Arginine Signaling and Cancer Metabolism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
A Review on Agmatinase Inhibitors
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 A review on Agmatinase inhibitors 1Sunnica Biswas, 2Mr. R. T. Lohiya, 3Dr. Milind Umekar *1&2 Department Of Pharmaceutical Chemistry Smt. Kishoriti Bhoyar College of Pharmacy, Kamptee, Dst. Nagpur, 441002 Abstract : Agmatine is the product of arginine decarboxylation and can be hydrolyzed by agmatinase to putrescine, the precursor for biosynthesis of higher polyamines, spermidine, and spermine. Besides being an intermediate in polyamine metabolism, recent findings indicate that agmatine may play important regulatory roles in mammals. Agmatine, 4-aminobutyl guanidine, has recently been found in various mammalian organs and is thought to act as a neurotransmitter or neuromodulatory agent. The present study is to do a review on agmatine and its synthesized analogues till now for agmatinase inhibitory action. Agmatinase is a binuclear manganese metalloenzyme and belongs to the ureohydrolase superfamily that includes arginase, formiminoglutamase, and proclavaminate amidinohydrolase. Compared with a wealth of structural information available for arginases, no three dimensional structure of agmatinase has been reported. Agmatinase is an enzyme which blocks the mammalian agmatine which is ultimately responsible for the agmatine degradation in the body. Agmatinase is an enzyme which regulates the half life of agmatine in the brain. Hence a selective inhibitor of brain agmatinase is required. Several derivatives of agmatine are synthesized previously for agmatinase inhibitory activity but none of them showed selective inhibition. PZC (Piperazinecarboxamidine) is a derivative of agmatine or guanidine is expected to show selective inhibition of human agmatinase. A detailed review is carried out in order to understand the agmatinase inhibitor. -
Screening of a Composite Library of Clinically Used Drugs and Well
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Pharmacol Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2017 November 01. Published in final edited form as: Pharmacol Res. 2016 November ; 113(Pt A): 18–37. doi:10.1016/j.phrs.2016.08.016. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer Nadiya Druzhynaa, Bartosz Szczesnya, Gabor Olaha, Katalin Módisa,b, Antonia Asimakopoulouc,d, Athanasia Pavlidoue, Petra Szoleczkya, Domokos Geröa, Kazunori Yanagia, Gabor Töröa, Isabel López-Garcíaa, Vassilios Myrianthopoulose, Emmanuel Mikrose, John R. Zatarainb, Celia Chaob, Andreas Papapetropoulosd,e, Mark R. Hellmichb,f, and Csaba Szaboa,f,* aDepartment of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA bDepartment of Surgery, The University of Texas Medical Branch, Galveston, TX, USA cLaboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece dCenter of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece eNational and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece fCBS Therapeutics Inc., Galveston, TX, USA Abstract Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no -
Identification of Potential Autoantigens in Anti-CCP-Positive and Anti-CCP-Negative Rheumatoid Arthritis Using Citrulline-Specific Protein Arrays
www.nature.com/scientificreports OPEN Identifcation of potential autoantigens in anti‑CCP‑positive and anti‑CCP‑negative rheumatoid arthritis using citrulline‑specifc protein arrays Thomas B. G. Poulsen 1,2, Dres Damgaard 3, Malene M. Jørgensen 4,5, Ladislav Senolt6, Jonathan M. Blackburn 7, Claus H. Nielsen 3,8 & Allan Stensballe 1,8* The presence or absence of autoantibodies against citrullinated proteins (ACPAs) distinguishes two main groups of rheumatoid arthritis (RA) patients with diferent etiologies, prognoses, disease severities, and, presumably, disease pathogenesis. The heterogeneous responses of RA patients to various biologics, even among ACPA‑positive patients, emphasize the need for further stratifcation of the patients. We used high‑density protein array technology for fngerprinting of ACPA reactivity. Identifcation of the proteome recognized by ACPAs may be a step to stratify RA patients according to immune reactivity. Pooled plasma samples from 10 anti‑CCP‑negative and 15 anti‑CCP‑positive RA patients were assessed for ACPA content using a modifed protein microarray containing 1631 diferent natively folded proteins citrullinated in situ by protein arginine deiminases (PADs) 2 and PAD4. IgG antibodies from anti‑CCP‑positive RA plasma showed high‑intensity binding to 87 proteins citrullinated by PAD2 and 99 proteins citrullinated by PAD4 without binding signifcantly to the corresponding native proteins. Curiously, the binding of IgG antibodies in anti‑CCP‑negative plasma was also enhanced by PAD2‑ and PAD4‑mediated citrullination of 29 and 26 proteins, respectively. For only four proteins, signifcantly more ACPA binding occurred after citrullination with PAD2 compared to citrullination with PAD4, while the opposite was true for one protein. -
The Protein Arginine Deiminases
