A Thesis Entitled Phor, Phop and Mshc

Total Page:16

File Type:pdf, Size:1020Kb

A Thesis Entitled Phor, Phop and Mshc A Thesis entitled PhoR, PhoP and MshC: Three essential proteins of Mycobacterium tuberculosis by Erica Loney Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Chemistry __________________________________ Dr. Donald R. Ronning, Committee Chair __________________________________ Dr. John J. Bellizzi, Committee Member __________________________________ Dr. Ronald Viola, Committee Member __________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo May 2014 Copyright 2014, Erica Loney This document is copyrighted material. Under copyright law, no parts of this document may be produced without the expressed permission of the author. An Abstract of PhoR, PhoP and MshC: Three essential proteins of Mycobacterium tuberculosis by Erica Loney Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Chemistry The University of Toledo May 2014 The tuberculosis (TB) pandemic is responsible for 1.6 million deaths annually, most of which occur in developing nations. TB is treatable, though patient non- compliance, co-infection with HIV, and the long, 6-9 month treatment regimen have resulted in the emergence of drug-resistant TB. For these reasons, the development of novel anti-tuberculin drugs is essential. Three proteins – PhoR, PhoP, and MshC – of Mycobacterium tuberculosis (M.tb), the causative agent of TB, are the focus of this thesis. The PhoPR two-component system is a phosphorelay system responsible for the virulence of M.tb. The histidine kinase PhoR responds to a yet-unknown environmental stimulus and autophosphorylates a conserved histidine. The phosphate is transferred to an aspartate of the response regulator PhoP, which then forms a head-to-head homodimer and initiates the transcription of 114 virulence genes. Inhibiting PhoR or PhoP would rendered M.tb avirulent and increase its susceptibility to other drugs. For our PhoPR project, PhoR was separated into its extracellular (PhoRex) and intracellular (PhoRin) domains. We attempted to crystallize PhoRex and PhoRin, though currently no crystals iii have been achieved. Using the malachite green assay PhoRin was confirmed to spontaneously dephosphorylate. The DNA binding activity of PhoP was assessed using fluorescence polarization, though no binding was observed. To observe the complexation of PhoRin and PhoP, a pull-down method was developed using the non-hydrolyzable ATP analog, adenosine 5′-(β,γ-imido)triphosphate (AMP-PNP). A stable PhoRin-AMP- PNP-PhoP complex was not identified. Future work is necessary for the crystallization of PhoRex and PhoRin. A new DNA binding assay is also necessary to elucidate PhoP kinetics. Obtaining these data will give significant insight to potential inhibitors for these proteins. Mycothiol is the low molecular weight thiol responsible for protection against oxidative stress and electrophilic toxins in actinomycetes. Previous studies suggest MSH is critical for the survival of M.tb, leading to its attractiveness as a potential drug target. MshC is the penultimate enzyme of the mycothiol (MSH) biosynthetic pathway, catalyzing the ATP-dependent ligation of cysteine and glucosamine inositol in a Bi Uni Uni Bi Ping Pong mechanism. An incomplete 1.6 Å crystal structure of M. smegmatis MshC has previously been solved using trypsin digestion and a cysteine-adenylate analog, 5-O-[N-(L-cysteinyl)-sulfamonyl]adenosine (CSA). Steady state and pre-steady state kinetics for M. smegmatis MshC have also been determined. For this project, we attempted to crystallize the full-length M. smegmatis MshC using Km values of ATP, L- cysteine, and the potential inhibitor glucosazide inositol. Thus far, crystallization attempts have not been successful. We also attempted to develop a high-throughput assay for drug screening. Using the quinaldine red assay, the specific activity of MshC was determined to be 2.40x10-2 µmol/min∙mg. While the high-throughput assay is not yet iv complete, the foundation has been developed for future optimization and usage. As a final goal, we desired to express M.tb MshC in E. coli codon-optimized competent cells. This venture has not yet proved successful. Expression of M.tb MshC will allow for crystallization attempts of this protein as well as the determination of kinetic data. v Acknowledgements I first wish to express my sincere gratitude to my advisor, Dr. Donald R. Ronning, for his wisdom, kindness, and limitless patience throughout my research journey. Thank you for being such a great mentor and for teaching me so much. The experience I have gained in your lab has been and will be significant for my future development as a scientist. I truly appreciate your guidance. I would like to extend my gratitude to my committee members, Dr. John J. Bellizzi and Dr. Ronald Viola for their endless support and advice while I prepared my thesis. I could not have chosen a better committee! To my labmates, both past and present, thank you so much for sharing your knowledge and for being such an awesome team to work with! I had a wonderful time with everyone. I would like to specifically acknowledge Vidhi, Lorenza, and Jared for showing me the ropes and keeping me saturated with valuable advice. I would also like to thank Dr. Peter Andreana and Krishnakant Patel for their contributions, both conceptually and synthetically, to the MshC project. Thank you to Jen, Steven, and Rachel for providing levity and endless support. Your friendship is invaluable. Finally, to all my family and friends outside the university, thank you for seeing me through this journey and putting up with me during the rough lab days and long lab nights. To my mom and dad, my brothers