Characterization of the Scavenger Cell Proteome in Mouse and Rat Liver

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Scavenger Cell Proteome in Mouse and Rat Liver Biol. Chem. 2021; 402(9): 1073–1085 Martha Paluschinski, Cheng Jun Jin, Natalia Qvartskhava, Boris Görg, Marianne Wammers, Judith Lang, Karl Lang, Gereon Poschmann, Kai Stühler and Dieter Häussinger* Characterization of the scavenger cell proteome in mouse and rat liver + https://doi.org/10.1515/hsz-2021-0123 The data suggest that the population of perivenous GS Received January 25, 2021; accepted July 4, 2021; scavenger cells is heterogeneous and not uniform as previ- published online July 30, 2021 ously suggested which may reflect a functional heterogeneity, possibly relevant for liver regeneration. Abstract: The structural-functional organization of ammonia and glutamine metabolism in the liver acinus involves highly Keywords: glutaminase; glutamine synthetase; liver specialized hepatocyte subpopulations like glutamine syn- zonation; proteomics; scavenger cells. thetase (GS) expressing perivenous hepatocytes (scavenger cells). However, this cell population has not yet been char- acterized extensively regarding expression of other genes and Introduction potential subpopulations. This was investigated in the present study by proteome profiling of periportal GS-negative and There is a sophisticated structural-functional organization in perivenous GS-expressing hepatocytes from mouse and rat. the liver acinus with regard to ammonium and glutamine Apart from established markers of GS+ hepatocytes such as metabolism (Frieg et al. 2021; Gebhardt and Mecke 1983; glutamate/aspartate transporter II (GLT1) or ammonium Häussinger 1983, 1990). Periportal hepatocytes express en- transporter Rh type B (RhBG), we identified novel scavenger zymes required for urea synthesis such as the rate-controlling cell-specific proteins like basal transcription factor 3 (BTF3) enzyme carbamoylphosphate synthetase 1 (CPS1) and liver- and heat-shock protein 25 (HSP25). Interestingly, BTF3 and type glutaminase 2 (GLS2) (for review see Häussinger (1990)). HSP25 were heterogeneously distributed among GS+ hepato- GLS2 is activated by its product ammonium and therefore fi cytes in mouse liver slices. Feeding experiments showed that acts as a pH-regulated mitochondrial ammonium ampli er RhBG expression was increased in livers from mice fed with (Häussinger 1983; Häussinger and Sies 1979; Häussinger fi fi high protein diet compared to standard chow. While spatial et al. 1984). This ampli cation is required for ef cient distributions of GS and carbamoylphosphate synthetase 1 ammonium elimination via urea synthesis in view of the low fi (CPS1) were unaffected, periportal areas constituted by af nity of CPS1 for ammonia and the physiologically low glutaminase 2 (GLS2)-positive hepatocytes were enlarged or ammonium ion concentrations in the portal blood (for review reduced in response to high or low protein diet, respectively. see Häussinger (1990)). Whereas periportal urea synthesis reflects a high capacity, but low affinity-system for ammo- nium disposal, ammonia escaping periportal urea synthesis *Corresponding author: Dieter Häussinger, Clinic for reaches a small perivenous cell population at the acinar Gastroenterology, Hepatology and Infectiology, Heinrich Heine outflow, which removes ammonium ions with high affinity University, Universitätsstr. 