmable interconnect along with AND gates. • The OR plane consists of programmable interconnect along with OR gates. • Each of the inputs can be connected to an AND gate with any of the other inputs by connecting the crossover point of the vertical and horizontal interconnect lines in the AND gate programmable interconnect. • Initially, the crossover points are not electrically connected, but configuring the PLA will connect particular cross over points together. • The AND gate is seen with a single line to the input. This view is by convention, but this also means that any of the inputs (vertical lines) can be connected. Hence, for four PLA inputs, the AND gate also has four inputs. The single output from each of the AND gates is applied to an OR gate programmable inter connect. EXAMPLES: Steps to program PLA: Step I: Find the Boolean Function from the truth table. A B C Y1 Y2 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 Y1=AC+BC Y2=AC+A’BC’ STEP II: Identify the number of input buffers. Number of variables=number of input buffers=3. STEP III: Implementation of the Boolean function in PLA. PROGRAMMABLE ARRAY LOGIC (PAL) • The first programmable device was the programmable array logic (PAL) developed by Monolithic Memories Inc(MMI). • The Programmable Array Logic or PAL is similar to PLA, but in a PAL device only AND gates are programmable. The OR array is fixed by the manufacturer. • This makes PAL devices easier to program and less expensive than PLA. On the other hand, since the OR array is fixed, it is less flexible than a PLA device • The PAL device has n input lines which are fed to buffers/inverters.Buffers/inverters are connected to inputs of AND gates through programmable links. Outputs of AND gates are then fed to the OR array with fixed connections. EXAMPLES X=F(A,B,C)=∑m(2,3,6,7) Y= F(A,B,C)= ∑m(0,2,3,5) Z= F(A,B,C)= ∑m(1,6,7) Complex Programmable Logic Devices (CPLDs) • CPLDs were pioneered by Altera, first in their family of chips called Classic EPLDs, and then in three additional series, called MAX 5000, MAX 7000 and MAX 9000. • The CPLD is the complex programmable Logic Device which is more complex than the SPLD. • This is build on SPLD architecture and creates a much larger design. Consequently, the SPLD can be used to integrate the functions of a number of discrete digital ICs into a single device and the CPLD can be used to integrate the functions of a number of SPLDs into a single device. • CPLD architecture is based on a small number of logic blocks and a global programmable interconnect. • Instead of relying on a programming unit to configure chip , it is advantageous to be able to perform the programming while the chip is still attached to its circuit board. • This method of programming is known is called In-System programming (ISP). It is not usually provided for PLAs (or) PALs , but it is available for the more sophisticated chips known as Complex programmable logic device. • • The CPLD consists of a number of logic blocks or functional blocks, each of which contains a macrocell and either a PLA or PAL circuit arrangement. • • In the diagram eight logic blocks are shown. The building block of the CPLD is the macro-cell, which contains logic implementing disjunctive normal form expressions and more specialized logic operations. • • The macro cell provides additional circuitry to accommodate registered or nonregistered outputs, along with signal polarity control. • • Polarity control provides an output that is a true signal or a complement of the true signal. • • The actual number of logic blocks within a CPLD varies ,the more logic blocks available, the larger the design that can be configured. • • In the center of the design is a global programmable interconnect. • • This interconnect allows connections to the logic block macrocells and the I/O cell arrays (the digital I/O cells of the CPLD connecting to the pins of the CPLD package). • • The programmable interconnect is usually based on either array-based interconnect or multiplexer-based interconnect. • Multiplexer-based interconnect uses digital multiplexers connected to each of the macrocell inputs within the logic blocks. • Specific signals within the programmable interconnect are connected to specific inputs of the multiplexers. • It would not be practical to connect all internal signals within the programmable interconnect to the inputs of all multiplexers due to size