ILWS Report 137 Moon

Total Page:16

File Type:pdf, Size:1020Kb

ILWS Report 137 Moon Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Albury February 2020 © 2011, revised 2020. All rights reserved by the authors. The contents of this publication are copyright in all countries subscribing to the Berne Convention. No parts of this report may be reproduced in any form or by any means, electronic or mechanical, in existence or to be invented, including photocopying, recording or by any information storage and retrieval system, without the written permission of the authors, except where permitted by law. Preferred citation of this Report Spennemann, Dirk HR & Murphy, Guy (2020). Returning to the Moon. Heritage issues raised by the Google Lunar X Prize. Institute for Land, Water and Society Report nº 137. Albury, NSW: Institute for Land, Water and Society, Charles Sturt University. iv, 35 pp ISBN 978-1-86-467370-8 Disclaimer The views expressed in this report are solely the authors’ and do not necessarily reflect the views of Charles Sturt University. Contact Associate Professor Dirk HR Spennemann, MA, PhD, MICOMOS, APF Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury NSW 2640, Australia. email: [email protected] Spennemann & Murphy (2020) Returning to the Moon: Heritage Issues Raised by the Google Lunar X Prize Page ii CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 2 2. HUMAN ARTEFACTS ON THE MOON 3 What Have These Missions Left BehinD? 4 Impactor Missions 10 Lander Missions 11 Rover Missions 11 Sample Return Missions 11 Human Missions 11 The Lunar Environment & ImpLications for Artefact Preservation 13 Decay caused by ascent module 15 Decay by solar radiation 15 Human Interference 16 3. THE SIGNIFICANCE OF THE LUNAR HERITAGE SITES 16 ApolLo Landing Sites 16 UnpiLoteD Mission LanDing Sites 17 Impactor Mission Sites 18 4. THE IMPACT OF VISITORS 19 The Google Lunar X Prize 23 Launch Contracts 24 Recent DeveLopments 24 5. POLICY RECOMMENDATIONS 25 ReLevant Regulatory Context 25 Ownership of the objects 25 Jurisdictional issues 28 Strategies to Prevent or Mitigate the Risks 28 Site Register and Object Inventory 28 Practical Considerations 29 Broader Long Term Suggestions 31 Summary of Key RecommenDations 31 6. REFERENCES 32 Spennemann & Murphy (2020) Returning to the Moon: Heritage Issues Raised by the Google Lunar X Prize Page iii Spennemann & Murphy (2020) Returning to the Moon: Heritage Issues Raised by the Google Lunar X Prize Page iv EXECUTIVE SUMMARY Since September 1959, when the Soviet probe Luna 2 crashed into the Moon, humankind has left a wide array of space craft, mission equipment and paraphernalia on the Lunar surface. In total 63 different sites are known to exist. Of these, Tranquility Base, the site where the first human stepped onto another celestial body outside Earth, is of global and universal value to the history of humanity. Preservation conditions on the Lunar surface are so unique that in the absence of an atmosphere of note, even the boot prints of the astronauts and the tracks left by the rovers are preserved. Unless they are struck by micro- meteorites, or obliterated by subsequent visitation, they will remain visible in perpetuity. This paper discusses the extent, nature, significance and ownership of the space heritage sites on the Lunar surface. The sites are finite and unrenewable, and any modification of the sites, incl. visitation by humans or robotic rovers will impair a site’s integrity. Even unintentional spacecraft crash sites (due to orbital decay for example) retain significance to the scientific community and access to the sites needs to be managed wisely. In the absence of territorial, jurisdictional control over the Lunar surface, multi-lateral mechanisms need to be developed to ensure that humanity’s unique heritage on the Moon is not diminished or destroyed for short term gain. The key recommendations are: 1. The provisions of the Google Lunar X Prize be modified to exclude visitation of Lunar sites of cultural heritage, voiding any entry that does so. 2. A Register of Lunar Heritage Sites should be established. 3. The condition of Lunar heritage sites should be regularly monitored using orbital photography. 4. A global heritage convention governing the protection of space heritage should be put in place. 