1, 40225 Düsseldorf, Germany, through glutamine synthesis. These GS+ hepatocytes were E-mail: [email protected] Martha Paluschinski, Cheng Jun Jin, Natalia Qvartskhava, Boris Görg also called perivenous ‘scavenger cells’, because they and Marianne Wammers, Clinic for Gastroenterology, Hepatology and remove not only ammonium ions, but also other compounds Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 with high affinity, before the sinusoidal blood reaches the Düsseldorf, Germany. https://orcid.org/0000-0002-6899-3753 hepatic veins (Häussinger 1990; Häussinger and Stehle (M. Paluschinski). https://orcid.org/0000-0002-4630-9420 (B. Görg) 1988). These scavenger cells exclusively express not only Judith Lang and Karl Lang, Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany glutamine synthetase (GS) in the liver but also proteins Gereon Poschmann, Institute of Molecular Medicine, Proteome supporting glutamine synthesis, such as the glutamate/ Research, Medical Faculty, Heinrich Heine University, Universitätsstr. aspartate transporter II (GLT1), ornithine aminotransferase 1, 40225 Düsseldorf, Germany (OAT1), the ammonium transporter Rh type B (RhBG) or Kai Stühler, Institute of Molecular Medicine, Proteome Research, uptake systems for dicarboxylates (Boon et al. 1999; Häus- Medical Faculty, Heinrich Heine University, Universitätsstr. 1, 40225 singer and Gerok 1983; Stoll and Häussinger 1991; Weiner Düsseldorf, Germany; and Molecular Proteomics Laboratory (MPL), Biomedical Research Center (BMFZ), Heinrich Heine University, et al. 2003). The important role of these perivenous + Universitätsstr. 1, 40225 Düsseldorf, Germany GS (scavenger) hepatocytes for ammonium homeostasis is Open Access. © 2021 Martha Paluschinski et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License. 1074 M. Paluschinski et al.: Proteomic profiling of hepatic scavenger cells underlined by the finding that deletion of GS in mouse liver express the liver-type glutaminase (GLS2). For this, scav- triggers systemic hyperammonemia (Qvartskhava et al. enger cells were labeled using antibodies directed against 2015). Hyperammonemia was also observed in taurine the glutamate transporter 1 (GLT1) (Cadoret et al. 2002), transporter knockout mice, which exhibit impaired peri- while periportal GLS2-expressing hepatocytes were labeled venous glutamine synthesis due to an inactivating tyrosine using antibodies directed against the periportal hepatocyte nitration of GS and downregulation of RhBG (Qvartskhava marker E-cadherin (E-Cad) (Hempel et al. 2015). Moreover, et al. 2019). we investigated effects of dietary protein load on the levels Earlier studies suggest that metabolic liver zonation is of GS and GLS2 in the liver. not static, but rather dynamic and may change in response Our study identifies new proteins being enriched in to nutrients, metabolites or hormones and under patho- perivenous scavenger cells and gives evidence for cell logical conditions such as liver cirrhosis or hepatocellular heterogeneities among GS+ scavenger cells. carcinoma (Boon et al. 1999; Gebhardt and Matz-Soja 2014; Jungermann 1995). Two recent studies reported spatial transcriptome Results profiles in mouse liver (Ben-Moshe et al. 2019; Halpern et al. 2017) and established a detailed gene landscape Distribution of ammonium metabolism- across the liver acinus in spatially defined areas by means related proteins in rodent livers of single-cell sequencing. Due to limited resolution, cellular heterogeneity within a defined area was not taken The distribution of GS, GLS2, CPS1, GLT1 and RhBG protein into account in these studies (Ben-Moshe et al. 2019; Hal- in liver sections was investigated by immunofluorescence pern et al. 2017). analyses (Figure 1). GLS2+ hepatocytes were confined to the In the present study, we characterized the proteome of periportal zone, GS+ scavenger cells surrounded the central perivenous GS+ scavenger cells and compared it