Matthew and Charles, and my partner Clay, thank you from the bottom of my heart. I could not have done this without all of you. vi Table of Contents Abstract.............................................................................................................................iii Acknowledgements...........................................................................................................vi Table of Contents.............................................................................................................vii List of Tables......................................................................................................................x List of Figures....................................................................................................................xi List of Equations.............................................................................................................xiii List of Abbreviations......................................................................................................xiv List of Symbols................................................................................................................xvi 1 Introduction............................................................................................................1 1.1 The Tuberculosis Burden...................................................................................1 1.1.1 Introduction to the Tuberculosis infectious process...........................1 1.1.2 History of treatment regimens............................................................2 1.1.2.1 The BCG vaccine.................................................................2 1.1.2.2 Development of first and second line drugs........................3 1.1.2.3 Co-infection with HIV and emergence of drug resistance...3 1.2 Roles of the PhoPR two-component system in Mycobacterium tuberculosis...4 1.1.1 Introduction to two-component systems.............................................4 1.1.2 PhoR: histidine kinase.........................................................................5 1.1.3 PhoR: current structural knowledge....................................................5 vii 1.1.4 PhoP: response regulator ....................................................................6 1.1.5 PhoP: current structural knowledge....................................................7 1.3 Roles of MshC in the mycothiol biosynthetic pathway of Mycobacterium tuberculosis................................................................................................11 1.3.1 Mycothiol biosynthetic pathway.......................................................11 1.3.2 MshC: cysteine ligase.......................................................................13 1.3.3 MshC: current structural knowledge.................................................14 1.4 Project goals.....................................................................................................17 1.4.1 PhoPR project goals..........................................................................17 1.4.2 MshC project goals...........................................................................17 2 Materials and Methods........................................................................................19 2.1 Molecular cloning, expression, and purification of PhoP, PhoR, and MshC..19 2.1.1 Molecular cloning.............................................................................19 2.1.2 Protein expression.............................................................................22 2.1.3 Protein purification...........................................................................24 2.2 Mass spectrometry analyses.............................................................................27
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Phosphatidylinositol-3-Kinase in Tomato (Solanum Lycopersicum. L) Fruit and Its Role in Ethylene Signal Transduction and Senescence
    Phosphatidylinositol-3-Kinase in Tomato (Solanum lycopersicum. L) Fruit and Its Role in Ethylene Signal Transduction and Senescence by Mohd Sabri Pak Dek A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Plant Agriculture Guelph, Ontario, Canada © Mohd Sabri Pak Dek,June, 2015 ABSTRACT PHOSPHATIDYLINOSITOL-3-KINASE IN TOMATO (SOLANUM LYCOPERSICUM. L) FRUIT AND ITS ROLE IN ETHYLENE SIGNAL TRANSDUCTION AND SENESCENCE Mohd Sabri Pak Dek Co-Advisors: University of Guelph, 2015 Professor G. Paliyath Professor J. Subramanian The ripening process is initiated by ethylene through a signal transduction cascade leads to the expression of ripening-related genes and catabolism of membrane, cell wall, and storage components. One of the minor components in membrane phospholipids is phosphatidylinositol (PI). Phosphatidylinositol-3-kinase (PIK) is an enzyme that phosphorylates PI at the 3-OH position of inositol head group to produce phosphatidylinositol 3-phosphate (PI3P). Phosphorylation of PI may be an early event in the ethylene signal transduction pathway that generates negatively charged domains on the plasma membrane. PI3P domains may potentially serve as a docking site for phospholipase D (PLD) after ethylene stimulation. It is hypothesized that ethylene stimulation may activate PI3K resulting in enhanced level of phosphorylated phosphatidylinositol. However, the properties and function of PI3K is not well understood in plants. In the present study, the effect of PI3K inhibition during tomato fruit ripening was evaluated. This study demonstrated that PI3K activity is required for normal ripening process of the fruit. Inhibition of PI3K activity using wortmannin significantly reduced tomato ripening process.