5. A multi-national technical advisory committee, ideally under the auspices of UNESCO, should evaluate pro- posals affecting space heritage sites on the Moon and other planetary bodies. 1. INTRODUCTION robotic Lunar exploration. Amongst the goals pro- The concept of heritage futures deals with trajecto- posed by Google Lunar X Prize were proposals to ries of cultural heritage management beyond the im- visit human artefacts on the Moon, including those mediate planning horizons. It encompasses both a which are legacies of the Apollo Missions. Human ar- critical analysis of the rhetoric (Spennemann, 2007b, tefacts in space are increasingly being recognised as 2007c) and speculative projections that expand the possessing historical as well as cultural heritage sig- horizon of the profession (Spennemann, 2007e, nificance for the story that they tell in the scientific 2007f). The future management of orbital extra-ter- and technological development of humankind. The restrial space heritage is one of these. collections of artefacts at the Apollo landing sites in The management of objects and places associ- particular are of unique significance as evidence of a ated with space exploration has gained significant seminal event in human history. Their preservation traction since the start of the new millennium. The and conservation is therefore considered paramount. growing body of literature considers the manage- From a cultural heritage perspective, any proposed ment of space craft in situ, both in orbit (Barclay & robotic missions to these sites are of concern for Brooks, 2002; Gorman, 2005a, 2005b, 2009; Gorman their capacity to diminish their integrity and signifi- & O’Leary, 2016) and on inter-planetary surfaces cance. (Capelotti, 2014; Gorman, 2014; Gorman & O’Leary, The original issues paper advanced policy guide- 2016; O’Leary, 2006, 2014; Spennemann, 2005b, lines to be considered for the Google Lunar X Prize 2006, 2009; Spennemann & Murphy, 2007, 2009), as with respect to heritage issues, with the objective of well as the management of associated sites and ob- supporting the inspirational goals of the prize while jects on Earth (Gorman, 2007; Spennemann, 2005b; ensuring sites of significance on the Moon are pre- Spennemann & Kosmer, 2005). In addition, con- served in trust for future generations. cerns are expressed at the possibility that space her- While the Google X Prize was terminated in itage sites on inter-planetary surfaces might be visited March 2018, the ethical and practical points raised in as attractions of future space tourism (O’Leary et al., the document remain valid. Some finalist entrants 2012; Spennemann, 2004, 2006, 2007g). Uncon- were given launch contracts, with one (SpaceIL, trolled access is a major concern, especially as this is ‘Beresheet’) reached the Lunar surface (albeit crash situated in a territorially, jurisdictionally and adminis- landing). tratively unregulated space. In addition, numerous private companies, pri- This document was initially produced in Novem- marily in the U.S.A. have been developing plans for ber 2011 as an issues paper for the Committee on landed missions to the Moon. In 2019 three compa- Space Research (COSPAR) of the International nies were contracted by NASA’s Commercial Moon Council for Science. At the time, the Google Lunar Landing Services (CMLS) scheme in preparation for X Prize, which had been announced in September the U.S. return to the Moon (as part of the NASA’s 2007 had attracted much attention and caused much Artemis program) (Chou & Kraft, 2019b). Selected concern. Following in a long tradition of awarding to deliver to the Lunar surface were Astrobotic, land- prizes to those who push the boundaries of explora- ing at Lacus Mortis in mid 2021 (Astrobiotic, 2019);1 tion, it seeks to encourage the private exploration of Intuitive Machines, landing on Mare Serenitatis in the Moon by awarding substantial prizes to private mid 2021 (Marshall, 2019);2 and Orbit Beyond, teams for achieving a series of benchmark goals in 1 The proposed Peregrine 1 mission is scheduled to The NASA payload was announced in January 2020 carry 28 payloads (from eight 8 different countries) (Chou & Kraft, 2019a) comprised of “resource development, scientific inves- 2 The NASA payload was announced in January 2020 tigation, technology demonstration, exploration, mar- (Chou & Kraft, 2019a), with Intuitive Machines keting, arts, and entertainment” (Astrobiotic, 2019).