to the vein and both subpopulations were clearly demarked by a proteome of GS− hepatocytes (which include periportal and mid-zone constituted by GLS2−/GS− hepatocytes in rodent midzonal hepatocytes) from both, mouse and rat liver. In a liver slices. CPS1 was found in GLS2+ and in hepatocytes of second approach, we compared the proteome of peri- the transitional zone but not in GS+ scavenger cells. As venous scavenger cells and periportal hepatocytes who shown in Figure 1, GS strongly colocalized with RhBG as Figure 1: Metabolic zonation of the liver. Immunofluorescence analyses of glutamine synthetase (GS), glutaminase 2 (GLS2), carbamoylphosphate synthetase 1 (CPS1), glutamate/ aspartate transporter II (GLT1) and ammonium transporter Rh type B (RhBG) protein in (A) mouse and (B) rat liver sections. Cell nuclei were counterstained with Hoechst 34580. M. Paluschinski et al.: Proteomic profiling of hepatic scavenger cells 1075 well as with GLT1 in scavenger cells from both, rat and As expected, scavenger cell markers such as GS, GLT1 mice. These data suggest that the localization of the and ornithine aminotransferase (OAT), were detected in ammonium metabolism-related proteins GLS2, CPS1 and higher abundances in GS+ hepatocytes (Figure 2C, left GS is similar in mouse and rat livers. Furthermore, the clear panel). Moreover, proteins characteristic for periportal and specific labeling of perivenous scavenger cells by the hepatocytes such as mitochondrial ornithine carbamoyl- antibodies directed against GLT1 and GS confirmed their transferase (OTC), argininosuccinate synthase (ASS1) and suitability for isolating perivenous scavenger cells from the phosphoenolpyruvate carboxykinase (PCK1) were only liver. barely detected in this cell population (Figure 2C, left panel). Interestingly, heat shock protein 25 (HSP25), basal transcription factor 3 (BTF3) and RNAse 4 were higher Characterization of the cellular proteome of abundant in GS+ HCs compared to GS− mouse hepato- scavenger cells from rat and mouse livers cytes. Further proteins showing higher abundances in GS+ scavenger hepatocytes, are shown in Figure 2B and For the characterization of the proteome of GS-expressing Table 1. scavenger cells in rat and mouse
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Glutaminase 2 Induces Interleukin-2 Production in CD4+ T Cells by Supporting Antioxidant Defense
    Glutaminase 2 Induces Interleukin-2 Production in CD4+ T Cells by Supporting Antioxidant Defense The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Orite, Seo Yeon Kim. 2019. Glutaminase 2 Induces Interleukin-2 Production in CD4+ T Cells by Supporting Antioxidant Defense. Master's thesis, Harvard Medical School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42057407 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! ! ! ! ! ! ! ! "#$%&'()&*+!,!-).$/+*!-)%+0#+$1()2,!304.$/%(4)!()!5678!9!/+##*!:;!! <$==40%()>!?)%(4@(.&)%!6+A+)*+!! <+4!B+4)!C('!D0(%+! ?!9E+*(*!<$:'(%%+.!%4!%E+!F&/$#%;!4A! 9E+!G&0H&0.!I+.(/&#!</E44#! ()!3&0%(&#!F$#A(##'+)%!4A!%E+!J+K$(0+'+)%*! A40!%E+!6+>0++!4A!I&*%+0!4A!I+.(/&#!</(+)/+*!()!-''$)4#4>;! G&0H&0.!L)(H+0*(%;! M4*%4)N!I&**&/E$*+%%*O! I&;N!,PQR! ! ! ! ! ! ! ! ! 9E+*(*!?.H(*40S!60O!9*414*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<+4!B+4)!C('!D0(%+! "#$%&'()&*+!,!-).$/+*!-)%+0#+$1()2,!304.$/%(4)!()!5678!9!/+##*!:;!! <$==40%()>!?)%(4@(.&)%!6+A+)*+! ?:*%0&/%! I+%&:4#(/! &:)40'&#(%(+*! 4A! 9! /+##*! /4)%0(:$%+! %4! =&%E4>+)+*(*! 4A! '&);! &$%4(''$)+! .(*+&*+*N!()/#$.()>!<;*%+'(/!T$=$*!U0;%E+'&%4*$*!V<TUWO!J&=(.#;!=04#(A+0&%()>!+AA+/%40!9!/+##*! 4A%+)!$%(#(X+!>#$%&'()+!&*!&)!+)+0>;!*4$0/+!%4!'++%!E(>E!+)+0>;!.+'&).*O!"#$%&'()&*+!V"#*W!(*!%E+!
