Electrical Characterization and Modeling of Low Dimensional Nanostructure FET Jae Woo Lee
Total Page:16
File Type:pdf, Size:1020Kb
Electrical characterization and modeling of low dimensional nanostructure FET Jae Woo Lee To cite this version: Jae Woo Lee. Electrical characterization and modeling of low dimensional nanostructure FET. Autre. Université de Grenoble; 239 - Korea University, 2011. Français. NNT : 2011GRENT070. tel- 00767413 HAL Id: tel-00767413 https://tel.archives-ouvertes.fr/tel-00767413 Submitted on 19 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LUNIVERSITÉ DE GRENOBLE Spécialité : Micro et Nano Électronique Arrêté ministériel : 7 août 2006 Présentée par Jae Woo LEE Thèse dirigée par Mireille MOUIS et Gérard GHIBAUDO préparée au sein du Laboratoire IMEP-LAHC dans l'École Doctorale EEATS Caractérisation électrique et modélisation des transistors à effet de champ de faible dimensionnalité Thèse soutenue publiquement le 5 décembre 2011 devant le jury composé de : M. Gérard GHIBAUDO DR CNRS Alpes-IMEP/INPG, Président M. Jong-Tae PARK Dr Incheon University, Rapporteur M. Jongwan JUNG Dr Sejong University, Rapporteur M. Gyu Tae KIM Dr Korea Univeristy, Co-directeur de thèse M. Laurent MONTÈS DR CNRS Alpes-IMEP/INPG, Membre Mme. Mireille MOUIS MCF INP Grenoble-IMEP, Directeur de thèse Thesis for the Degree of Doctor Electrical Characterization and Modeling of Low Dimensional Nanostructure FET by Jae Woo LEE School of Electrical Engineering Graduate School Korea University February 2012 " フB うB 繯B ̤⭆刱⎱B 獐B 吤B 轕B 艿B ⓸B 毗B B Electrical Characterization and Modeling of Low Dimensional Nanostructure FET f f f マB ⓸毗まB ˙轕獐吤B 轕艿⓸毗ぬ鹵B 髒瓤疴B 2012 ヽ 2 檷 Ŕǘ〖轕̰ 〖轕檌 銱䟽銱ガ˙轕ɬ 蠼 釃 羭f " " Electrical Characterization and Modeling of Low Dimensional Nanostructure FET Ph.D. Thesis Jae Woo, LEE Thesis Advisor Prof. Gyu Tae KIM School of Electrical Engineering, Korea University, Seoul 136-701, Republic of Korea " Prof. Mireille MOUIS (Dr. CNRS) and Prof. Gérard GHIBAUDO (Dr. CNRS) IMEP-LAHC, Grenoble INP-MINATEC, 3 Parvis Louis Néel, 38016 Grenoble, France " " This Ph.D thesis prepared at Korea University, Korea and at IMEP-LAHC laboratory, INP- Grenoble, France under co-supervising program. The journey is the reward. - Steve Jobs English Abstract At the beginning of this thesis, basic and advanced device fabrication process which I have experienced during study such as top-down and bottom-up approach for the nanoscale device fabrication technique have been described. Especially, lithography technology has been focused because it is base of the modern device fabrication. For the advanced device structure, etching technique has been investigated in detail. The characterization of FET has been introduced. For the practical consideration in the advanced FET, several parameter extraction techniques have been introduced such as Y- function, split C-V etc. FinFET is one of promising alternatives against conventional planar devices. Problem of FinFET is surface roughness. During the fabrication, the etching process induces surface roughness on the sidewall surfaces. Surface roughness of channel decreases the effective mobility by surface roughness scattering. With the low temperature measurement and mobility analysis, drain current through sidewall and top surface was separated. From the separated currents, effective mobilities were extracted in each temperature conditions. As temperature lowering, mobility behaviors from the transport on each surface have different temperature dependence. Especially, in n-type FinFET, the sidewall mobility has stronger degradation in high gate electric field compare to top surface. Quantification of surface roughness was also compared between sidewall and top surface. Low temperature measurement is nondestructive characterization method. Therefore this study can be a proper surface roughness measurement technique for the performance optimization of FinFET. As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has been introduced. Important of strain engineering has been known for the effective mobility booster. The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowire FET showed huge short channel effect. Subthreshold current was bigger than strained SiGe channel. Temperature dependent mobility behavior in short channel unstrained device was completely different from the other cases. Impurity scattering was dominant in short channel unstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is not necessary only for the mobility booster but also short channel effect immunity. Junctionless FET is very recently developed device compare to the others. Like as JFET, junctionless FET has volume conduction. Thus, it is less affected by interface states. Junctionless FET also has good short channel effect immunity because off-state of junctionless FET is dominated pinch-off of channel depletion. For this, junctionless FET should have thin body thickness. Therefore, multi gate nanowire structure is proper to make junctionless FET. Because of the surface area to volume ratio, quasi-1D nanowire structure is good for the sensor application. Nanowire structure has been investigated as a sensor. Using numerical simulation, generation-recombination noise property was considered in nanowire sensor. Even though the surface area to volume ration is enhanced in the nanowire channel, device has sensing limitation by noise. The generation-recombination noise depended on the channel geometry. As a design tool of nanowire sensor, noise simulation should be carried out to escape from the noise limitation in advance. The basic principles of device simulation have been discussed. Finite difference method and Monte Carlo simulation technique have been introduced for the comprehension of device simulation. Practical device simulation data have been shown for examples such as FinFET, strongly disordered 1D channel, OLED and E-paper. Eqpvgpvu" k" " Dpoufout" " 1. Overview of Semiconductor Device Trends ................................................. 1" 1.1 Economical Consideration: Market Trend Overview ...................................................... 3" 1.2 Device Scaling.................................................................................................................. 5" 1.3 Short Channel Effects....................................................................................................... 7" 1.3.1 Threshold Voltage Shift, Punchthrough and Drain-induced Barrier Lowering .................. 8" 1.3.2 Velocity Saturation .............................................................................................................. 10" 1.3.3 Hot Carrier Effects ............................................................................................................... 12" 1.4 Challenges to Overcome Short Channel Effects ............................................................ 12" 1.4.1 High-k and Metal Gate ......................................................................................................... 12" 1.4.2 Silicon on Insulator .............................................................................................................. 14" 1.4.3 Multi Gate and Pseudo 1D Structure ................................................................................... 16" 1.5 Conclusion ...................................................................................................................... 18" References ............................................................................................................................ 19" 2. Nano-device Fabrication Technology .......................................................... 21" 2.1 Introduction .................................................................................................................... 23" 2.2 Top-down and Bottom-up .............................................................................................. 24" 2.2.1 Bottom-up approach ............................................................................................................. 24" 2.2.2 Top-down approach ............................................................................................................. 26" 2.2.3 Conclusion: Convergence of Top-down and Bottom-up ..................................................... 37" 2.3 Conclusion ...................................................................................................................... 38" References ............................................................................................................................ 39" 3. Characterization and Parameter Extraction of FET ................................ 43" 3.1 Introduction .................................................................................................................... 45" 3.2 Basic MOSFET Operation ............................................................................................. 46" 3.2.1 Linear Regime (at Small VD) ..............................................................................................