    [Show full text]
  • Structure-Function Analysis of the Catalytic Domain of the Histidine Kinase Chea
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1997 Structure-Function Analysis of the Catalytic Domain of the Histidine Kinase Chea Dolph David Ellefson Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Microbiology Commons Recommended Citation Ellefson, Dolph David, "Structure-Function Analysis of the Catalytic Domain of the Histidine Kinase Chea" (1997). Dissertations. 3425. https://ecommons.luc.edu/luc_diss/3425 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1997 Dolph David Ellefson LOYOLA UNIVERSITY MEDICAL CENTER LIBRARY LOYOLA UNIVERSITY OF CHICAGO STRUCTURE-FUNCTION ANALYSIS OF THE CATALYTIC DOMAIN OF THE HISTIDINE KINASE CHEA A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY BY DOLPH DAVID ELLEFSON CHICAGO, ILLINOIS MAY, 1997 Copyright by Dolph David Ellefson, 1997 All Rights Reserved ii ACKNOWLEDGEMENTS I would like to thank my director, Dr. Alan J. Wolfe, for his support, advice, and encouragment during the many years in his laboratory. In his laboratory, I was given a rare opportunity to explore a new arena of science and interact with a field of gifted researchers who I would not known otherwise. I would also like to thank the members of my committee, Ors.
    [Show full text]
  • Expression, Purification and Characterisation of Full-Length
    B doi:10.1016/S0022-2836(02)00424-2 available online at http://www.idealibrary.com on w J. Mol. Biol. (2002) 320, 201–213 Expression, Purification and Characterisation of Full-length Histidine Protein Kinase RegB from Rhodobacter sphaeroides Christopher A. Potter1, Alison Ward1, Cedric Laguri2 Michael P. Williamson2, Peter J.F. Henderson1 and Mary K. Phillips-Jones1* 1Division of Microbiology The global redox switch between aerobic and anaerobic growth in School of Biochemistry and Rhodobacter sphaeroides is controlled by the RegA/RegB two-component Molecular Biology, University system, in which RegB is the integral membrane histidine protein kinase, of Leeds, Leeds LS2 9JT, UK and RegA is the cytosolic response regulator. Despite the global regulatory importance of this system and its many homologues, there have been no 2Department of Molecular reported examples to date of heterologous expression of full-length RegB Biology and Biotechnology or any histidine protein kinases. Here, we report the amplified expression University of Sheffield of full-length functional His-tagged RegB in Escherichia coli, its purifi- Sheffield S10 2TN, UK cation, and characterisation of its properties. Both the membrane-bound and purified solubilised RegB protein demonstrate autophosphorylation activity, and the purified protein autophosphorylates at the same rate under both aerobic and anaerobic conditions confirming that an additional regulator is required to control/inhibit autophosphorylation. The intact protein has similar activity to previously characterised soluble forms, but is dephosphorylated more rapidly than the soluble form (half- life ca 30 minutes) demonstrating that the transmembrane segment present in the full-length RegB may be an important regulator of RegB activity.
    [Show full text]
  • The International Pharmacopoeia
    The International Pharmacopoeia THIRD EDITION Pharmacopoea internationalis Editio tertia Volume 4 Tests, methods, and general requirements Quality specifications for pharmaceutical substances, excipients, and dosage forms World Health Organization Geneva 1994 WHO Library Cataloguing in Publication Data The International Pharmacopoeia.- 3rd ed. Contents: v. 4. Tests, methods, and general requirements 1. Drugs -analysis 2. Drugs -standards ISBN 92 4 154462 7 (NLM Classification: QV 25) The World Health Organization welcomes requests for permission to reproduce or translate its publica- tions, in part or in full. Applications and enquiries should be addressed to the Of£ice of Publications, World Health Organization, Geneva, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. O World Health Organization, 1994 Publications of the World Health Organization enjoy copyright protection in accordance with the provi- sions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distin- guished by initial capital letters.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • Histidine Kinases and the Missing Phosphoproteome from Prokaryotes to Eukaryotes Kevin Adam and Tony Hunter
    Laboratory Investigation (2018) 98, 233–247 © 2018 USCAP, Inc All rights reserved 0023-6837/18 $32.00 PATHOBIOLOGY IN FOCUS Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes Kevin Adam and Tony Hunter Protein phosphorylation is the most common type of post-translational modification in eukaryotes. The phosphoproteome is defined as the complete set of experimentally detectable phosphorylation sites present in a cell’s proteome under various conditions. However, we are still far from identifying all the phosphorylation sites in a cell mainly due to the lack of information about phosphorylation events involving residues other than Ser, Thr and Tyr. Four types of phosphate–protein linkage exist and these generate nine different phosphoresidues—pSer, pThr, pTyr, pHis, pLys, pArg, pAsp, pGlu and pCys. Most of the effort in studying protein phosphorylation has been focused on Ser, Thr and Tyr phosphorylation. The recent development of 1- and 3-pHis monoclonal antibodies promises to increase our understanding of His phosphorylation and the kinases and phosphatases involved. Several His kinases are well defined in prokaryotes, especially those involved in two-component system (TCS) signaling. However, in higher eukaryotes, NM23, a protein originally characterized as a nucleoside diphosphate kinase, is the only characterized protein–histidine kinase. This ubiquitous and conserved His kinase autophosphorylates its active site His, and transfers this phosphate either onto a nucleoside diphosphate or onto a protein His residue. Studies of NM23 protein targets using newly developed anti-pHis antibodies will surely help illuminate the elusive His phosphorylation-based signaling pathways. This review discusses the role that the NM23/NME/NDPK phosphotransferase has, how the addition of the pHis phosphoproteome will expand the phosphoproteome and make His phosphorylation part of the global phosphorylation world.