    [Show full text]
  • Screening of a Composite Library of Clinically Used Drugs and Well
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Pharmacol Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2017 November 01. Published in final edited form as: Pharmacol Res. 2016 November ; 113(Pt A): 18–37. doi:10.1016/j.phrs.2016.08.016. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer Nadiya Druzhynaa, Bartosz Szczesnya, Gabor Olaha, Katalin Módisa,b, Antonia Asimakopoulouc,d, Athanasia Pavlidoue, Petra Szoleczkya, Domokos Geröa, Kazunori Yanagia, Gabor Töröa, Isabel López-Garcíaa, Vassilios Myrianthopoulose, Emmanuel Mikrose, John R. Zatarainb, Celia Chaob, Andreas Papapetropoulosd,e, Mark R. Hellmichb,f, and Csaba Szaboa,f,* aDepartment of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA bDepartment of Surgery, The University of Texas Medical Branch, Galveston, TX, USA cLaboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece dCenter of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece eNational and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece fCBS Therapeutics Inc., Galveston, TX, USA Abstract Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no
    [Show full text]
  • On the Active Site Thiol of Y-Glutamylcysteine Synthetase
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 2464-2468, April 1988 Biochemistry On the active site thiol of y-glutamylcysteine synthetase: Relationships to catalysis, inhibition, and regulation (glutathione/cystamine/Escherichia coli/kidney/enzyme inactivation) CHIN-SHIou HUANG, WILLIAM R. MOORE, AND ALTON MEISTER Cornell University Medical College, Department of Biochemistry, 1300 York Avenue, New York, NY 10021 Contributed by Alton Meister, December 4, 1987 ABSTRACT y-Glutamylcysteine synthetase (glutamate- dithiothreitol, suggesting that cystamine forms a mixed cysteine ligase; EC 6.3.2.2) was isolated from an Escherichia disulfide between cysteamine and an enzyme thiol (15). coli strain enriched in the gene for this enzyme by recombinant Inactivation of the enzyme by the L- and D-isomers of DNA techniques. The purified enzyme has a specific activity of 3-amino-1-chloro-2-pentanone, as well as that by cystamine, 1860 units/mg and a molecular weight of 56,000. Comparison is prevented by L-glutamate (14). Treatment of the enzyme of the E. coli enzyme with the well-characterized rat kidney with cystamine prevents its interaction with the sulfoxi- enzyme showed that these enzymes have similar catalytic prop- mines. Titration of the enzyme with 5,5'-dithiobis(2- erties (apparent Km values, substrate specificities, turnover nitrobenzoate) reveals that the enzyme has a single exposed numbers). Both enzymes are feedback-inhibited by glutathione thiol that reacts with this reagent without affecting activity but not by y-glutamyl-a-aminobutyrylglycine; the data indicate (16). 5,5'-Dithiobis(2-nitrobenzoate) does not interact with that glutathione binds not only at the glutamate binding site but the thiol that reacts with cystamine.
    [Show full text]
  • Asparaginase and Glutaminase Activities of Micro-Organisms
    Journal of General MicrobiologjI (1973),76,85-99 85 Printed in Great Britain Asparaginase and Glutaminase Activities of Micro-organisms By A. IMADA, S. IGARASI, K. NAKAHAMA AND M. ISONO Microbiological Research Laboratories, Central Research Dillision, Takeda Chemical Industries, JlisB, Osaka, Japan (Received 14 September 1972; revised 28 November 1972) SUMMARY L-Asparaginase and L-glutaminase activities were detected in many micro- organisms and the distribution of these activities was found to be related to the classification of micro-organisms. Among 464 bacteria, the activities occurred in many Gram-negative bacteria and in a few Gram-positive bacteria. Most members of the family Enterobacteri- aceae possessed L-asparaginase. L-Asparaginase and L-glutaminase occurred together in a large proportion of pseudomonads. Among Gram-positive bacteria many strains of Bacillus pumilus showed strong L-asparaginase activity. Amidase activities were also observed in several strains in other families. L-Asparaginase activity was not detected in culture filtrates of 261 strains of species of the genera Streptomyces and Nocardia, but L-asparaginase and L- glutaminase were detected when these organisms were sonicated. The amidase activities in culture filtrates of 4158 fungal strains were tested. All the strains of Fusarium species formed L-asparaginase. Organisms of the genera Hjyomyces and Nectria, which are regarded as the perfect stage of the genus Fusarium, also formed L-asparaginase. Several Penicillium species formed L-asparaginase. Two organisms of the family Moniliaceae formed L-glutaminase together with L-asparaginase, and a few ascomycetous fungi formed L-asparaginase or L-glutaminase. Among I 326 yeasts, L-asparaginase or L-glutaminase occurred frequently in certain serological groups of yeasts : VI (Hansenula) group, Cryptococcus group and Rhodotorula group.
    [Show full text]
  • Methionine Sulfoximine: a Novel Anti Inflammatory Agent
    Wayne State University Wayne State University Dissertations January 2018 Methionine Sulfoximine: A Novel Anti Inflammatory Agent Tyler Peters Wayne State University, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Biochemistry Commons Recommended Citation Peters, Tyler, "Methionine Sulfoximine: A Novel Anti Inflammatory Agent" (2018). Wayne State University Dissertations. 2124. https://digitalcommons.wayne.edu/oa_dissertations/2124 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. METHIONINE SULFOXIMINE: A NOVEL ANTI-INFLAMMATORY AGENT by TYLER J. PETERS DISSERTATION Submitted to the Graduate School of Wayne State University – School of Medicine Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOHPY 2018 MAJOR: BIOCHEMISTRY & MOL. BIOLOGY Approved By: __________________________________________ Advisor Date DEDICATION This work is dedicated to my family. I wouldn’t have made it this far without your unconditional love and support. ii ACKNOWLEDGEMENTS Thank you Dr. Brusilow, I consider myself very fortunate for having the privilege of working in the laboratory of Dr. William S.A. Brusilow these past few years. Under his mentorship, my scientific autonomy was always respected, and my opinions were always valued with consideration. I am thankful for his guidance and support as an advisor; I truly admire his patience and envy his calm demeanor. He exemplifies scientific integrity, and his dedication to develop MSO has inspired me. I had never experienced consistent failure in any aspect of life before encountering scientific research; at times I felt that Dr.
