Architectural Options and Optimization of Suborbital Space Tourism Vehicles Markus Guerster Edward F. Crawley System Architecture Lab, MIT System Architecture Lab, MIT 77 Massachusetts Avenue. 77 Massachusetts Avenue. Cambridge, MA 02139 Cambridge, MA 02139 857-999-6103 617-230-6604
[email protected] [email protected] Abstract— Since the creation of the Ansari X-Prize, a significant The birth of the suborbital space tourism dates to May 1996, technical and commercial interest has developed in suborbital where the Ansari XPrize was launched by the Ansari family. space tourism. An obvious question arises: what system This competition challenged teams all around the world to architecture will provide the best combination of cost and safety build a reusable, private-funded and manned spaceship. The for the performance defined by the prize? The objective of this first team carrying three people to 100 km above the Earth’s paper is to address this question, by defining the design space and searching comprehensively through it with respect to surface twice within two weeks received the $10 million launch mass (a proxy for cost) and safety. We have identified 33 price. 26 teams from 7 nations proposed their concept. architectures and visualized them in a single table. Of these, 26 Finally, the Mojave Aerospace Ventures team, which was led have not earlier been proposed. A genetic algorithm optimized by Burt Rutan and his company Scaled Composites and each of these 33 architectures for launch mass and safety. The financed from Paul Allen, won the competition on October 4, launch mass was calculated by a design framework consisting of 2004.