The Protein Arginine Deiminases: Inhibitors and Characteristics By Elizabeth Joanne Curiel Tejeda A thesis submitted in conformity with the requirements for the degree of Master of Science Pharmaceutical Sciences University of Toronto © Copyright by Elizabeth Joanne Curiel Tejeda (2015) Abstract The Protein Arginine Deiminases: Inhibitors and Characteristics MSc Pharmaceutical Sciences Convocation year of 2015 Elizabeth Joanne Curiel Tejeda Department of Pharmaceutical Sciences University of Toronto Protein arginine deiminases (PADs) are Ca2+ dependent enzymes involved in the post- translational modification of proteins through citrullination. Overexpression of PAD2 and PAD4 has been observed in a number of neurodegenerative diseases. In this thesis, two broad investigations were undertaken to look at the expression patterns of endogenous PADs and how they provide means to the development of disease modifying treatments. First, a BODIPY-based fluorescent probe was designed to assess the expression levels in vitro and in vivo of endogenous PAD. Secondly, medicinal chemistry approaches were adopted to design a library of novel non-covalent compounds to establish a structure activity relationship on PADs and identify a potential hit. Results indicated that a BODIPY-based biomarker was a feasible approach to monitor PAD enzymes in vivo. Through structure-activity relationship investigations, it was established that small heterocycles on an amino acid side chain were contributing to the inhibitory activities towards PADs. Declaration of Work: All synthetic experiments, synthesis of library of compounds, and confocal microscopy studies were performed by Elizabeth J. Curiel Tejeda. Biological assays and evaluations were performed by Ms. Ewa Wasilewski. ii Acknowledgements I would like thank Dr. Lakshmi Kotra for giving me the opportunity to work in his laboratory and expand my knowledge in the drug development research field. -
Agmatinase Sirna (H): Sc-60060
SANTA CRUZ BIOTECHNOLOGY, INC. Agmatinase siRNA (h): sc-60060 BACKGROUND STORAGE AND RESUSPENSION Agmatinase (also known as agmatine ureohydrolase) results from the decar- Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least boxylation of L-arginine by arginine decarboxylase to form a metabolic inter- one year from the date of shipment. Once resuspended, store at -20° C, mediate in the biosynthesis of putresine and higher polyamines (spermidine avoid contact with RNAses and repeated freeze thaw cycles. and spermine). Agmatinase has been shown to play a role in several important Resuspend lyophilized siRNA duplex in 330 µl of the RNAse-free water biochemical processes in humans, ranging from effects on the central nervous provided. Resuspension of the siRNA duplex in 330 µl of RNAse-free water system to cell proliferation in cancer and viral replication. Agmatinase cat- makes a 10 µM solution in a 10 µM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM alyzes the hydrolysis of agmatine to putresine and urea and is a major target EDTA buffered solution. for drug therapy. Human Agmatinase retains about 30% identity to bacterial agmatinases and less than 20% identity to mammalian arginases. Residues APPLICATIONS required for binding of Mn2+ at the active site in bacterial Agmatinase and other members of the arginase superfamily are fully conserved in human Agmatinase siRNA (h) is recommended for the inhibition of Agmatinase Agmatinase. Agmatinase mRNA is most abundant in human liver and kidney, expression in human cells. but is also expressed in several other tissues, including skeletal muscle and brain. -
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
Asparaginase and Glutaminase Activities of Micro-Organisms
Journal of General MicrobiologjI (1973),76,85-99 85 Printed in Great Britain Asparaginase and Glutaminase Activities of Micro-organisms By A. IMADA, S. IGARASI, K. NAKAHAMA AND M. ISONO Microbiological Research Laboratories, Central Research Dillision, Takeda Chemical Industries, JlisB, Osaka, Japan (Received 14 September 1972; revised 28 November 1972) SUMMARY L-Asparaginase and L-glutaminase activities were detected in many micro- organisms and the distribution of these activities was found to be related to the classification of micro-organisms. Among 464 bacteria, the activities occurred in many Gram-negative bacteria and in a few Gram-positive bacteria. Most members of the family Enterobacteri- aceae possessed L-asparaginase. L-Asparaginase and L-glutaminase occurred together in a large proportion of pseudomonads. Among Gram-positive bacteria many strains of Bacillus pumilus showed strong L-asparaginase activity. Amidase activities were also observed in several strains in other families. L-Asparaginase activity was not detected in culture filtrates of 261 strains of species of the genera Streptomyces and Nocardia, but L-asparaginase and L- glutaminase were detected when these organisms were sonicated. The amidase activities in culture filtrates of 4158 fungal strains were tested. All the strains of Fusarium species formed L-asparaginase. Organisms of the genera Hjyomyces and Nectria, which are regarded as the perfect stage of the genus Fusarium, also formed L-asparaginase. Several Penicillium species formed L-asparaginase. Two organisms of the family Moniliaceae formed L-glutaminase together with L-asparaginase, and a few ascomycetous fungi formed L-asparaginase or L-glutaminase. Among I 326 yeasts, L-asparaginase or L-glutaminase occurred frequently in certain serological groups of yeasts : VI (Hansenula) group, Cryptococcus group and Rhodotorula group. -
Harnessing the Power of Bacteria in Advancing Cancer Treatment