and speed of operation considerations. FIELD PROGRAMMABLE GATE ARRAYS • The concept of FPGA was emerged in 1985 with the XC2064TM FPGA family from Xilinx . • The “FPGA is an integrated circuit that contains many (64 to over 10,000) identical logic cells that can be viewed as standard components.” • The individual cells are interconnected by a matrix of wires and programmable switches. • Unlike CPLDs (Complex Programmable Logic Devices) FPGAs contain neither AND nor OR planes. • The FPGA architecture consists of configurable logic blocks, configurable I/O blocks, and programmable interconnect. • Also, there will be clock circuitry for driving the clock signals to each logic block, and additional logic resources such as ALUs, memory, and decoders may be available. • The two basic types of programmable elements for an FPGA are Static RAM and anti-fuses. • Each logic block in an FPGA has a small number of inputs and one output. • A look up table (LUT) is the most commonly used type of logic block used within FPGAs. • There are two types of FPGAs.(i) SRAM based FPGAs and (ii) Anti-fuse technology based(OTP). Every FPGA consists of the following elements. • Configurable logic blocks(CLBs) • Configurable input output blocks(IOBs) • Two layer metal network of vertical and horizontal lines for interconnecting the CLBS. Which are called Programmable Interconnects. An individual CLB is made up of several logic blocks. A lookup table (LUT) is a characteristic feature of an FPGA. An LUT stores a predefined list of logic outputs for any combination of inputs: LUTs with four to six input bits are widely used. Standard logic functions such as multiplexers (mux), full adders (FAs) and flip-flops are also common. The number and arrangement of components in the CLB varies by device; the simplified example in Figure 2 contains two three-input LUTs (1), an FA (3) and a D-type flip-flop (5), plus a standard mux (2) and two muxes, (4) and (6), that are configured during FPGA programming. Overview of Look Up Tables (LUT) One of the features which make FPGA families differ from each other is their logic resource. For example, each CLB of Spartan-II FPGAs (PDF) is comprised of two slices, each with two LUTs. The Spartan 6 (PDF) has two slices with four LUTs each. Internally, LUTs comprise of 1-bit memory cells (programmable to hold either ‘0’ or ‘1’) and a set of multiplexers. One value among these SRAM bits will be available at the LUT’s output depending on the value(s) fed to the control line(s) of the multiplexer(s). The number of inputs available for a LUT determine its size. In general, a LUT with n inputs is seen to comprise of 2n single-bit memory cells followed by a 2n:1 multiplexer or its equivalent (say, two 2n-1:1 muxes followed by one 2:1 mux). 2-Input Look up table (LUT’s): A specific example of a 2-input LUT comprising of 4 SRAM bits and a 4:1 mux is as shown in Figure 2a. Next, Figure 2b shows its equivalent architecture but represents a 4:1 mux as a tree of 2:1 muxes. 3-Input Look up table (LUT’s): Suppose we want to realize a Boolean Function of four input variables A, B, C and D using a 3-input LUT. Here, let the output become high only when any of the two input variables are one. The truth table corresponding to this is shown below. While realizing this function using an FPGA, A, B, C, and D will be the inputs to LUT. Next, the values of the output variable for each of their combination (available in the last column of the truth table) will be stored in the SRAM cells. Now, if ABCD = 0101, then the output of the LUT, Y, will take the value of 1 as the content of the sixth memory cell makes its way to the output pin. Here, two 3-input LUTs share the same set of three lower-significant inputs (B, C, and D). The output from any one of these LUTs is routed onto the Y output bit (shown by a red discontinuous line) using a 2:1 mux whose select line will be our fourth variable, A (MSB).In this illustration, the last 2:1 mux is considered to be the multiplexer present within the slice constituting the CLB. Implementing a 4-input Boolean function using a combination of 3-input LUTs and a Mux Introduction to Verilog HDL High-level language constructs to describe the functionality and connectivity of the circuit • Can describe a design at some levels of abstraction. An HDL might describe the layout of the wires, resistors and transistors on an Integrated Circuit (IC) chip, i.
Recommended publications
  • COMBINATIONAL CIRCUITS Combinational Plds Basic Configuration of Three Plds (Programmable Logic Devices)
    COMBINATIONAL CIRCUITS Combinational PLDs Basic Configuration of three PLDs (Programmable Logic Devices) Boolean variables Fixed Programmable INPUTS AND array OUTPUTS OR array (decoder) Programmable Read-Only Memory (PROM) Programmable INPUTS Fixed OUTPUTS AND array OR array Programmable Array Logic (PAL) Programmable INPUTS Programmable AND array OR array OUTPUTS (Field) Programmable Logic Array (PLA) 1 ©Loberg COMBINATIONAL CIRCUITS Combinational PLDs Two-level AND-OR Arrays (Programmable Logic Devices) F (C,B, A) = CBA + CB A A AND B + V B C A C B F C F AND F + V 1 B OR C Multiple functions Simplified equivalent circuit for two-level AND-OR array 2 ©Loberg COMBINATIONAL CIRCUITS Combinational PLDs Field-programmable AND and OR Arrays (Programmable Logic Devices) Field-programmable logic elements are devices that contain uncommitted AND/OR arrays that are (programmed) configured by the designer. + V + V A A F (C,B, A) F (C,B, A) = CBA B B C C Unprogrammed AND array Fuse can be "blown" by passing a high current through it. 3 ©Loberg COMBINATIONAL CIRCUITS Combinational PLDs Field-programmable AND and OR Arrays (Programmable Logic Devices) F (P1 ,P2 ,P3 ) = P1 + P3 P1 P1 P2 P2 P3 P3 F F (P1 ,P2 ,P3 ) Unprogrammed OR array Programmed OR array P1 P2 P3 P1 + P3 4 ©Loberg COMBINATIONAL CIRCUITS Combinational PLDs Output Polarity Options (Programmable Logic Devices) I1 Ik Active high Active low Complementary outputs Programmable polarity P P 1 m + V 5 ©Loberg COMBINATIONAL CIRCUITS Combinational PLDs Bidirectional Pins and Feed back Lines (Programmable Logic Devices) I1 Ik Feedback IOm Three-state driver 6 ©Loberg COMBINATIONAL CIRCUITS Combinational PLDs PLA (Programmable Logic Array) (Programmable Logic Devices) If we use ROM to implement the Boolean function we will waste the silicon area.
    [Show full text]
  • VLSI Design: a New Approach
    International Journal of Information Theory Volume 1, Issue 1, 2011, pp-01-04 Available online at: http://www.bioinfo.in/contents.php?id=103 VLSI Design: A New Approach M.B. Swami and V.P. Pawar Department of Physics/Electronics/Computer Science, Maharashtra Udyagiri Mahavidyalaya, Udgir, India e-mail: [email protected] Abstract—This paper presents the different • Cores such as PCI are available and able to Programmable Logic Array is an important building circuit integrate with relative ease Getting started in of VLSI chips and some of the FPGA architectures have FPGA design is easy. evolved from the basic Programmable Logic Array The tools are cheap (and sometimes free) for low- architectures. In this paper the new concepts of Verilog Hardware Description language is included in VLSI Design. end devices and affordable for the high end. Modern Keywords: Programmable Logic Array, FPGA, Verilog. HDL (hardware design language) environments are very powerful for creating and verifying a design. There I. INTRODUCTION is plenty of documentation available for using different vendor’s FPGA design tools and exploiting features of Very-large-scale integration (VLSI) is the process of different FPGAs. creating integrated circuits by combining thousands of Even with modern tools, the fundamentals of transistor-based circuits into a single chip. digital design still remain intact and must be Implementation is based on FPGA design flow with understood. If the fundamentals are ignored, there is a Xilinx tools which will help you to design complex good chance that your design will not work consistently digital systems using HDL and also to get experience of and will probably exhibit intermittent modes of processor and controller implementations on FPGAs.
    [Show full text]
  • Introduction to ASIC Design
    ’14EC770 : ASIC DESIGN’ An Introduction Application - Specific Integrated Circuit Dr.K.Kalyani AP, ECE, TCE. 1 VLSI COMPANIES IN INDIA • Motorola India – IC design center • Texas Instruments – IC design center in Bangalore • VLSI India – ASIC design and FPGA services • VLSI Software – Design of electronic design automation tools • Microchip Technology – Offers VLSI CMOS semiconductor components for embedded systems • Delsoft – Electronic design automation, digital video technology and VLSI design services • Horizon Semiconductors – ASIC, VLSI and IC design training • Bit Mapper – Design, development & training • Calorex Institute of Technology – Courses in VLSI chip design, DSP and Verilog HDL • ControlNet India – VLSI design, network monitoring products and services • E Infochips – ASIC chip design, embedded systems and software development • EDAIndia – Resource on VLSI design centres and tutorials • Cypress Semiconductor – US semiconductor major Cypress has set up a VLSI development center in Bangalore • VDAT 2000 – Info on VLSI design and test workshops 2 VLSI COMPANIES IN INDIA • Sandeepani – VLSI design training courses • Sanyo LSI Technology – Semiconductor design centre of Sanyo Electronics • Semiconductor Complex – Manufacturer of microelectronics equipment like VLSIs & VLSI based systems & sub systems • Sequence Design – Provider of electronic design automation tools • Trident Techlabs – Power systems analysis software and electrical machine design services • VEDA IIT – Offers courses & training in VLSI design & development • Zensonet Technologies – VLSI IC design firm eg3.com – Useful links for the design engineer • Analog Devices India Product Development Center – Designs DSPs in Bangalore • CG-CoreEl Programmable Solutions – Design services in telecommunications, networking and DSP 3 Physical Design, CAD Tools. • SiCore Systems Pvt. Ltd. 161, Greams Road, ... • Silicon Automation Systems (India) Pvt. Ltd. ( SASI) ... • Tata Elxsi Ltd.
    [Show full text]
  • The Basics of Logic Design
    C APPENDIX The Basics of Logic Design C.1 Introduction C-3 I always loved that C.2 Gates, Truth Tables, and Logic word, Boolean. Equations C-4 C.3 Combinational Logic C-9 Claude Shannon C.4 Using a Hardware Description IEEE Spectrum, April 1992 Language (Shannon’s master’s thesis showed that C-20 the algebra invented by George Boole in C.5 Constructing a Basic Arithmetic Logic the 1800s could represent the workings of Unit C-26 electrical switches.) C.6 Faster Addition: Carry Lookahead C-38 C.7 Clocks C-48 AAppendixC-9780123747501.inddppendixC-9780123747501.indd 2 226/07/116/07/11 66:28:28 PPMM C.8 Memory Elements: Flip-Flops, Latches, and Registers C-50 C.9 Memory Elements: SRAMs and DRAMs C-58 C.10 Finite-State Machines C-67 C.11 Timing Methodologies C-72 C.12 Field Programmable Devices C-78 C.13 Concluding Remarks C-79 C.14 Exercises C-80 C.1 Introduction This appendix provides a brief discussion of the basics of logic design. It does not replace a course in logic design, nor will it enable you to design signifi cant working logic systems. If you have little or no exposure to logic design, however, this appendix will provide suffi cient background to understand all the material in this book. In addition, if you are looking to understand some of the motivation behind how computers are implemented, this material will serve as a useful intro- duction. If your curiosity is aroused but not sated by this appendix, the references at the end provide several additional sources of information.
