Supplementary Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0. -
BER and Folate Deficiency: a Comprehensive Overview of DNA Base Excision Repair and the Effect of Dietary Folate Lydia Lanni [email protected]
Wayne State University Honors College Theses Irvin D. Reid Honors College Winter 5-7-2012 BER and Folate Deficiency: A comprehensive overview of DNA base excision repair and the effect of dietary folate Lydia Lanni [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/honorstheses Part of the Human and Clinical Nutrition Commons Recommended Citation Lanni, Lydia, "BER and Folate Deficiency: A comprehensive overview of DNA base excision repair and the effect of dietary folate" (2012). Honors College Theses. 2. https://digitalcommons.wayne.edu/honorstheses/2 This Honors Thesis is brought to you for free and open access by the Irvin D. Reid Honors College at DigitalCommons@WayneState. It has been accepted for inclusion in Honors College Theses by an authorized administrator of DigitalCommons@WayneState. Running head: BER AND FOLATE DEFICIENCY 1 BER and Folate Deficiency: A comprehensive overview of DNA base excision repair and the effect of dietary folate Lydia Lanni Wayne State University Honors Thesis Winter 2012 Author Note A special thank you to Dr. Diane Cabelof and all those in her lab for their instruction and support. BER AND FOLATE DEFICIENCY 2 Abstract Folate is the naturally occurring form of water-soluble B vitamin that is found in foods such as leafy vegetables, fruits, legumes, etc. Dietary supplementation of folate has shown to be protective against neural tube defects and other congenital disorders, and of recent, its role in carcinogenesis has been of special interest. Though mechanistically unclear, a positive correlation has been observed between folate deficiency in the diet and decrease function of DNA base excision repair pathways. -
Intraprotein Radical Transfer During Photoactivation of DNA Photolyase
letters to nature tri-NaCitrate and 20% PEG 3350, at a ®nal pH of 7.4 (PEG/Ion Screen, Hampton (Daresbury Laboratory, Warrington, 1992). Research, San Diego, California) within two weeks at 4 8C. Intact complex was veri®ed by 25. Evans P. R. in Proceedings of the CCP4 Study Weekend. Data Collection and Processing (eds Sawyer, L., SDS±polyacrylamide gel electrophoresis of washed crystals (see Supplementary Infor- Isaacs, N. & Bailey, S.) 114±122 (Daresbury Laboratory, 1993). mation). Data were collected from a single frozen crystal, cryoprotected in 28.5% PEG 26. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystal- 4000 and 10% PEG 400, at beamline 9.6 at the SRS Daresbury, UK. lography. Acta Crystallogr. 50, 760±763 (1994). The data were processed using MOSFLM24 and merged using SCALA25 from the CCP4 27. Navaza, J. AMORE - An automated package for molecular replacement. Acta Cryst. A 50, 157±163 26 (1994). package (Table 1) The molecular replacement solution for a1-antitrypsin in the complex 27 28 28. Engh, R. et al. The S variant of human alpha 1-antitrypsin, structure and implications for function and was obtained using AMORE and the structure of cleaved a1-antitrypsin as the search model. Conventional molecular replacement searches failed to place a model of intact metabolism. Protein Eng. 2, 407±415 (1989). 29 29. Lee, S. L. New inhibitors of thrombin and other trypsin-like proteases: hydrogen bonding of an trypsin in the complex, although maps calculated with phases from a1-antitrypsin alone showed clear density for the ordered portion of trypsin (Fig. -
Oxidative Stress in Sperm Affects the Epigenetic Reprogramming in Early
Wyck et al. Epigenetics & Chromatin (2018) 11:60 https://doi.org/10.1186/s13072-018-0224-y Epigenetics & Chromatin RESEARCH Open Access Oxidative stress in sperm afects the epigenetic reprogramming in early embryonic development Sarah Wyck1,2,3, Carolina Herrera1, Cristina E. Requena4,5, Lilli Bittner1, Petra Hajkova4,5, Heinrich Bollwein1* and Rafaella Santoro2* Abstract Background: Reactive oxygen species (ROS)-induced oxidative stress is well known to play a major role in male infer- tility. Sperm are sensitive to ROS damaging efects because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. However, how oxidative DNA lesions in sperm afect early embryonic develop- ment remains elusive. Results: Using cattle as model, we show that fertilization using sperm exposed to oxidative stress caused a major developmental arrest at the time of embryonic genome activation. The levels of DNA damage response did not directly correlate with the degree of developmental defects. The early cellular response for DNA damage, γH2AX, is already present at high levels in zygotes that progress normally in development and did not signifcantly increase at the paternal genome containing oxidative DNA lesions. Moreover, XRCC1, a factor implicated in the last step of base excision repair (BER) pathway, was recruited to the damaged paternal genome, indicating that the maternal BER machinery can repair these DNA lesions induced in sperm. Remarkably, the paternal genome with oxidative DNA lesions showed an impairment of zygotic active DNA demethylation, a process that previous studies linked to BER. Quantitative immunofuorescence analysis and ultrasensitive LC–MS-based measurements revealed that oxidative DNA lesions in sperm impair active DNA demethylation at paternal pronuclei, without afecting 5-hydroxymethyl- cytosine (5hmC), a 5-methylcytosine modifcation that has been implicated in paternal active DNA demethylation in mouse zygotes. -
