Evidence Review – Environmental Innovation Prizes for Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
04Aug00-Ieee-Spaceshipone
News Analysis IEEE Spectrum magazine August 2004 A Giant Leap For Commercial Space Travel Pioneering aerospace designer Burt Rutan claims early lead in race for Ansari X Prize Looking like something out of a Japanese sci-fi cartoon, the futuristic space plane dropped from its mother ship 14 kilometers above Edwards Air Force Base, east of Mojave, Calif., and lit its rocket engine. The winged craft shot straight up, up, and still up, marked by a milky white smoke trail. It didn't curve toward any horizon, the way most rockets do, as they head toward a stable orbit as quickly as possible. More than 30 000 viewers in the desert tilted their heads back farther and farther, mouths agape, necks starting to ache, for the 76 seconds that pilot Michael W. Melvill let the engine burn. It was the most momentous suborbital hop since Alan Shepard rode his Freedom 7 capsule to an altitude of 187.4 km in 1961. IEEE Spectrum was on hand at Mojave Airport in California on 21 June for the launch of the unusual privately funded space plane, SpaceShipOne, which was designed by Burt Rutan and his team at Scaled Composites LLC in Mojave. Paul Allen, Microsoft Corp.'s cofounder, funded Rutan's project, ostensibly to win the US $10 million Ansari X Prize for the first workable "space tourist" vehicle. But Rutan and Allen's gaze was directed far beyond that prize. Considering they spent more than twice as much money as they could win, clearly they were looking to participate in a future of commercial space travel for ordinary—albeit rich—people. -
Industry at the Edge of Space Other Springer-Praxis Books of Related Interest by Erik Seedhouse
IndustryIndustry atat thethe EdgeEdge ofof SpaceSpace ERIK SEEDHOUSE S u b o r b i t a l Industry at the Edge of Space Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 E r i k S e e d h o u s e Suborbital Industry at the Edge of Space Dr Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-03484-3 ISBN 978-3-319-03485-0 (eBook) DOI 10.1007/978-3-319-03485-0 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013956603 © Springer International Publishing Switzerland 2014 This work is subject to copyright. -
Virgin Galactic Th E First Ten Years Other Springer-Praxis Books of Related Interest by Erik Seedhouse
Virgin Galactic Th e First Ten Years Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 Suborbital: Industry at the Edge of Space 2014 ISBN: 978-3-319-03484-3 Tourists in Space: A Practical Guide, Second Edition 2014 ISBN: 978-3-319-05037-9 Erik Seedhouse Virgin Galactic The First Ten Years Erik Seedhouse Astronaut Instructor Sandefjord , Vestfold , Norway SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-09261-4 ISBN 978-3-319-09262-1 (eBook) DOI 10.1007/978-3-319-09262-1 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014957708 © Springer International Publishing Switzerland 2015 This work is subject to copyright. -
Small Launch Vehicles a 2015 State of the Industry Survey Carlos Niederstrasser
Small Launch Vehicles A 2015 State of the Industry Survey Carlos Niederstrasser An update to this survey will be presented at the 2016 Internaonal Astronau9cal Congress 1 Agenda Overview of Small Launch Vehicles Launch Method/Locations Launch Performance Projected Launch Costs Individual Rocket Details Copyright © 2015 by Orbital ATK, Inc. 2 Listing Criteria Have a maximum capability to LEO of 1000 kg (definition of LEO left to the LV provider). The effort must be for the development of an entire launch vehicle system (with the exception of carrier aircraft for air launch vehicles). Mentioned through a web site update, social media, traditional media, conference paper, press release, etc. sometime after 2010. Have a stated goal of completing a fully operational space launch (orbital) vehicle. Funded concept or feasibility studies by government agencies, patents for new launch methods, etc., do not qualify. Expect to be widely available commercially or to the U.S. Government No specific indication that the effort has been cancelled, closed, or otherwise disbanded. Correc&ons, addi&ons, and comments are welcomed and encouraged! Copyright © 2015 by Orbital ATK, Inc. 3 We did not … … Talk to the individual companies … Rely on any proprietary/confidential information … Verify accuracy of data found in public resources Ø Primarily relied on companies’ web sites Funding sources, when listed, are not implied to be the vehicles sole or even majority funding source. We do not make any value judgements on technical or financial credibility -
A Low-Cost Launch Assistance System for Orbital Launch Vehicles
Hindawi Publishing Corporation International Journal of Aerospace Engineering Volume 2012, Article ID 830536, 10 pages doi:10.1155/2012/830536 Review Article A Low-Cost Launch Assistance System for Orbital Launch Vehicles Oleg Nizhnik ERATO Maenaka Human-Sensing Fusion Project, 8111, Shosha 2167, Hyogo-ken, Himeji-shi, Japan Correspondence should be addressed to Oleg Nizhnik, [email protected] Received 17 February 2012; Revised 6 April 2012; Accepted 16 April 2012 Academic Editor: Kenneth M. Sobel Copyright © 2012 Oleg Nizhnik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author reviews the state of art of nonrocket launch assistance systems (LASs) for spaceflight focusing on air launch options. The author proposes an alternative technologically feasible LAS based on a combination of approaches: air launch, high-altitude balloon, and tethered LAS. Proposed LAS can be implemented with the existing off-the-shelf hardware delivering 7 kg to low-earth orbit for the 5200 USD per kg. Proposed design can deliver larger reduction in price and larger orbital payloads with the future advances in the aerostats, ropes, electrical motors, and terrestrial power networks. 1. Introduction point to the progress in the orbital delivery systems for these additional payload classes. Spaceflight is the mature engineering discipline—54 years old as of 2012. But seemingly paradoxically, it still relies solely 2. Overview of Previously Proposed LAS on the hardware and methodology developed in the very beginning of the spaceflight era. Modernly, still heavily-used A lot of proposals have been made to implement nonrocket Soyuz launch vehicle systems (LVSs) are the evolutionary LASandarelistedinTable 1. -
Dominant Suborbital Space Tourism Architectures
Dominant Suborbital Space Tourism Architectures The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Guerster, Markus and Edward F. Crawley. "Dominant Suborbital Space Tourism Architectures." Journal of Spacecraft and Rockets 56, 5 (September 2019): dx.doi.org/10.2514/1.a34385 As Published http://dx.doi.org/10.2514/1.a34385 Publisher American Institute of Aeronautics and Astronautics (AIAA) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/126666 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ JOURNAL OF SPACECRAFT AND ROCKETS Dominant Suborbital Space Tourism Architectures Markus Guerster∗ and Edward F. Crawley† Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 DOI: 10.2514/1.A34385 In the early stages of maturity of a system built for a specific function, it is common for the solutions to lie in a broad architectural space, in which numerous concepts are being developed, built, and tested. As the product matures, certain concepts become more dominant. This pattern can currently be observed in the suborbital tourism industry, in which the obvious question is what system architecture will provide the best combination of cost and safety and in the long run become the dominant architecture. This paper addresses this question by defining a broad architectural space of thousands of possibilities and exploring it comprehensively. We identified 33 feasible architectures, 26 of which had not been proposed earlier. A genetic algorithm optimizes each architecture with respect to the launch mass (a proxy for cost) and operational safety. -
Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
The Emergence of Newspace
THE EMERGENCE OF NEWSPACE 1 THE IMPACT ON THE SPACE INDUSTRY AND THE NEXT GENERATION OF ENGINEERS IEEE Region 8 SYP Congress 2016 Regensburg, Germany 20 August 2016 Burton Dicht [email protected] 2 Discussion Items • Introduction – My Background and Why I’m Interested in Space • The History of Spaceflight 101 – Understanding How Governments Got Involved in Space • A New Space Age - Understanding the Factors that Created and Shaped NewSpace • Global Space Today and Tomorrow – What does the current Space Landscape Look Like and What About the Near Future? • Job Search Strategies and Resources 3 Some Background on Me and My Interest in Space 4 Apollo 11 – July 20, 1969 Astronaut Buzz Aldrin on the Moon https://www.youtube.com/watch?v=E96EPhqT-ds 5 My Perspective as a 10-Year Old Full Moon in July 6 How Did They Do That? 7 400,000 Engineers, Scientists and Technicians Made Apollo Possible 8 That Was My Inspiration: I Wanted to Learn How to Do That! High School Space Program – Edwards Air Force Base, Project SPARC 1977 California – 1983 Burt 9 My Engineering Career NASA Intern Facilities Design Kennedy Space Center Lead Engineer Configuration/Systems Integration Northrop Grumman Member of Technical Staff Payload Integration Rockwell STSD – Space Shuttle 10 A Fun Aerospace Career Landing of STS 26 at EAFB – Oct 1988 Arrival of Enterprise at JFK Airport - April 2012 Northrop – Flying with Lockheed friends Open House – EAFB - 1991 11 The History of Spaceflight 101 12 Spaceflight Timeline: The Beginning Sputnik, the first NASA is formed and Alan -
Google Lunar XPRIZE Market Study 2013 a Report to the Foundation
Google Lunar XPRIZE Market Study 2013 A Report to the Foundation MEDIA SUMMARY Prepared by October 2013 About London Economics London Economics (LE) is a leading independent economic consultancy, headquartered in London, United Kingdom, with a dedicated team of professional economists specialised in the application of best practice economic and financial analysis to the space sector. As a firm, our reputation for independent analysis and client‐driven, world‐class and academically robust economic research has been built up over 25 years with more than 400 projects completed in the last 7 years. We advise clients in both the public and private sectors on economic and financial analysis, policy development and evaluation, business strategy, and regulatory and competition policy. Our consultants are highly‐qualified economists with experience in applying a wide variety of analytical techniques to assist our work, including cost‐benefit analysis, multi‐criteria analysis, policy simulation, scenario building, statistical analysis and mathematical modelling. We are also experienced in using a wide range of data collection techniques including literature reviews, survey questionnaires, interviews and focus groups. Drawing on our solid understanding of the economics of space, expertise in economic analysis and best practice industry knowledge, our Aerospace team has extensive experience of providing independent analysis and innovative solutions to advise clients (both public and private) on the economic fundamentals, commercial potential of existing, -
Architectural Options and Optimization of Suborbital Space Tourism Vehicles
Chair of Astronautics Architectural Options and Optimization of Suborbital Space Tourism Vehicles Author: Markus Guerster Master Thesis, RT-MA 2017/2 Supervisors Prof. Edward F. Crawley Prof. Ulrich Walter Department of Aeronautics and Astronautics Institute of Astronautics Massachusetts Institute of Technology Technical University of Munich Dr. Christian Hock Christian Bühler CEO Institute of Astronautics in -tech industry GmbH Technical University of Munich Chair of Astronautics “I wanted to be involved in something that has an outside chance of doing some good. If there is not something meaningful in what you are doing above and beyond any commercial returns, then I think life is a bit hollow.” Elon Musk, 2013 II Chair of Astronautics Erklärung Ich erkläre, dass ich alle Einrichtungen, Anlagen, Geräte und Programme, die mir im Rahmen meiner Masterarbeit von der TU München bzw. vom Lehrstuhl für Raumfahrttechnik zur Verfügung gestellt werden, entsprechend dem vorgesehenen Zweck, den gültigen Richtlinien, Benutzerordnungen oder Gebrauchsanleitungen und soweit nötig erst nach erfolgter Einweisung und mit aller Sorgfalt benutze. Insbesondere werde ich Programme ohne besondere Anweisung durch den Betreuer weder kopieren noch für andere als für meine Tätigkeit am Lehrstuhl vorgesehene Zwecke verwenden. Mir als vertraulich genannte Informationen, Unterlagen und Erkenntnisse werde ich weder während noch nach meiner Tätigkeit am Lehrstuhl an Dritte weitergeben. Ich erkläre mich außerdem damit einverstanden, dass meine Masterarbeit vom Lehrstuhl auf Anfrage fachlich interessierten Personen, auch über eine Bibliothek, zugänglich gemacht wird. Ich erkläre außerdem, dass ich diese Arbeit ohne fremde Hilfe angefertigt und nur die in dem Literaturverzeichnis angeführten Quellen und Hilfsmittel benutzt habe. Garching, den 28. April 2017 Name: Markus Guerster Matrikelnummer: 03628540 III Chair of Astronautics Zusammenfassung Der Ansari X-Prize legte den Grundstein für den suborbitalen Weltraumtourismus. -
Space Tourism Business Model -.:: GEOCITIES.Ws
Space Tourism Business Model The Virgin Galactic Approach by Pilar Alegre [email protected] Patti Spitler David Wells [email protected] Executive Summary Virgin Galactic, a division of Virgin Group, is a leading company in the Suborbital Reusable Launch Vehicle (SRLV) industry. The Office of Commercial Space Transportation of the FAA licenses and regulates all space activity within the U.S.A. Virgin Galactic, along with two other companies, has taken advantage of the new regulation and has filed for and received the required permits to provide suborbital space tourism. Virgin Galactic is considered to be a first mover in this field. Virgin Galactic is planning on having its first launch to take customers into space in the year 2008. These customers, according to the research done by the Futron Corporation for NASA fall in a very specific range of people in the U.S.: millionaires that are employed full-time (61%), are married (100%), are mostly men (94%) and with an average age around 54. There is an estimated 5.6 million people that fall within the first requirement of being able to pay for the flight. Of these, only 10% have an interest in space flight and it is estimated that 10% of these will actually take a flight into space. This gives us a potential 56,000 customers eager to fly into space and can afford it. Virgin Galactic is planning on sending 600 of these customers a year into space. The two other companies that have filed for and received permits are Space Adventures and Incredible Adventures.