— Spennemann & Murphy (2020) Returning to the Moon: Heritage Issues Raised by the Google Lunar X Prize Page 2 landing on Mare Imbrium in September 2020.3 In ad- and reference prior research (e.g. Hanlon, 2019). In dition, other companies are also gearing up for pos- this document some data (e.g. Table 1) and sections sible missions, such as Moon Express, Blue Origin have been expanded with references updated to in- and ispace, leading to what some observers have la- clude additional and more recent literature. belled the ‘New Moon Rush’ (David, 2019; Wall, This document provides a summary inventory of 2019a). An expansion of the CMLS program was an- relevant sites and identifies how these are of signifi- nounced in July 2019 (Hautaluoma & Knotts, 2019) cance. It then considers how robotic or human mis- Given the ongoing topicality of the issues at sions to these sites could positively or adversely af- hand, this document (which draws on previous work fect them, including possible missions envisaged by by the authors) has been reissued in this format to be the Google Lunar X Prize and other projects. Finally, placed on record for wider dissemination.
Recommended publications
  • Bibliography
    Annotated List of Works Cited Primary Sources Newspapers “Apollo 11 se Vraci na Zemi.” Rude Pravo [Czechoslovakia] 22 July 1969. 1. Print. This was helpful for us because it showed how the U.S. wasn’t the only ones effected by this event. This added more to our project so we had views from outside the US. Barbuor, John. “Alunizaron, Bajaron, Caminaron, Trabajaron: Proeza Lograda.” Excelsior [Mexico] 21 July 1969. 1. Print. The front page of this newspaper was extremely helpful to our project because we used it to see how this event impacted the whole world not just America. Beloff, Nora. “The Space Race: Experts Not Keen on Getting a Man on the Moon.” Age [Melbourne] 24 April 1962. 2. Print. This was an incredibly important article to use in out presentation so that we could see different opinions. This article talked about how some people did not want to go to the moon; we didn’t find many articles like this one. In most everything we have read it talks about the advantages of going to the moon. This is why this article was so unique and important. Canadian Press. “Half-billion Watch the Moon Spectacular.” Gazette [Montreal] 21 July 1969. 4. Print. This source gave us a clear idea about how big this event really was, not only was it a big deal in America, but everywhere else in the world. This article told how Russia and China didn’t have TV’s so they had to find other ways to hear about this event like listening to the radio.
    [Show full text]
  • Spring 2018 Undergraduate Law Journal
    SPRING 2018 UNDERGRADUATE LAW JOURNAL The Final Frontier: Evolution of Space Law in a Global Society By: Garett Faulkender and Stephan Schneider Introduction “Space: the final frontier!” These are the famous introductory words spoken by William Shatner on every episode of Star Trek. This science-fiction TV show has gained a cult-following with its premise as a futuristic Space odyssey. Originally released in 1966, many saw the portrayed future filled with Space-travel, inter-planetary commerce and politics, and futuristic technology as merely a dream. However, today we are starting to explore this frontier. “We are entering an exciting era in [S]pace where we expect more advances in the next few decades than throughout human history.”1 Bank of America/Merrill Lynch has predicted that the Space industry will grow to over $2.7 trillion over the next three decades. Its report said, “a new raft of drivers is pushing the ‘Space Age 2.0’”.2 Indeed, this market has seen start-up investments in the range of $16 billion,3 helping fund impressive new companies like Virgin Galactic and SpaceX. There is certainly a market as Virgin Galactic says more than 600 customers have registered for a $250,000 suborbital trip, including Leonardo DiCaprio, Katy Perry, Ashton Kutcher, and physicist Stephen Hawking.4 Although Space-tourism is the exciting face of a future in Space, the Space industry has far more to offer. According to the Satellite Industries 1 Michael Sheetz, The Space Industry Will Be Worth Nearly $3 Trillion in 30 Years, Bank of America Predicts, CNBC, (last updated Oct.
    [Show full text]
  • Student Worksheets, Assessments, and Answer Keys
    Apollo Mission Worksheet Team Names _________________________ Your team has been assigned Apollo Mission _______ Color _________________ 1. Go to google.com/moon and find your mission, click on it and then zoom in. 2. Find # 1, this will give you information to answer the questions below. 3. On your moon map, find the location of the mission landing site and locate this spot on your map. Choose a symbol and the correct color for your mission (each mission has a specific symbol and you can use this if you like or make up your own). In the legend area put your symbol and mission number. 4. Who were the astronauts on the mission? The astronauts on the mission were ______________________________________ ______________________________________________________________________ 5. When did the mission take place? The mission took place from _______________________________________________ 6. How many days did the mission last? The mission lasted ______________________________________________________ 7. Where did the mission land? The mission landed at____________________________________________________ 8. Why did the mission land here? They landed at this location because ________________________________________ ___________________________________________________________________________ _______________________________________________________________________ 9. What was the goal of the mission? The goal of the mission was_______________________________________________ ______________________________________________________________________ ___________________________________________________________________________
    [Show full text]
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Astronomy News KW RASC FRIDAY JANUARY 8 2021
    Astronomy News KW RASC FRIDAY JANUARY 8 2021 JIM FAIRLES What to expect for spaceflight and astronomy in 2021 https://astronomy.com/news/2021/01/what-to-expect-for- spaceflight-and-astronomy-in-2021 By Corey S. Powell | Published: Monday, January 4, 2021 Whatever craziness may be happening on Earth, the coming year promises to be a spectacular one across the solar system. 2020 - It was the worst of times, it was the best of times. First landing on the lunar farside, two impressive successes in gathering samples from asteroids, the first new pieces of the Moon brought home in 44 years, close-up explorations of the Sun, and major advances in low-cost reusable rockets. First Visit to Jupiter's Trojan Asteroids First Visit to Jupiter's Trojan Asteroids In October, NASA is set to launch the Lucy spacecraft. Over its 12-year primary mission, Lucy will visit eight different asteroids. One target lies in the asteroid belt. The other seven are so-called Trojan asteroids that share an orbit with Jupiter, trapped in points of stability 60 degrees ahead of or behind the planet as it goes around the sun. These objects have been trapped in their locations for billions of years, probably since the time of the formation of the solar system. They contain preserved samples of water-rich and carbon-rich material in the outer solar system; some of that material formed Jupiter, while other bits moved inward to contribute to Earth's life-sustaining composition. As a whimsical aside: When meteorites strike carbon-rich asteroids, they create tiny carbon crystals.
    [Show full text]
  • ORION Flight Test Dec
    December 2014 Vol. 1 No. 9 National Aeronautics and Space Administration Kennedy Space Center’s ORION Flight Test Dec. 4, 7:05 a.m. #imonboard Colin Baker http://go.nasa.gov/11r6OeO Lou Ferrigno Nichelle Nichols http://go.nasa.gov/1xlmT2f http://go.nasa.gov/11r7fWA Erin Gray John Barrowman http://go.nasa.gov/1AIE28z Austin St. John http://go.nasa.gov/1xlmT2f http://go.nasa.gov/1AIERyd 2 SPACEPORT Magazine SPACEPORT Magazine 3 International Space MARS Education Technology Solar System History Station (ISS) KENNEDY SPACE CENTER’S NASA’S SPACEPORT MAGAZINE LAUNCH SCHEDULE CONTENTS Date: Dec. 4 - 7:05 a.m. EST ...................Orion ready for first test flight Mission: NASA’s Orion 7 spacecraft will launch atop a Delta IV Heavy rocket from Cape 9 ...................Flight Test to carry mementos, inspirational items Canaveral Air Force Stationís Space Launch Complex 37. The Orion Flight Test will evaluate 14 ................IT Advance Concepts Lab changing way IT is done launch and high speed re-entry systems such as avionics, attitude control, parachutes and 22 ................Research ready for SpaceX CRS-5 mission the heat shield. Date: Dec. 16, 2014 - 27 ................Tanzanian teen hopes to become astronaut 2:31 p.m. EST Mission: Launching from Cape Canaveral Air Force Station, 30 ................New animation follows long, strange trip of Bennu SpaceX CRS-5 will deliver cargo and crew supplies to the International Space Station. It 33 ................175-ton crane undergoes upgrades also will carry CATS, a laser instrument to measure clouds and the location and distribution 36 ................Ceremony honors fallen astronaut of pollution, dust, smoke and other particulates in the I am the range master at the NASA Protective Services Training atmosphere.
    [Show full text]
  • Go for Lunar Landing Conference Report
    CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4
    [Show full text]
  • Earthrise- Contents and Chapter 1
    EARTHRISE: HOW MAN FIRST SAW THE EARTH Contents 1. Earthrise, seen for the first time by human eyes 2. Apollo 8: from the Moon to the Earth 3. A Short History of the Whole Earth 4. From Landscape to Planet 5. Blue Marble 6. An Astronaut’s View of Earth 7. From Cold War to Open Skies 8. From Spaceship Earth to Mother Earth 9. Gaia 10. The Discovery of the Earth 1. Earthrise, seen for the first time by human eyes On Christmas Eve 1968 three American astronauts were in orbit around the Moon: Frank Borman, James Lovell, and Bill Anders. The crew of Apollo 8 had been declared by the United Nations to be the ‘envoys of mankind in outer space’; they were also its eyes.1 They were already the first people to leave Earth orbit, the first to set eyes on the whole Earth, and the first to see the dark side of the Moon, but the most powerful experience still awaited them. For three orbits they gazed down on the lunar surface through their capsule’s tiny windows as they carried out the checks and observations prescribed for almost every minute of this tightly-planned mission. On the fourth orbit, as they began to emerge from the far side of the Moon, something happened. They were still out of radio contact with the Earth, but the on- board voice recorder captured their excitement. Borman: Oh my God! Look at that picture over there! Here’s the Earth coming up. Wow, that is pretty! Anders: Hey, don’t take that, it’s not scheduled.
    [Show full text]
  • For Immediate Release: TWO GOOGLE LUNAR XPRIZE
    Media Contact: Kyoko Yonezawa [email protected] For Immediate Release: TWO GOOGLE LUNAR XPRIZE TEAMS ANNOUNCE RIDESHARE PARTNERSHIP FOR MISSION TO THE MOON IN 2016 Team HAKUTO (Japan) and Team Astrobotic (U.S.) Plan Cooperative Launch in Pursuit of $30 Million Prize to Land a Private Spacecraft on the Lunar Surface TOKYO, Japan (February 24, 2015) – HAKUTO, the only Japanese team competing for the $30 million Google Lunar XPRIZE, has announced a contract with fellow competitor, Astrobotic, based in Pittsburgh, Pa., to carry a pair of rovers to the moon. Astrobotic plans to launch its Google Lunar XPRIZE mission on a SpaceX Falcon 9 rocket from Cape Canaveral, Fla., during the second half of 2016. HAKUTO’s twin rovers, Moonraker and Tetris, will piggyback on Astrobotic's Griffin lander to reach the lunar surface. Upon touchdown, the rovers will be released simultaneously with Astrobotic’s Andy rover, developed by Carnegie Mellon University, travel 500 meters on the moon’s surface and send high-definition images and video back to Earth, all in pursuit of the $20M Google Lunar XPRIZE Grand Prize. Last month, both teams were awarded Google Lunar XPRIZE Milestone Prizes: HAKUTO won $500,000 for technological advancements in the Mobility category, while Astrobotic, in partnership with Carnegie Mellon University, won a total of $1.75M for innovations in all three focus areas—Landing, Mobility and Imaging. Throughout the judging process, all three rovers, Moonraker, Tetris and Andy, demonstrated the ability to move 500 meters across the lunar surface and withstand the high radiation environment and extreme temperatures on the moon.