Phosphatidylinositol-3-Kinase in Tomato (Solanum Lycopersicum. L) Fruit and Its Role in Ethylene Signal Transduction and Senescence
Phosphatidylinositol-3-Kinase in Tomato (Solanum lycopersicum. L) Fruit and Its Role in Ethylene Signal Transduction and Senescence by Mohd Sabri Pak Dek A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Plant Agriculture Guelph, Ontario, Canada © Mohd Sabri Pak Dek,June, 2015 ABSTRACT PHOSPHATIDYLINOSITOL-3-KINASE IN TOMATO (SOLANUM LYCOPERSICUM. L) FRUIT AND ITS ROLE IN ETHYLENE SIGNAL TRANSDUCTION AND SENESCENCE Mohd Sabri Pak Dek Co-Advisors: University of Guelph, 2015 Professor G. Paliyath Professor J. Subramanian The ripening process is initiated by ethylene through a signal transduction cascade leads to the expression of ripening-related genes and catabolism of membrane, cell wall, and storage components. One of the minor components in membrane phospholipids is phosphatidylinositol (PI). Phosphatidylinositol-3-kinase (PIK) is an enzyme that phosphorylates PI at the 3-OH position of inositol head group to produce phosphatidylinositol 3-phosphate (PI3P). Phosphorylation of PI may be an early event in the ethylene signal transduction pathway that generates negatively charged domains on the plasma membrane. PI3P domains may potentially serve as a docking site for phospholipase D (PLD) after ethylene stimulation. It is hypothesized that ethylene stimulation may activate PI3K resulting in enhanced level of phosphorylated phosphatidylinositol. However, the properties and function of PI3K is not well understood in plants. In the present study, the effect of PI3K inhibition during tomato fruit ripening was evaluated. This study demonstrated that PI3K activity is required for normal ripening process of the fruit. Inhibition of PI3K activity using wortmannin significantly reduced tomato ripening process. -
On the Active Site Thiol of Y-Glutamylcysteine Synthetase
Proc. Natl. Acad. Sci. USA Vol. 85, pp. 2464-2468, April 1988 Biochemistry On the active site thiol of y-glutamylcysteine synthetase: Relationships to catalysis, inhibition, and regulation (glutathione/cystamine/Escherichia coli/kidney/enzyme inactivation) CHIN-SHIou HUANG, WILLIAM R. MOORE, AND ALTON MEISTER Cornell University Medical College, Department of Biochemistry, 1300 York Avenue, New York, NY 10021 Contributed by Alton Meister, December 4, 1987 ABSTRACT y-Glutamylcysteine synthetase (glutamate- dithiothreitol, suggesting that cystamine forms a mixed cysteine ligase; EC 6.3.2.2) was isolated from an Escherichia disulfide between cysteamine and an enzyme thiol (15). coli strain enriched in the gene for this enzyme by recombinant Inactivation of the enzyme by the L- and D-isomers of DNA techniques. The purified enzyme has a specific activity of 3-amino-1-chloro-2-pentanone, as well as that by cystamine, 1860 units/mg and a molecular weight of 56,000. Comparison is prevented by L-glutamate (14). Treatment of the enzyme of the E. coli enzyme with the well-characterized rat kidney with cystamine prevents its interaction with the sulfoxi- enzyme showed that these enzymes have similar catalytic prop- mines. Titration of the enzyme with 5,5'-dithiobis(2- erties (apparent Km values, substrate specificities, turnover nitrobenzoate) reveals that the enzyme has a single exposed numbers). Both enzymes are feedback-inhibited by glutathione thiol that reacts with this reagent without affecting activity but not by y-glutamyl-a-aminobutyrylglycine; the data indicate (16). 5,5'-Dithiobis(2-nitrobenzoate) does not interact with that glutathione binds not only at the glutamate binding site but the thiol that reacts with cystamine. -
Characterization of Α-L-Fucosidase and Other Digestive Hydrolases From