    [Show full text]
  • Development of a Phage Display Library for Discovery of Antigenic Brucella Peptides Jeffrey Williams Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Development of a phage display library for discovery of antigenic Brucella peptides Jeffrey Williams Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Microbiology Commons Recommended Citation Williams, Jeffrey, "Development of a phage display library for discovery of antigenic Brucella peptides" (2018). Graduate Theses and Dissertations. 16896. https://lib.dr.iastate.edu/etd/16896 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Development of a phage display library for discovery of antigenic Brucella peptides by Jeffrey Williams A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Microbiology Program of Study Committee: Bryan H. Bellaire, Major Professor Steven Olsen Steven Carlson The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University
    [Show full text]
  • Identification the Ferroptosis-Related Gene Signature in Patients with Esophageal Adenocarcinoma
    Zhu et al. Cancer Cell Int (2021) 21:124 https://doi.org/10.1186/s12935-021-01821-2 Cancer Cell International PRIMARY RESEARCH Open Access Identifcation the ferroptosis-related gene signature in patients with esophageal adenocarcinoma Lei Zhu1,2,3†, Fugui Yang1,2†, Lingwei Wang1,2, Lin Dong1,2, Zhiyuan Huang1,2, Guangxue Wang2, Guohan Chen1* and Qinchuan Li1,2* Abstract Background: Ferroptosis is a recently recognized non-apoptotic cell death that is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in esophageal adenocarcinoma (EAC) remains unclear. This study aims to explore the ferroptosis-related genes (FRG) expression profles and their prognostic values in EAC. Methods: The FRG data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate cox regressions were used to identify the prognostic FRG, and the predictive ROC model was established using the independent risk factors. GO and KEGG enrichment analyses were performed to investi- gate the bioinformatics functions of signifcantly diferent genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and TIMER database. Finally, SDG were verifed in clinical EAC specimens and normal esophageal mucosal tissues. Results: Twenty-eight signifcantly diferent FRG were screened from 78 EAC and 9 normal tissues. Enrichment analyses showed these SDG were mainly related to the iron-related pathways and metabolisms of ferroptosis. Gene network demonstrated the TP53, G6PD, NFE2L2 and PTGS2 were the hub genes in the biology of ferroptosis.
    [Show full text]
  • The Fundamental Role of the P53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy
    Author Manuscript Published OnlineFirst on February 3, 2012; DOI: 10.1158/1078-0432.CCR-11-3040 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy Lan Shen1,Xiang Sun2,Zhenhong Fu3,Guodong Yang1,Jianying Li1,and Libo Yao1,* 1 Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an 710032, The People’s Republic of China 2 Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, The People’s Republic of China 3 Department of Cardiology, The General Hospital of the People’s Liberation Army, Beijing 100853, The People’s Republic of China L. Shen, X. Sun and Z-H. Fu contributed equally to this work. * Corresponding author: Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an 710032, The People’s Republic of China. Phone: 86-29-84774513; Fax: 86-29-84773947; E-mail: [email protected]. Statement of translational relevance The tumor suppressor p53 is one of the most highly studied in the field of cancer research due to its functions on tumor cell survival and apoptosis. However, tumor metabolic reprogramming fuels cancer cell malignant growth and proliferation. In this review, we systematically document the mechanisms of p53 in tumor metabolism regulation. On this basis, we analyzed the therapeutic strategy whereby p53 helps to prevent tumor malignant metabolic phenotype, bioenergetic, and biosynthetic processes, and blocking the reprogramming of tumor metabolism will provide new strategies for tumor therapy.