    [Show full text]
  • Larry Page Developing the Largest Corporate Foundation in Every Successful Company Must Face: As Google Word.” the United States
    LOWE —continued from front flap— Praise for $19.95 USA/$23.95 CAN In addition to examining Google’s breakthrough business strategies and new business models— In many ways, Google is the prototype of a which have transformed online advertising G and changed the way we look at corporate successful twenty-fi rst-century company. It uses responsibility and employee relations——Lowe Google technology in new ways to make information universally accessible; promotes a corporate explains why Google may be a harbinger of o 5]]UZS SPEAKS culture that encourages creativity among its where corporate America is headed. She also A>3/9A addresses controversies surrounding Google, such o employees; and takes its role as a corporate citizen as copyright infringement, antitrust concerns, and “It’s not hard to see that Google is a phenomenal company....At Secrets of the World’s Greatest Billionaire Entrepreneurs, very seriously, investing in green initiatives and personal privacy and poses the question almost Geico, we pay these guys a whole lot of money for this and that key g Sergey Brin and Larry Page developing the largest corporate foundation in every successful company must face: as Google word.” the United States. grows, can it hold on to its entrepreneurial spirit as —Warren Buffett l well as its informal motto, “Don’t do evil”? e Following in the footsteps of Warren Buffett “Google rocks. It raised my perceived IQ by about 20 points.” Speaks and Jack Welch Speaks——which contain a SPEAKS What started out as a university research project —Wes Boyd conversational style that successfully captures the conducted by Sergey Brin and Larry Page has President of Moveon.Org essence of these business leaders—Google Speaks ended up revolutionizing the world we live in.
    [Show full text]
  • EXPLORING the MOON in the 21St CENTURY
    CosmoELEMENTS EXPLORING THE MOON IN THE 21st CENTURY Samuel J. Lawrence1 and Clive R. Neal2 DOI: 10.2138/gselements.15.5.360 INTRODUCTION In 2019, we are celebrating the 50th anniversary of NASA’s momentous Apollo expedi- tions to the Moon. The samples brought back by the astronauts, and the fieldwork those astro- The South Pole of the Moon, pictured here in an oblique view from FIGURE 1 NASA’s Lunar Reconnaissance Orbiter, is the landing site for the nauts performed on the lunar surface, cemented the Moon’s status as seventh human lunar landing. IMAGE COURTESY OF NAC M1195011983LR (NASA/ the cornerstone of the solar system. It is not an exaggeration to say GSFC/ARIZONA STATE UniVERSITY). that the Apollo expeditions transformed our understanding of our solar system, and, in fact, most of the discoveries made in planetary science since the 1960s can trace directly, or indirectly, from the scientific of the Sun’s evolution and history. Finally, this is another area where results of those Apollo expeditions. the Apollo expeditions represent a strength: there are five decades worth of planetary science hypotheses that lunar geological fieldwork Although some erroneously proclaim that the Moon is “Been there, will address. The lunar surface could also provide a unique and stable done that”, nothing could be further from the truth. After a long long-term platform for astronomy. In particular, manned radio obser- st hiatus, beginning in the first years of the 21 century, there has vatories or optical interferometers on the far side of the Moon could been a resurgence of interest in the Moon, including the Kaguya produce dramatic advances in astrophysics.
    [Show full text]