    [Show full text]
  • RESEARCH INSIGHTS – Hardware Design: FPGA Security Risks
    RESEARCH INSIGHTS Hardware Design: FPGA Security Risks www.nccgroup.trust CONTENTS Author 3 Introduction 4 FPGA History 6 FPGA Development 10 FPGA Security Assessment 12 Conclusion 17 Glossary 18 References & Further Reading 19 NCC Group Research Insights 2 All Rights Reserved. © NCC Group 2015 AUTHOR DUNCAN HURWOOD Duncan is a senior consultant at NCC Group, specialising in telecom, embedded systems and application review. He has over 18 years’ experience within the telecom and security industry performing almost every role within the software development cycle from design and development to integration and product release testing. A dedicated security assessor since 2010, his consultancy experience includes multiple technologies, languages and platforms from web and mobile applications, to consumer devices and high-end telecom hardware. NCC Group Research Insights 3 All Rights Reserved. © NCC Group 2015 GLOSSARY AES Advanced encryption standard, a cryptography OTP One time programmable, allowing write once cipher only ASIC Application-specific integrated circuit, non- PCB Printed circuit board programmable hardware logic chip PLA Programmable logic array, forerunner of FPGA Bitfile Binary instruction file used to program FPGAs technology CLB Configurable logic block, an internal part of an PUF Physically unclonable function FPGA POWF Physical one-way function CPLD Complex programmable logic device PSoC Programmable system on chip, an FPGA and EEPROM Electronically erasable programmable read- other hardware on a single chip only memory
    [Show full text]
  • Full-Custom Ics Standard-Cell-Based
    Full-Custom ICs Design a chip from scratch. Engineers design some or all of the logic cells, circuits, and the chip layout specifi- cally for a full-custom IC. Custom mask layers are created in order to fabricate a full-custom IC. Advantages: complete flexibility, high degree of optimization in performance and area. Disadvantages: large amount of design effort, expensive. 1 Standard-Cell-Based ICs Use predesigned, pretested and precharacterized logic cells from standard-cell li- brary as building blocks. The chip layout (defining the location of the building blocks and wiring between them) is customized. As in full-custom design, all mask layers need to be customized to fabricate a new chip. Advantages: save design time and money, reduce risk compared to full-custom design. Disadvantages: still incurs high non-recurring-engineering (NRE) cost and long manufacture time. 2 D A B C A B B D C D A A B B Cell A Cell B Cell C Cell D Feedthrough Cell Standard-cell-based IC design. 3 Gate-Array Parts of the chip are pre-fabricated, and other parts are custom fabricated for a particular customer’s circuit. Idential base cells are pre-fabricated in the form of a 2-D array on a gate-array (this partially finished chip is called gate-array template). The wires between the transistors inside the cells and between the cells are custom fabricated for each customer. Custom masks are made for the wiring only. Advantages: cost saving (fabrication cost of a large number of identical template wafers is amortized over different customers), shorter manufacture lead time.
    [Show full text]
  • CPLD and FPGA Architectures
    ECE 428 Programmable ASIC Design CPLD and FPGA Architectures Haibo Wang ECE Department Southern Illinois University Carbondale, IL 62901 3-1 Definitions Field Programmable Device (FPD): — a general term that refers to any type of integrated circuit used for implementing digital hardware, where the chip can be configured by the end user to realize different designs. Programming of such a device often involves placing the chip into a special programming unit, but some chips can also be configured “in-system”. Another name for FPDs is programmable logic devices (PLDs). Source: S. Brown and J. Rose, FPGA and CPLD Architectures: A Tutorial, IEEE Design and Test of Computer, 1996 3-2 Classifications PLA — a Programmable Logic Array (PLA) is a relatively small FPD that contains two levels of logic, an AND- plane and an OR-plane, where both levels are programmable PAL — a Programmable Array Logic (PAL) is a relatively small FPD that has a programmable AND-plane followed by a fixed OR-plane SPLD — refers to any type of Simple PLD, usually either a PLA or PAL CPLD — a more Complex PLD that consists of an arrangement of multiple SPLD-like blocks on a single chip. FPGA — a Field-Programmable Gate Array is an FPD featuring a general structure that allows very high logic capacity. 3-3 PLA Programmable AND Plane Programmable OR Plane Programmable Node Un-programmed Connect Disconnect X Y O1 O2 O3 O4 X XY Y XY XY XY XX YY 3-4 PLA Programmable AND Plane Programmable OR Plane YZ XZ XYZ XY XY Z XY+YZ ?? XZ+XYZ 3-5 PAL Programmable AND Plane Fix OR Plane X Y O1 O2 O3 O4 3-6 PAL with Logic Expanders Programmable AND Plane Fix OR Plane ? Logic expanders 3-7 PLA v.s.