    [Show full text]
  • 82047906.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 85, 13±14, April 5, 1996, Copyright 1996 by Cell Press Book Review His±Asp Phosphorelay: Two Components or More? Two-Component Signal Transduction. Edited By James A. Hoch and Thomas J. Silhavy Washington, DC: ASM Press. (1995). 504 pp. $79.00. to avoid further confusion. While numerical designations refer to the first and second component respectively, Bacteria are constantly bombarded by rapidly changing alphabetical designations originate from the response environmental stresses (nutrition, toxic chemicals, os- regulator being the first transcript preceeding the sensor molarity, oxidative stress, etc.), and adaptation is essen- protein when sharing an operon (e.g., NRI5NtrC while tial for survival. For these adaptive processes, the major NRII5NtrB!). In addition to the His-Asp phosphorelay players are the sensor-kinase (usually a transmembrane system, there are two other classes of bacterial protein receptor) and the response regulator which mediates kinases (metabolite-activated protein kinases, and pho- changes in gene expression or locomotion. The sensor- sphoenol pyruvate-dependent phosphotransferase sys- kinase utilizes ATP to phosphorylate a histidine residue. tems), and this is not apparent to the reader. Clear defini- Subsequently, the phosphoryl group is transferred to tions of kinase, phosphotransferase, and phosphatase an aspartyl residue on the response regulator which enzymatic activities would also aid the reader in discern- causes a functional switch in the response regulator. ing which proteins confer which activities. Unfortu- The uniqueness of this system is that signal transduction nately, the brief historical perspective offered at the out- is carried out by the reversible phosphorelay of a high set of this book does not properly guide the uninitiated.
    [Show full text]
  • Third Supplement, FCC 11 Index / All-Trans-Lycopene / I-1
    Third Supplement, FCC 11 Index / All-trans-Lycopene / I-1 Index Titles of monographs are shown in the boldface type. A 2-Acetylpyridine, 20 Alcohol, 80%, 1524 3-Acetylpyridine, 21 Alcohol, 90%, 1524 Abbreviations, 6, 1726, 1776, 1826 2-Acetylpyrrole, 21 Alcohol, Absolute, 1524 Absolute Alcohol (Reagent), 5, 1725, 2-Acetyl Thiazole, 18 Alcohol, Aldehyde-Free, 1524 1775, 1825 Acetyl Valeryl, 562 Alcohol C-6, 579 Acacia, 556 Acetyl Value, 1400 Alcohol C-8, 863 ªAccuracyº, Defined, 1538 Achilleic Acid, 24 Alcohol C-9, 854 Acesulfame K, 9 Acid (Reagent), 5, 1725, 1775, 1825 Alcohol C-10, 362 Acesulfame Potassium, 9 Acid-Hydrolyzed Milk Protein, 22 Alcohol C-11, 1231 Acetal, 10 Acid-Hydrolyzed Proteins, 22 Alcohol C-12, 681 Acetaldehyde, 10 Acid Calcium Phosphate, 219, 1838 Alcohol C-16, 569 Acetaldehyde Diethyl Acetal, 10 Acid Hydrolysates of Proteins, 22 Alcohol Content of Ethyl Oxyhydrate Acetaldehyde Test Paper, 1535 Acidic Sodium Aluminum Phosphate, Flavor Chemicals (Other than Acetals (Essential Oils and Flavors), 1065 Essential Oils), 1437 1395 Acidified Sodium Chlorite Alcohol, Diluted, 1524 Acetanisole, 11 Solutions, 23 Alcoholic Potassium Hydroxide TS, Acetate C-10, 361 Acidity Determination by Iodometric 1524 Acetate Identification Test, 1321 Method, 1437 Alcoholometric Table, 1644 Aceteugenol, 464 Acid Magnesium Phosphate, 730 Aldehyde C-6, 571 Acetic Acid Furfurylester, 504 Acid Number (Rosins and Related Aldehyde C-7, 561 Acetic Acid, Glacial, 12 Substances), 1418 Aldehyde C-8, 857 Acetic Acid TS, Diluted, 1524 Acid Phosphatase
    [Show full text]
  • Heat Priming Induces Trans-Generational Tolerance to High Temperature Stress in Wheat