Acta Tropica 141 (2015) 118–127 Contents lists available at ScienceDirect Acta Tropica journal homepage: www.elsevier.com/locate/actatropica Characterization of ␣-L-fucosidase and other digestive hydrolases from Biomphalaria glabrata Natalia N. Perrella a,b, Rebeca S. Cantinha c,d, Eliana Nakano c, Adriana R. Lopes a,∗ a Laboratory of Biochemistry and Biophysics—Instituto Butantan, São Paulo, Brazil b Programa de Pós Graduac¸ ão Interunidades em Biotecnologia PPIB, Universidade de São Paulo, São Paulo, SP, Brazil c Laboratory of Parasitology—Instituto Butantan, São Paulo, Brazil d Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil article info abstract Article history: Schistosoma mansoni is one of the major agents of the disease Schistosomiasis, which is one of the Received 10 February 2014 major global public health concerns. Biomphalaria glabrata is an obligate intermediate mollusc host of Received in revised form 3 July 2014 S. mansoni. Although the development of S. mansoni occurs in the snail hepatopancreas, studies that Accepted 12 August 2014 focus on this organ remain limited. In this study, we biochemically identified five distinct carbohy- Available online 16 September 2014 drases (amylase, maltase, ␣-glucosidase, trehalase, and ␣-L-fucosidase), lipases, and peptidases in the B. glabrata hepatopancreas and focused on the isolation and characterization of the activity of ␣-L- Keywords: fucosidase. The isolated ␣-L-fucosidase has a molecular mass of 141 kDa, an optimum pH of 5.8, and Hepatopancreas ␣ Enzymes is inhibited by Tris, fucose, and 1-deoxyfuconojirimycin. B. glabrata -L-fucosidase is an exoglycosidase ␣-L-Fucosidase that can hydrolyze the natural substrate fucoidan to fucose residues. -
Methionine Sulfoximine: a Novel Anti Inflammatory Agent
Wayne State University Wayne State University Dissertations January 2018 Methionine Sulfoximine: A Novel Anti Inflammatory Agent Tyler Peters Wayne State University, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Biochemistry Commons Recommended Citation Peters, Tyler, "Methionine Sulfoximine: A Novel Anti Inflammatory Agent" (2018). Wayne State University Dissertations. 2124. https://digitalcommons.wayne.edu/oa_dissertations/2124 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. METHIONINE SULFOXIMINE: A NOVEL ANTI-INFLAMMATORY AGENT by TYLER J. PETERS DISSERTATION Submitted to the Graduate School of Wayne State University – School of Medicine Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOHPY 2018 MAJOR: BIOCHEMISTRY & MOL. BIOLOGY Approved By: __________________________________________ Advisor Date DEDICATION This work is dedicated to my family. I wouldn’t have made it this far without your unconditional love and support. ii ACKNOWLEDGEMENTS Thank you Dr. Brusilow, I consider myself very fortunate for having the privilege of working in the laboratory of Dr. William S.A. Brusilow these past few years. Under his mentorship, my scientific autonomy was always respected, and my opinions were always valued with consideration. I am thankful for his guidance and support as an advisor; I truly admire his patience and envy his calm demeanor. He exemplifies scientific integrity, and his dedication to develop MSO has inspired me. I had never experienced consistent failure in any aspect of life before encountering scientific research; at times I felt that Dr. -
Characterisation of Streptococcus Pneumoniae Opacity Phase Variation
Characterisation of Streptococcus pneumoniae Opacity Phase Variation Melissa Hui Chieh Chai, BBiomedSc (Hon), MSc A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy from the University of Adelaide February 2016 Research Centre for Infectious Diseases Department of Molecular and Cellular Biology The University of Adelaide Adelaide, S.A., Australia Table of Contents Chapter 1: INTRODUCTION ........................................................................... 1 1.1 The Pneumococcus ....................................................................................................... 1 1.1.1 Burden of Disease .................................................................................................. 1 1.1.2 Antimicrobial resistance ........................................................................................ 3 1.2 Pneumococcal Vaccines ............................................................................................... 4 1.3 Pathogenesis of Pneumococcal Disease ....................................................................... 7 1.3.1 Pneumococcal colonisation.................................................................................... 7 1.3.2 Progression to disease .......................................................................................... 10 1.4 S. pneumoniae Virulence Factors ............................................................................... 11 1.4.1 Pneumococcal capsule ........................................................................................ -
Glycoproteomics-Based Signatures for Tumor Subtyping and Clinical Outcome Prediction of High-Grade Serous Ovarian Cancer