    [Show full text]
  • Logic Directory Programmable
    coverstory By Brian Dipert, Technical Editor Programmable-Programmable- he umbrella term “logic devices” subdivides into several categories: discrete logic, simple and logiclogic Tcomplex PLDs, FPGAs, and standard- and cus- tom-cell ASICs. FPGAs, SPLDs/PALs, and CPLDs are all programmable-logic devices, although their inter- nal architecture implementations differ. Programmable-logic devices are the fastest growing segment of the logic-device family, for two funda- directorydirectory mental reasons. For one thing, their ever-increasing per-device logic-gate count “gathers up”functions that might otherwise spread over a number of discrete-log- ic and memory chips, improving end-system size, power consumption, performance, reliability, and cost. Equally important, you can in a matter of seconds or THE SECOND ANNUAL EDN PLD minutes configure and, in many cases, reconfigure these devices at your workstation or in the system-as- DIRECTORY HIGHLIGHTS THE sembly line. This capability provides powerful flexi- bility to react to last-minute design changes, to pro- ARCHITECTURES AVAILABLE FOR YOUR totype ideas before implementation, and to meet time-to-market deadlines driven by both customer NEXT DESIGN. FIND OUT WHAT’S NEW, need and competitive pressures. Programmable-logic devices lack the long lead- WHAT’S OBSOLETE, AND WHAT’S times, up-front NRE charges, minimum-order quan- tities, and inventory complexity of ASICs. As per-gate EVOLVEDEVOLVED ININ PALS,PALs, PLDS,PLDS, ANDAND FPGAFPGAS.S. cost decreases and the number of gates per component increases, programmable-logic devices are making sig- nificant inroads into gate-array-ASIC territory. Sys- AND CHECK THIS OUT: tem designers and manufacturers are only beginning WE’VE POSTED COMPREHENSIVE to explore and exploit in-system reprogrammability, either to correct errors and upgrade functions once the TABLES OF DEVICES AND FEATURES end system is in users’ hands or to use a fixed number IN THE WEB VERSION OF THIS of logic gates to implement multiple functions.
    [Show full text]
  • Ch7. Memory and Programmable Logic
    EEA091 - Digital Logic 數位邏輯 Chapter 7 Memory and Programmable Logic 吳俊興 國立高雄大學 資訊工程學系 2006 Chapter 7 Memory and Programmable Logic 7-1 Introduction 7-2 Random-Access Memory 7-3 Memory Decoding 7-4 Error Detection and Correction 7-5 Read-Only Memory 7-6 Programmable Logic Array 7-7 Programmable Array Logic 7-8 Sequential Programmable Devices 7-1 Introduction • Memory unit –a collection of cells capable of storing a large quantity of binary information and • to which binary information is transferred for storage • from which information is available when needed for processing –together with associated circuits needed to transfer information in and out of the device • write operation: storing new information into memory • read operation: transferring the stored information out of the memory • Two major types –RAM (Random-access memory): Read + Write • accept new information for storage to be available later for use –ROM (Read-only memory): perform only read operation Programmable Logic Device •Programmable logic device (PLD) –an integrated circuit with internal logic gates • hundreds to millions of gates interconnected through hundreds to thousands of internal paths –connected through electronic paths that behave similar to fuse • In the original state, all the fuses are intact –programming the device • blowing those fuse along the paths that must be removed in order to obtain particular configuration of the desired logic function •Types –Read-only Memory (ROM, Section 7-5) –programmable logic array (PLA, Section 7-6) –programmable array
    [Show full text]
  • A Cost- Effective Design of Reversible Programmable Logic Array
    International Journal of Computer Applications (0975 – 8887) Volume 41– No.15, March 2012 A Cost- Effective Design of Reversible Programmable Logic Array Pradeep Singla Naveen Kr. Malik M.Tech Scholer Assistant Professor Hindu College of Engineering Hindu College of Engineering Sonipat, India Sonipat, India ABSTRACT portable systems exhaust their batteries. Now a day‟s digital In the recent era, Reversible computing is a growing field circuit dissipates even more energy than the theoretical [12]. having applications in nanotechnology, optical information Even C.H. Bennett in 1973 also showed that the dissipated processing, quantum networks etc. In this paper, the authors energy directly correlated to the number of lost bits [2]. So, show the design of a cost effective reversible programmable there is an alternative is to use logic operations that do not lost logic array using VHDL. It is simulated on Xilinx ISE 8.2i bits during computation. These are called reversible logic and results are shown. The proposed reversible Programming operations, and in principle they dissipate arbitrarily little heat logic array called RPLA is designed by MUX gate & [5] [6]. Feynman gate for 3- inputs, which is able to perform any The idea of reversible computing comes from the reversible 3- input logic function or Boolean function. thermodynamics which taught us the benefits of the reversible Furthermore the quantized analysis with comparative finding process over irreversible process. So, it is called reversible is shown for the realized RPLA against the existing one. The computing if its inputs can always be retrieved from its result shows improvement in the quantum cost and total outputs [3] [4] [5] [6].
    [Show full text]
  • Nasa Handbook Nasa-Hdbk 8739.23A Measurement
    NASA HANDBOOK NASA-HDBK 8739.23A National Aeronautics and Space Administration Approved: 02-02-2016 Washington, DC 20546 Superseding: NASA-HDBK-8739.23 With Change 1 NASA COMPLEX ELECTRONICS HANDBOOK FOR ASSURANCE PROFESSIONALS MEASUREMENT SYSTEM IDENTIFICATION: METRIC APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-HDBK 8739.23A—2016-02-02 Mars Exploration Rover (2003) 2 of 161 NASA-HDBK 8739.23A—2016-02-02 DOCUMENT HISTORY LOG Document Status Approval Date Description Revision Initial Release Baseline 2011-02-16 (JWL4) Editorial correction to page 2 figure caption Change 1 2011-03-29 (JWL4) Significant changes were made in this revision, including: expanded content; reflected terminology and technology from the NASA-HDBK-4008, Programmable Revision A 2016-02-02 Logic Devices (PLD) Handbook (released in 2013); eliminated duplication with the PLD Handbook; and, incorporated other clarifications and corrections. (MW) 3 of 161 NASA-HDBK 8739.23A—2016-02-02 This page intentionally left blank. 4 of 161 NASA-HDBK 8739.23A—2016-02-02 This page intentionally left blank. 6 of 161 NASA-HDBK 8739.23A—2016-02-02 TABLE OF CONTENTS 1 OVERVIEW ................................................................................................................ 12 1.1 Purpose .......................................................................................................................... 12 1.2 Scope ............................................................................................................................. 12 1.3 Anticipated
    [Show full text]
  • Digital Design & Computer Arch
    Digital Design & Computer Arch. Lecture 5: Combinational Logic II Prof. Onur Mutlu ETH Zürich Spring 2020 5 March 2020 Assignment: Required Lecture Video n Why study computer architecture? n Why is it important? n Future Computing Architectures n Required Assignment q Watch Prof. Mutlu’s inaugural lecture at ETH and understand it q https://www.youtube.com/watch?v=kgiZlSOcGFM n Optional Assignment – for 1% extra credit q Write a 1-page summary of the lecture and email us n What are your key takeaways? n What did you learn? n What did you like or dislike? n Submit your summary to Moodle – Deadline: April 1 2 Assignment: Required Readings n Last+This week q Combinational Logic n P&P Chapter 3 until 3.3 + H&H Chapter 2 n This+Next week q Hardware Description Languages and Verilog n H&H Chapter 4 until 4.3 and 4.5 q Sequential Logic n P&P Chapter 3.4 until end + H&H Chapter 3 in full n By the end of next week, make sure you are done with q P&P Chapters 1-3 + H&H Chapters 1-4 3 Combinational Logic Circuits and Design 4 What We Will Learn in This Lecture n Building blocks of modern computers q Transistors q Logic gates n Combinational circuits n Boolean algebra n How to use Boolean algebra to represent combinational circuits n Minimizing logic circuits 5 Recall: Transistors and Logic Gates n Now, we know how a MOS transistor works n How do we build logic out of MOS transistors? Problem n We construct basic logic structures Algorithm out of individual MOS transistors Program/Language Runtime System (VM, OS, MM) n These logical units are named
    [Show full text]