    fpls-07-00501 April 12, 2016 Time: 15:59 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 14 April 2016 doi: 10.3389/fpls.2016.00501 Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat Xiao Wang1, Caiyun Xin1,2, Jian Cai1, Qin Zhou1*, Tingbo Dai1, Weixing Cao1 and Dong Jiang1* 1 National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China, 2 Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These Edited by: genes were related to signal transduction, transcription, energy, defense, and protein Shabir Hussain Wani, destination and storage, respectively. The gene encoding the lysine-specific histone Sher-e-Kashmir University demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic of Agricultural Sciences and Technology, India modification was up-regulated in the PH compared with NH.
    [Show full text]
  • Cell Signaling During Cold, Drought, and Salt Stress
    The Plant Cell, S165–S183, Supplement 2002, www.plantcell.org © 2002 American Society of Plant Biologists Cell Signaling during Cold, Drought, and Salt Stress Liming Xiong, Karen S. Schumaker, and Jian-Kang Zhu1 Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721 INTRODUCTION Low temperature, drought, and high salinity are common ery, or assembly of signaling components, but do not di- stress conditions that adversely affect plant growth and rectly relay the signal. They too are critical for the accurate crop production. The cellular and molecular responses of transmission of stress signals. These proteins include pro- plants to environmental stress have been studied intensively tein modifiers (e.g., enzymes for protein lipidation, meth- (Thomashow, 1999; Hasegawa et al., 2000). Understanding ylation, glycosylation, and ubiquitination), scaffolds, and the mechanisms by which plants perceive environmental adaptors (Xiong and Zhu, 2001) (Figure 1). signals and transmit the signals to cellular machinery to acti- vate adaptive responses is of fundamental importance to bi- ology. Knowledge about stress signal transduction is also Multiplicity of Abiotic Stresses as Signals for Plants and vital for continued development of rational breeding and the Need for Multiple Sensors transgenic strategies to improve stress tolerance in crops. In this review, we first consider common characteristics of Low temperature, drought, and high salinity are very com- stress signal transduction in plants, and then examine some plex stimuli that possess many different yet related at- recent studies on the functional analysis of signaling com- tributes, each of which may provide the plant cell with quite ponents. Finally, we attempt to put these components and different information.
    [Show full text]
  • I Monovalent Cation Effects on Histidine Kinase Chea Activity By
    Monovalent cation effects on histidine kinase CheA activity by Marie Sophie Balboa B.S., University of North Carolina, 2012 B.A., University of North Carolina, 2012 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Masters of Science Department of Chemistry and Biochemistry 2015 i This thesis entitled: Monovalent cation effects on histidine kinase CheA activity written by Marie Sophie Balboa has been approved for the Department of Chemistry and Biochemistry Dr. Joseph Falke Date Dr. Robert Batey Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Balboa, Marie Sophie (M.S., Biochemistry) Monovalent cation effects on histidine kinase CheA activity Thesis directed by Professor Joseph J. Falke CheA is a multi-domain histidine kinase believed to be a central component of all bacterial and archaeal chemosensory arrays. The best studied CheA proteins are those of Escherichia coli , Salmonella typhimurium , and Thermotoga maritima . The P4 catalytic domain of CheA is of particular interest due to its role in ATP binding and auto-phosphorylation of the substrate His residue on the P1 substrate domain, a process which involves Mg 2+ in the P4 domain ATP-binding pocket. CheA auto-phosphorylation reaction has also long been known to be sensitive to the monovalent cation composition of the reaction buffer. Recent studies in GHKL superfamily members MutL (from E coli ) and BCK (from Rattus norvegicus ) demonstrated improved activity in the presence of monovalent K +.
    [Show full text]