ARTICLE https://doi.org/10.1038/s41467-020-19976-3 OPEN Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer Jianbo Pan 1,2,3, Yingwei Hu1,3, Shisheng Sun 1,3, Lijun Chen1, Michael Schnaubelt1, David Clark1, ✉ Minghui Ao1, Zhen Zhang1, Daniel Chan1, Jiang Qian2 & Hui Zhang 1 1234567890():,; Inter-tumor heterogeneity is a result of genomic, transcriptional, translational, and post- translational molecular features. To investigate the roles of protein glycosylation in the heterogeneity of high-grade serous ovarian carcinoma (HGSC), we perform mass spectrometry-based glycoproteomic characterization of 119 TCGA HGSC tissues. Cluster analysis of intact glycoproteomic profiles delineates 3 major tumor clusters and 5 groups of intact glycopeptides. It also shows a strong relationship between N-glycan structures and tumor molecular subtypes, one example of which being the association of fucosylation with mesenchymal subtype. Further survival analysis reveals that intact glycopeptide signatures of mesenchymal subtype are associated with a poor clinical outcome of HGSC. In addition, we study the expression of mRNAs, proteins, glycosites, and intact glycopeptides, as well as the expression levels of glycosylation enzymes involved in glycoprotein biosynthesis pathways in each tumor. The results show that glycoprotein levels are mainly controlled by the expression of their individual proteins, and, furthermore, that the glycoprotein-modifying glycans cor- respond to the protein levels of glycosylation enzymes. The variation in glycan types further shows coordination to the tumor heterogeneity. Deeper understanding of the glycosylation process and glycosylation production in different subtypes of HGSC may provide important clues for precision medicine and tumor-targeted therapy. -
The Crystal Structure of the N-Acetylglucosamine 2-Epimerase from Nostoc Sp
research papers The crystal structure of the N-acetylglucosamine 2-epimerase from Nostoc sp. KVJ10 reveals the true dimer ISSN 2059-7983 Marie-Jose´e Haglund Halsør, Ulli Rothweiler, Bjørn Altermark and Inger Lin Uttakleiv Raeder* Received 26 September 2018 The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT – The Arctic University of Norway, Accepted 30 November 2018 9037 Tromsø, Norway. *Correspondence e-mail: [email protected] Edited by M. Czjzek, Station Biologique de N-Acetylglucosamine 2-epimerases (AGEs) catalyze the interconversion of Roscoff, France N-acetylglucosamine and N-acetylmannosamine. They can be used to perform the first step in the synthesis of sialic acid from N-acetylglucosamine, which Keywords: N-acetylglucosamine 2-epimerase; makes the need for efficient AGEs a priority. This study presents the structure of AGE; sialic acid; crystal packing; ManNAc; the AGE from Nostoc sp. KVJ10 collected in northern Norway, referred to as GlcNAc; N-acetylmannosamine; Nostoc sp. nAGE10. It is the third AGE structure to be published to date, and the first one KVJ10. in space group P42212. The nAGE10 monomer folds as an ( / )6 barrel in a PDB reference: N-acetylglucosamine similar manner to that of the previously published AGEs, but the crystal did not 2-epimerase, 6f04 contain the dimers that have previously been reported. The previously proposed ‘back-to-back’ assembly involved the face of the AGE monomer where the Supporting information: this article has barrel helices are connected by small loops. Instead, a ‘front-to-front’ dimer was supporting information at journals.iucr.org/d found in nAGE10 involving the long loops that connect the barrel helices at this end. -
Cellobiose 2-Epimerase, Process for Producing
(19) TZZ ¥ZZ_T (11) EP 2 395 080 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/00 (2006.01) C12N 1/15 (2006.01) 06.08.2014 Bulletin 2014/32 C12N 1/19 (2006.01) C12N 1/21 (2006.01) C12N 5/10 (2006.01) C12N 9/90 (2006.01) (2006.01) (2006.01) (21) Application number: 10738433.1 C12N 15/09 C12P 19/00 (22) Date of filing: 25.01.2010 (86) International application number: PCT/JP2010/050928 (87) International publication number: WO 2010/090095 (12.08.2010 Gazette 2010/32) (54) CELLOBIOSE 2-EPIMERASE, PROCESS FOR PRODUCING SAME, AND USE OF SAME CELLOBIOSE 2-EPIMERASE, HERSTELLUNGSVERFAHREN DAFÜR UND VERWENDUNG CELLOBIOSE 2-ÉPIMÉRASE, PROCÉDÉ DE PRODUCTION DE CELLE-CI ET UTILISATION DE CELLE-CI (84) Designated Contracting States: (74) Representative: Daniels, Jeffrey Nicholas AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Page White & Farrer HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Bedford House PT RO SE SI SK SM TR John Street London WC1N 2BF (GB) (30) Priority: 05.02.2009 JP 2009025070 (56) References cited: (43) Date of publication of application: WO-A1-2008/062555 14.12.2011 Bulletin 2011/50 • PARK CHANG-SU ET AL: "Characterization of a (73) Proprietor: Hayashibara Co., Ltd. recombinant cellobiose 2-epimerase from Okayama-shi, Okayama (JP) Caldicellulosiruptor saccharolyticus and its application in the production of mannose from (72) Inventors: glucose.", APPLIED MICROBIOLOGY AND • WATANABE Hikaru BIOTECHNOLOGY DEC 2011 LNKD- PUBMED: Okayama-shi 21691788,vol.