    [Show full text]
  • Resolution of Carbon Metabolism and Sulfur-Oxidation Pathways of Metallosphaera Cuprina Ar-4 Via Comparative Proteomics
    JOURNAL OF PROTEOMICS 109 (2014) 276– 289 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jprot Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics Cheng-Ying Jianga, Li-Jun Liua, Xu Guoa, Xiao-Yan Youa, Shuang-Jiang Liua,c,⁎, Ansgar Poetschb,⁎⁎ aState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China bPlant Biochemistry, Ruhr University Bochum, Bochum, Germany cEnvrionmental Microbiology and Biotechnology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China ARTICLE INFO ABSTRACT Article history: Metallosphaera cuprina is able to grow either heterotrophically on organics or autotrophically Received 16 March 2014 on CO2 with reduced sulfur compounds as electron donor. These traits endowed the species Accepted 6 July 2014 desirable for application in biomining. In order to obtain a global overview of physiological Available online 14 July 2014 adaptations on the proteome level, proteomes of cytoplasmic and membrane fractions from cells grown autotrophically on CO2 plus sulfur or heterotrophically on yeast extract Keywords: were compared. 169 proteins were found to change their abundance depending on growth Quantitative proteomics condition. The proteins with increased abundance under autotrophic growth displayed Bioleaching candidate enzymes/proteins of M. cuprina for fixing CO2 through the previously identified Autotrophy 3-hydroxypropionate/4-hydroxybutyrate cycle and for oxidizing elemental sulfur as energy Heterotrophy source. The main enzymes/proteins involved in semi- and non-phosphorylating Entner– Industrial microbiology Doudoroff (ED) pathway and TCA cycle were less abundant under autotrophic growth. Also Extremophile some transporter proteins and proteins of amino acid metabolism changed their abundances, suggesting pivotal roles for growth under the respective conditions.
    [Show full text]
  • (KGA) and Its Regulation by Raf-Mek-Erk Signaling in Cancer Cell Metabolism
    Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism K. Thangavelua,1, Catherine Qiurong Pana,b,1, Tobias Karlbergc, Ganapathy Balajid, Mahesh Uttamchandania,d,e, Valiyaveettil Sureshd, Herwig Schülerc, Boon Chuan Lowa,b,2, and J. Sivaramana,2 Departments of aBiological Sciences and dChemistry, National University of Singapore, Singapore 117543; bMechanobiology Institute Singapore, National University of Singapore, Singapore 117411; cStructural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden; and eDefence Medical and Environmental Research Institute, DSO National Laboratories, Singapore 117510 Edited by John Kuriyan, University of California, Berkeley, CA, and approved March 22, 2012 (received for review October 11, 2011) Besides thriving on altered glucose metabolism, cancer cells un- a substrate for the ubiquitin ligase anaphase-promoting complex/ dergo glutaminolysis to meet their energy demands. As the first cyclosome (APC/C)-Cdh1, linking glutaminolysis to cell cycle enzyme in catalyzing glutaminolysis, human kidney-type glutamin- progression (12). In comparison, function and regulation of LGA is ase isoform (KGA) is becoming an attractive target for small not well studied, although it was recently shown to be linked to p53 pathway (13, 14). Although intense efforts are being made to de- molecules such as BPTES [bis-2-(5 phenylacetamido-1, 2, 4-thiadia- fi fi velop a speci c KGA inhibitor such as BPTES [bis-2-(5-phenyl- zol-2-yl) ethyl sul de], although the regulatory mechanism of KGA acetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide] (15), its mechanism remains unknown.
    [Show full text]
  • Structures, Functions, and Mechanisms of Filament Forming Enzymes: a Renaissance of Enzyme Filamentation
    Structures, Functions, and Mechanisms of Filament Forming Enzymes: A Renaissance of Enzyme Filamentation A Review By Chad K. Park & Nancy C. Horton Department of Molecular and Cellular Biology University of Arizona Tucson, AZ 85721 N. C. Horton ([email protected], ORCID: 0000-0003-2710-8284) C. K. Park ([email protected], ORCID: 0000-0003-1089-9091) Keywords: Enzyme, Regulation, DNA binding, Nuclease, Run-On Oligomerization, self-association 1 Abstract Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI system are also highlighted. 2 Contents INTRODUCTION…………………………………………………………..4 STRUCTURALLY CHARACTERIZED ENZYME FILAMENTS…….5 Acetyl CoA Carboxylase (ACC)……………………………………………………………………5 Phosphofructokinase (PFK)……………………………………………………………………….6
    [Show full text]