research papers The crystal structure of the N-acetylglucosamine 2-epimerase from Nostoc sp. KVJ10 reveals the true dimer ISSN 2059-7983 Marie-Jose´e Haglund Halsør, Ulli Rothweiler, Bjørn Altermark and Inger Lin Uttakleiv Raeder* Received 26 September 2018 The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT – The Arctic University of Norway, Accepted 30 November 2018 9037 Tromsø, Norway. *Correspondence e-mail:
[email protected] Edited by M. Czjzek, Station Biologique de N-Acetylglucosamine 2-epimerases (AGEs) catalyze the interconversion of Roscoff, France N-acetylglucosamine and N-acetylmannosamine. They can be used to perform the first step in the synthesis of sialic acid from N-acetylglucosamine, which Keywords: N-acetylglucosamine 2-epimerase; makes the need for efficient AGEs a priority. This study presents the structure of AGE; sialic acid; crystal packing; ManNAc; the AGE from Nostoc sp. KVJ10 collected in northern Norway, referred to as GlcNAc; N-acetylmannosamine; Nostoc sp. nAGE10. It is the third AGE structure to be published to date, and the first one KVJ10. in space group P42212. The nAGE10 monomer folds as an ( / )6 barrel in a PDB reference: N-acetylglucosamine similar manner to that of the previously published AGEs, but the crystal did not 2-epimerase, 6f04 contain the dimers that have previously been reported. The previously proposed ‘back-to-back’ assembly involved the face of the AGE monomer where the Supporting information: this article has barrel helices are connected by small loops. Instead, a ‘front-to-front’ dimer was supporting information at journals.iucr.org/d found in nAGE10 involving the long loops that connect the barrel helices at this end.