International Journal of Molecular Sciences Review Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment Shruti S. Sawant, Suyash M. Patil, Vivek Gupta and Nitesh K. Kunda * Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY 11439, USA; [email protected] (S.S.S.); [email protected] (S.M.P.); [email protected] (V.G.) * Correspondence: [email protected]; Tel.: +1-718-990-1632 Received: 20 September 2020; Accepted: 11 October 2020; Published: 14 October 2020 Abstract: Conventional anti-cancer therapy involves the use of chemical chemotherapeutics and radiation and are often non-specific in action. The development of drug resistance and the inability of the drug to penetrate the tumor cells has been a major pitfall in current treatment. This has led to the investigation of alternative anti-tumor therapeutics possessing greater specificity and efficacy. There is a significant interest in exploring the use of microbes as potential anti-cancer medicines. The inherent tropism of the bacteria for hypoxic tumor environment and its ability to be genetically engineered as a vector for gene and drug therapy has led to the development of bacteria as a potential weapon against cancer. In this review, we will introduce bacterial anti-cancer therapy with an emphasis on the various mechanisms involved in tumor targeting and tumor suppression. The bacteriotherapy approaches in conjunction with the conventional cancer therapy can be effective in designing novel cancer therapies. We focus on the current progress achieved in bacterial cancer therapies that show potential in advancing existing cancer treatment options and help attain positive clinical outcomes with minimal systemic side-effects. -
Development of a Phage Display Library for Discovery of Antigenic Brucella Peptides Jeffrey Williams Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Development of a phage display library for discovery of antigenic Brucella peptides Jeffrey Williams Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Microbiology Commons Recommended Citation Williams, Jeffrey, "Development of a phage display library for discovery of antigenic Brucella peptides" (2018). Graduate Theses and Dissertations. 16896. https://lib.dr.iastate.edu/etd/16896 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Development of a phage display library for discovery of antigenic Brucella peptides by Jeffrey Williams A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Microbiology Program of Study Committee: Bryan H. Bellaire, Major Professor Steven Olsen Steven Carlson The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University -
RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I
RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I Cat. no. 330231 PAHS-129ZR For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Rotor-Gene Q, other Rotor-Gene cyclers Format R Description The Human Amino Acid Metabolism I RT² Profiler PCR Array profiles the expression of 84 key genes important in biosynthesis and degradation of functional amino acids. Of the 20 amino acids required for protein synthesis, six of them (arginine, cysteine, glutamine, leucine, proline, and tryptophan), collectively known as the functional amino acids, regulate key metabolic pathways involved in cellular growth, and development, as well as other important biological processes such as immunity and reproduction. For example, leucine activates mTOR signaling and increases protein synthesis, leading to lymphocyte proliferation. Therefore, a lack of leucine can compromise immune function. Metabolic pathways interrelated with the biosynthesis and degradation of these amino acids include vitamin and cofactor biosynthesis (such as SAM or S-Adenosyl Methionine) as well as neurotransmitter metabolism (such as glutamate). This array includes genes for mammalian functional amino acid metabolism as well as genes involved in methionine metabolism, important also for nutrient sensing and sulfur metabolism. Using realtime PCR, you can easily and reliably analyze the expression of a focused panel of genes involved in functional amino acid metabolism with this array. For further details, consult the RT² Profiler PCR Array Handbook. Shipping and storage RT² Profiler PCR Arrays in the Rotor-Gene format are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. -
Arginine Enzymatic Deprivation and Diet Restriction for Cancer Treatment
Brazilian Journal of Pharmaceutical Sciences Review http://dx.doi.org/10.1590/s2175-97902017000300200 Arginine enzymatic deprivation and diet restriction for cancer treatment Wissam Zam* Al-Andalus University for Medical Sciences, Faculty of Pharmacy, Analytical and Food Chemistry, Tartous, Syrian Arab Republic Recent findings in amino acid metabolism and the differences between normal, healthy cells and neoplastic cells have revealed that targeting single amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. Arginine is derived from dietary protein intake, body protein breakdown, or endogenous de novo arginine production and several studies have revealed disturbances in its synthesis and metabolism which could enhance or inhibit tumor cell growth. Consequently, there has been an increased interest in the arginine-depleting enzymes and dietary deprivation of arginine and its precursors as a potential antineoplastic therapy. This review outlines the most recent advances in targeting arginine metabolic pathways in cancer therapy and the different chemo- and radio-therapeutic approaches to be co-applied. Key words: Arginine-depleting enzyme/antineoplastic therapy. Dietary deprivation. INTRODUCTION variety of human cancer cells have been found to be auxotrophic for arginine, depletion of which results in Certain cancers may be auxotrophic for a particular cell death (Tytell, Neuman, 1960; Kraemer, 1964; Dillon amino acid, and amino acid deprivation is one method to et al., 2004). Arginine can be degraded by three enzymes: treat these tumors. The strategy of enzymatic degradation arginase, arginine decarboxylase and arginine deiminase of amino acids to deprive malignant cells of important (ADI). Both arginine decarboxylase and ADI are not nutrients is an established component of induction therapy expressed in mammalian cells (Morris, 2007; Miyazaki of several tumor cells.