cancers Review Arginine Signaling and Cancer Metabolism Chia-Lin Chen 1 , Sheng-Chieh Hsu 2,3, David K. Ann 4, Yun Yen 5 and Hsing-Jien Kung 1,5,6,7,* 1 Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
[email protected] 2 Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30035, Taiwan;
[email protected] 3 Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan 4 Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
[email protected] 5 Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
[email protected] 6 Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan 7 Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA * Correspondence:
[email protected] Simple Summary: In this review, we describe arginine’s role as a signaling metabolite, epigenetic reg- ulator and mitochondrial modulator in cancer cells, and summarize recent progress in the application of arginine deprivation as a cancer therapy. Abstract: Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells’ intrinsic ability to synthesize arginine from citrulline and aspartate via Citation: Chen, C.-L.; Hsu, S.-C.; ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase).