A Joint Model of Language and Perception for Grounded Attribute Learning

Total Page:16

File Type:pdf, Size:1020Kb

A Joint Model of Language and Perception for Grounded Attribute Learning A Joint Model of Language and Perception for Grounded Attribute Learning Cynthia Matuszek [email protected] Nicholas FitzGerald [email protected] Luke Zettlemoyer [email protected] Liefeng Bo [email protected] Dieter Fox [email protected] Computer Science and Engineering, Box 352350, University of Washington, Seattle, WA 98195-2350 Abstract ical workspace that contains a number of objects that As robots become more ubiquitous and ca- vary in shape and color. We assume that a robot can pable, it becomes ever more important for understand sentences like this if it can solve the as- untrained users to easily interact with them. sociated grounded object selection task. Specifically, it Recently, this has led to study of the lan- must realize that words such as \yellow" and \blocks" guage grounding problem, where the goal refer to object attributes, and ground the meaning of is to extract representations of the mean- such words by mapping them to a perceptual system ings of natural language tied to the physi- that will enable it to identify the specific physical ob- cal world. We present an approach for joint jects referred to. To do so robustly, even in cases where learning of language and perception models words or attributes are new, our robot must learn (1) for grounded attribute induction. The per- visual classifiers that identify the appropriate object ception model includes classifiers for phys- properties, (2) representations of the meaning of indi- ical characteristics and a language model vidual words that incorporate these classifiers, and (3) based on a probabilistic categorial grammar a model of compositional semantics used to analyze that enables the construction of composi- complete sentences. tional meaning representations. We evaluate In this paper, we present an approach for jointly learn- on the task of interpreting sentences that de- ing these components. Our approach builds on exist- scribe sets of objects in a physical workspace, ing work on visual attribute classification (Bo et al., and demonstrate accurate task performance 2011) and probabilistic categorial grammar induction and effective latent-variable concept induc- for semantic parsing (Zettlemoyer & Collins, 2005; tion in physical grounded scenes. Kwiatkowski et al., 2011). Specifically, our system in- duces new grounded concepts (groups of words along with the parameters of the attribute classifier they are 1. Introduction paired with) from a set of scenes containing only sen- tences, images, and indications of what objects are Physically grounded settings provide exciting oppor- being referred to. As a result, it can be taught to rec- tunities for learning. For example, a person might be ognize previously unknown object attributes by some- able to teach a robot about objects in its environment. one describing objects while pointing out the relevant However, to do this, a robot must jointly reason about objects in a set of training scenes. Learning is on- the different modalities encountered (for example lan- line, adding one scene at a time, and EM-like, in that guage and vision), and induce rich associations with the parameters are updated to maximize the expected as little guidance as possible. marginal likelihood of the latent language and visual Consider a simple sentence such as \These are the yel- components of the model. This integrated approach low blocks," uttered in a setting where there is a phys- allows for effective model updates with no explicit la- beling of logical meaning representations or attribute th Appearing in Proceedings of the 29 International Confer- classifier outputs. ence on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright 2012 by the author(s)/owner(s). We evaluate this approach on data gathered on Ama- A Joint Model of Language and Perception for Grounded Attribute Learning zon Mechanical Turk, in which people describe sets of object segments recorded using a Kinect depth camera. objects on a table. Experiments demonstrate that the Joint Model We combine these language and vision joint learning approach can effectively extend the set models in two ways. First, we introduce an explicit of grounded concepts in an incomplete model initial- model of alignment between the logical constants in ized with supervised training on a small dataset. This the logical form z and classifiers in the set C. This provides a simple mechanism for learning vocabulary alignment would, for example, enable us to learn that in a physical environment. the logical constant yellow should be paired with a classifier c 2 C that fires on yellow objects. Next, we introduce an execution model that allows us to determine what scene objects in O would be selected by a logical expression z, given the classi- fiers in C. This allows us to, for example, execute λx.color(x; green)^shape(x; triangle) by testing all of the objects with the appropriate classifiers (for green and triangle), then selecting objects on which both classifiers return true. This execution model includes uncertainty from the semantic parser P (zjx), classifier Figure 1. An example of an RGB-D object identification confidences P (c = truejo), and a deterministic ground- scene. Columns on the right show example segments, iden- truth constraint that encodes what objects are actually tified as positive (far right) and negative (center). intended to be selected. Full details are in Sec.5. Model Learning We present an approach that 2. Overview of the Approach learns the meaning of new words from a dataset D = Problem We wish to learn a joint language and per- f(xi;Oi;Gi) j i = 1 : : : ng, where each example i con- ception model for the object selection task. The goal tains a sentence xi, the objects Oi, and the selected is to automatically map a natural language sentence set Gi. This setup is an abstraction of the situa- x and a set of scene objects O to the subset G ⊆ O tion where a teacher mentions xi while pointing to of objects described by x. The left panel of Fig.1 the objects Gi ⊆ Oi she describes. As described in shows an example scene. Here, O is the set of objects detail in Sec.6, learning proceeds in an online, EM- present in this scene. The individual objects o 2 O are like fashion by repeatedly estimating expectations over extracted from the scene via segmentation (the right the latent logical forms zi and the outputs of the clas- panel of Fig.1 shows example segments). Given the sifiers c 2 C, then using these expectations to update sentence x =\Here are the yellow ones," the goal is to the parameters of the component models for language select the five yellow objects for the named set G. P (zjx) and visual classification P (cjo). To bootstrap the learning approach, we first train a limited language Model Components Given a sentence and seg- and perception system in a fully supervised way: in mented scene objects, we learn a distribution P (G j this stage, each example additionally contains labeled x; O) over the selected set. Our approach combines logical meaning expressions and classifier outputs, as recent models of language and vision, including: described in Sec.6. (1) A semantic parsing model that defines P (zjx), a distribution over logical meaning representations z for 3. Related Work each sentence x. In our running example, the desired representation z = λx.color(x; yellow) is a lambda- To the best of our knowledge, this paper presents the calculus expression that defines a set of objects that first approach for jointly learning visual classifiers and are yellow. For this task, we build on an existing se- semantic parsers, to produce rich, compositional mod- mantic parsing model (Kwiatkowski et al., 2011). els that span directly from sensors to meaning. How- ever, there is significant related work on the model (2) A set of visual attribute classifiers C, where each components, and on grounded learning in general. classifier c 2 C defines a distribution P (c = truejo) of the classifier returning true for each possible object Vision Current state-of-the-art object recognition o 2 O in the scene. For example, there would be a systems (Felzenszwalb et al., 2009; Yang et al., 2009) unique classifier c 2 C for each possible color or shape are based on local image descriptors, for example an object can have. We use logistic regression to train SIFT over images (Lowe, 2004) and Spin Images over classifiers on color and shape features extracted from 3D point clouds (Johnson & Hebert, 1999). Visual A Joint Model of Language and Perception for Grounded Attribute Learning this red block is in the shape of a half-pipe N=N N NnNSnN=N N=N N=NP NP=NP NP λf:f λx.color(x; red) λf:f λf.λg.λx.f(x) ^ g(x) λf:f λy.λx.shape(x; y) λx.x arch N N=NP NP λx.color(x; red) λy.λx.shape(x; y) arch NN λx.color(x; red) λx.shape(x; arch) SnN λg.λx.shape(x; arch) ^ g(x) S λx.shape(x; arch) ^ color(x; red) Figure 2. An example semantic analysis for a sentence from our dataset. attributes provide rich descriptions of objects, and that include a visual component (Tellex et al., 2011). have become a popular topic in the vision commu- However, these approaches ground language into pre- nity (Farhadi et al., 2009; Parikh & Grauman, 2011); defined language formalisms, rather than extending although very successful, we still lack a deep un- the model to account for entirely novel input. derstanding of the design rules underlying them and how they measure similarity. Recent work on ker- 4. Background on Semantic Parsing nel descriptors (Bo et al., 2010) shows that these hand-designed features are equivalent to a type of Our grounded language learning incorporates a state- match kernel that performs similarly to sparse cod- of-the-art model, FUBL, for semantic parsing, as re- ing (Yang et al., 2009; Yu & Zhang, 2010) and deep viewed in this section.
Recommended publications
  • What the Neurocognitive Study of Inner Language Reveals About Our Inner Space Hélène Loevenbruck
    What the neurocognitive study of inner language reveals about our inner space Hélène Loevenbruck To cite this version: Hélène Loevenbruck. What the neurocognitive study of inner language reveals about our inner space. Epistémocritique, épistémocritique : littérature et savoirs, 2018, Langage intérieur - Espaces intérieurs / Inner Speech - Inner Space, 18. hal-02039667 HAL Id: hal-02039667 https://hal.archives-ouvertes.fr/hal-02039667 Submitted on 20 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Preliminary version produced by the author. In Lœvenbruck H. (2008). Épistémocritique, n° 18 : Langage intérieur - Espaces intérieurs / Inner Speech - Inner Space, Stéphanie Smadja, Pierre-Louis Patoine (eds.) [http://epistemocritique.org/what-the-neurocognitive- study-of-inner-language-reveals-about-our-inner-space/] - hal-02039667 What the neurocognitive study of inner language reveals about our inner space Hélène Lœvenbruck Université Grenoble Alpes, CNRS, Laboratoire de Psychologie et NeuroCognition (LPNC), UMR 5105, 38000, Grenoble France Abstract Our inner space is furnished, and sometimes even stuffed, with verbal material. The nature of inner language has long been under the careful scrutiny of scholars, philosophers and writers, through the practice of introspection. The use of recent experimental methods in the field of cognitive neuroscience provides a new window of insight into the format, properties, qualities and mechanisms of inner language.
    [Show full text]
  • CNS 2014 Program
    Cognitive Neuroscience Society 21st Annual Meeting, April 5-8, 2014 Marriott Copley Place Hotel, Boston, Massachusetts 2014 Annual Meeting Program Contents 2014 Committees & Staff . 2 Schedule Overview . 3 . Keynotes . 5 2014 George A . Miller Awardee . 6. Distinguished Career Contributions Awardee . 7 . Young Investigator Awardees . 8 . General Information . 10 Exhibitors . 13 . Invited-Symposium Sessions . 14 Mini-Symposium Sessions . 18 Poster Schedule . 32. Poster Session A . 33 Poster Session B . 66 Poster Session C . 98 Poster Session D . 130 Poster Session E . 163 Poster Session F . 195 . Poster Session G . 227 Poster Topic Index . 259. Author Index . 261 . Boston Marriott Copley Place Floorplan . 272. A Supplement of the Journal of Cognitive Neuroscience Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org 2014 Committees & Staff Governing Board Mini-Symposium Committee Roberto Cabeza, Ph.D., Duke University David Badre, Ph.D., Brown University (Chair) Marta Kutas, Ph.D., University of California, San Diego Adam Aron, Ph.D., University of California, San Diego Helen Neville, Ph.D., University of Oregon Lila Davachi, Ph.D., New York University Daniel Schacter, Ph.D., Harvard University Elizabeth Kensinger, Ph.D., Boston College Michael S. Gazzaniga, Ph.D., University of California, Gina Kuperberg, Ph.D., Harvard University Santa Barbara (ex officio) Thad Polk, Ph.D., University of Michigan George R. Mangun, Ph.D., University of California,
    [Show full text]
  • Talking to Computers in Natural Language
    feature Talking to Computers in Natural Language Natural language understanding is as old as computing itself, but recent advances in machine learning and the rising demand of natural-language interfaces make it a promising time to once again tackle the long-standing challenge. By Percy Liang DOI: 10.1145/2659831 s you read this sentence, the words on the page are somehow absorbed into your brain and transformed into concepts, which then enter into a rich network of previously-acquired concepts. This process of language understanding has so far been the sole privilege of humans. But the universality of computation, Aas formalized by Alan Turing in the early 1930s—which states that any computation could be done on a Turing machine—offers a tantalizing possibility that a computer could understand language as well. Later, Turing went on in his seminal 1950 article, “Computing Machinery and Intelligence,” to propose the now-famous Turing test—a bold and speculative method to evaluate cial intelligence at the time. Daniel Bo- Figure 1). SHRDLU could both answer whether a computer actually under- brow built a system for his Ph.D. thesis questions and execute actions, for ex- stands language (or more broadly, is at MIT to solve algebra word problems ample: “Find a block that is taller than “intelligent”). While this test has led to found in high-school algebra books, the one you are holding and put it into the development of amusing chatbots for example: “If the number of custom- the box.” In this case, SHRDLU would that attempt to fool human judges by ers Tom gets is twice the square of 20% first have to understand that the blue engaging in light-hearted banter, the of the number of advertisements he runs, block is the referent and then perform grand challenge of developing serious and the number of advertisements is 45, the action by moving the small green programs that can truly understand then what is the numbers of customers block out of the way and then lifting the language in useful ways remains wide Tom gets?” [1].
    [Show full text]
  • Revealing the Language of Thought Brent Silby 1
    Revealing the Language of Thought Brent Silby 1 Revealing the Language of Thought An e-book by BRENT SILBY This paper was produced at the Department of Philosophy, University of Canterbury, New Zealand Copyright © Brent Silby 2000 Revealing the Language of Thought Brent Silby 2 Contents Abstract Chapter 1: Introduction Chapter 2: Thinking Sentences 1. Preliminary Thoughts 2. The Language of Thought Hypothesis 3. The Map Alternative 4. Problems with Mentalese Chapter 3: Installing New Technology: Natural Language and the Mind 1. Introduction 2. Language... what's it for? 3. Natural Language as the Language of Thought 4. What can we make of the evidence? Chapter 4: The Last Stand... Don't Replace The Old Code Yet 1. The Fight for Mentalese 2. Pinker's Resistance 3. Pinker's Continued Resistance 4. A Concluding Thought about Thought Chapter 5: A Direction for Future Thought 1. The Review 2. The Conclusion 3. Expanding the mind beyond the confines of the biological brain References / Acknowledgments Revealing the Language of Thought Brent Silby 3 Abstract Language of thought theories fall primarily into two views. The first view sees the language of thought as an innate language known as mentalese, which is hypothesized to operate at a level below conscious awareness while at the same time operating at a higher level than the neural events in the brain. The second view supposes that the language of thought is not innate. Rather, the language of thought is natural language. So, as an English speaker, my language of thought would be English. My goal is to defend the second view.
    [Show full text]
  • Natural Language Processing (NLP) for Requirements Engineering: a Systematic Mapping Study
    Natural Language Processing (NLP) for Requirements Engineering: A Systematic Mapping Study Liping Zhao† Department of Computer Science, The University of Manchester, Manchester, United Kingdom, [email protected] Waad Alhoshan Department of Computer Science, The University of Manchester, Manchester, United Kingdom, [email protected] Alessio Ferrari Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo" (CNR-ISTI), Pisa, Italy, [email protected] Keletso J. Letsholo Faculty of Computer Information Science, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates, [email protected] Muideen A. Ajagbe Department of Computer Science, The University of Manchester, Manchester, United Kingdom, [email protected] Erol-Valeriu Chioasca Exgence Ltd., CORE, Manchester, United Kingdom, [email protected] Riza T. Batista-Navarro Department of Computer Science, The University of Manchester, Manchester, United Kingdom, [email protected] † Corresponding author. Context: NLP4RE – Natural language processing (NLP) supported requirements engineering (RE) – is an area of research and development that seeks to apply NLP techniques, tools and resources to a variety of requirements documents or artifacts to support a range of linguistic analysis tasks performed at various RE phases. Such tasks include detecting language issues, identifying key domain concepts and establishing traceability links between requirements. Objective: This article surveys the landscape of NLP4RE research to understand the state of the art and identify open problems. Method: The systematic mapping study approach is used to conduct this survey, which identified 404 relevant primary studies and reviewed them according to five research questions, cutting across five aspects of NLP4RE research, concerning the state of the literature, the state of empirical research, the research focus, the state of the practice, and the NLP technologies used.
    [Show full text]
  • Detecting Politeness in Natural Language by Michael Yeomans, Alejandro Kantor, Dustin Tingley
    CONTRIBUTED RESEARCH ARTICLES 489 The politeness Package: Detecting Politeness in Natural Language by Michael Yeomans, Alejandro Kantor, Dustin Tingley Abstract This package provides tools to extract politeness markers in English natural language. It also allows researchers to easily visualize and quantify politeness between groups of documents. This package combines and extends prior research on the linguistic markers of politeness (Brown and Levinson, 1987; Danescu-Niculescu-Mizil et al., 2013; Voigt et al., 2017). We demonstrate two applications for detecting politeness in natural language during consequential social interactions— distributive negotiations, and speed dating. Introduction Politeness is a universal dimension of human communication (Goffman, 1967; Lakoff, 1973; Brown and Levinson, 1987). In practically all settings, a speaker can choose to be more or less polite to their audience, and this can have consequences for the speakers’ social goals. Politeness is encoded in a discrete and rich set of linguistic markers that modify the information content of an utterance. Sometimes politeness is an act of commission (for example, saying “please” and “thank you”) <and sometimes it is an act of omission (for example, declining to be contradictory). Furthermore, the mapping of politeness markers often varies by culture, by context (work vs. family vs. friends), by a speaker’s characteristics (male vs. female), or the goals (buyer vs. seller). Many branches of social science might be interested in how (and when) people express politeness to one another, as one mechanism by which social co-ordination is achieved. The politeness package is designed to make it easier to detect politeness in English natural language, by quantifying relevant characteristics of polite speech, and comparing them to other data about the speaker.
    [Show full text]
  • Natural Language Processing
    Natural Language Processing Liz Liddy (lead), Eduard Hovy, Jimmy Lin, John Prager, Dragomir Radev, Lucy Vanderwende, Ralph Weischedel This report is one of five reports that were based on the MINDS workshops, led by Donna Harman (NIST) and sponsored by Heather McCallum-Bayliss of the Disruptive Technology Office of the Office of the Director of National Intelligence's Office of Science and Technology (ODNI/ADDNI/S&T/DTO). To find the rest of the reports, and an executive overview, please see http://www.itl.nist.gov/iaui/894.02/minds.html. Historic Paradigm Shifts or Shift-Enablers A series of discoveries and developments over the past years has resulted in major shifts in the discipline of Natural Language Processing. Some have been more influential than others, but each is recognizable today as having had major impact, although this might not have been seen at the time. Some have been shift-enablers, rather than actual shifts in methods or approaches, but these have caused as major a change in how the discipline accomplishes its work. Very early on in the emergence of the field of NLP, there were demonstrations that NLP could develop operational systems with real levels of linguistic processing, in truly end-to-end (although toy) systems. These included SHRDLU by Winograd (1971) and LUNAR by Woods (1970). Each could accomplish a specific task — manipulating blocks in the blocks world or answering questions about samples from the moon. They were able to accomplish their limited goals because they included all the levels of language processing in their interactions with humans, including morphological, lexical, syntactic, semantic, discourse and pragmatic.
    [Show full text]
  • “Linguistic Analysis” As a Misnomer, Or, Why Linguistics Is in a State of Permanent Crisis
    Alexander Kravchenko Russia, Baikal National University of Economics and Law, Irkutsk “Linguistic Analysis” as a Misnomer, or, Why Linguistics is in a State of Permanent Crisis Key words: methodology, written-language bias, biology of language, consensual domain, language function Ключевые слова: методология, письменноязыковая предвзятость, биология языка, консенсуальная область, функция языка Аннотация Показывается ошибочность общепринятого понятия лингвистического анализа как анализа естественного языка. Следствием соссюровского структурализма и фило- софии объективного реализма является взгляд на язык как на вещь (код) – систему знаков, используемых как инструмент для коммуникации, под которой понимается обмен информацией. При таком подходе анализ в традиционной лингвистике пред- ставляет собой анализ вещей – письменных слов, предложений, текстов; все они являются культурными артефактами и не принадлежат сфере естественного языка как видоспецифичного социального поведения, биологическая функция которого состоит в ориентировании себя и других в когнитивной области взаимодействий. До тех пор, пока наукой не будет отвергнута кодовая модель языка, лингвистический анализ будет продолжать обслуживать языковой миф, удерживая лингвистику в со- стоянии перманентного кризиса. 1. Th e problem with linguistics as a science There is a growing feeling of uneasiness in the global community of linguists about the current state of linguistics as a science. Despite a lot of academic activity in the fi eld, and massive research refl ected in the ever growing number of publications related to the study of the various aspects of language, there hasn’t been a major breakthrough in the explorations of language as a unique endowment of humans. 26 Alexander Kravchenko Numerous competing theoretical frameworks and approaches in linguistic re- search continue to obscure the obvious truth that there is very little understanding of language as a phenomenon which sets humans apart from all other known biological species.
    [Show full text]
  • Natural Language Processing and Language Learning
    To appear 2012 in Encyclopedia of Applied Linguistics, edited by Carol A. Chapelle. Wiley Blackwell Natural Language Processing and Language Learning Detmar Meurers Universität Tübingen [email protected] As a relatively young field of research and development started by work on cryptanalysis and machine translation around 50 years ago, Natural Language Processing (NLP) is concerned with the automated processing of human language. It addresses the analysis and generation of written and spoken language, though speech processing is often regarded as a separate subfield. NLP emphasizes processing and applications and as such can be seen as the applied side of Computational Linguistics, the interdisciplinary field of research concerned with for- mal analysis and modeling of language and its applications at the intersection of Linguistics, Computer Science, and Psychology. In terms of the language aspects dealt with in NLP, traditionally lexical, morphological and syntactic aspects of language were at the center of attention, but aspects of meaning, discourse, and the relation to the extra-linguistic context have become increasingly prominent in the last decade. A good introduction and overview of the field is provided in Jurafsky & Martin (2009). This article explores the relevance and uses of NLP in the context of language learning, focusing on written language. As a concise characterization of this emergent subfield, the discussion will focus on motivating the relevance, characterizing the techniques, and delin- eating the uses of NLP; more historical background and discussion can be found in Nerbonne (2003) and Heift & Schulze (2007). One can distinguish two broad uses of NLP in this context: On the one hand, NLP can be used to analyze learner language, i.e., words, sentences, or texts produced by language learners.
    [Show full text]
  • LDL-2014 3Rd Workshop on Linked Data in Linguistics
    3rd Workshop on Linked Data in Linguistics: Multilingual Knowledge Resources and Natural Language Processing Workshop Programme 08:30 - 09:00 – Opening and Introduction by Workshop Chair(s) 09:00 – 10:00 – Invited Talk Piek Vossen, The Collaborative Inter-Lingual-Index for harmonizing wordnets 10:00 – 10:30 – Session 1: Modeling Lexical-Semantic Resources with lemon Andon Tchechmedjiev, Gilles Sérasset, Jérôme Goulian and Didier Schwab, Attaching Translations to Proper Lexical Senses in DBnary 10:30 – 11:00 Coffee break 11:00-11:20– Session 1: Modeling Lexical-Semantic Resources with lemon John Philip McCrae, Christiane Fellbaum and Philipp Cimiano, Publishing and Linking WordNet using lemon and RDF 11:20-11:40– Session 1: Modeling Lexical-Semantic Resources with lemon Andrey Kutuzov and Maxim Ionov, Releasing genre keywords of Russian movie descriptions as Linguistic Linked Open Data: an experience report 11:40-12:00– Session 2: Metadata Matej Durco and Menzo Windhouwer, From CLARIN Component Metadata to Linked Open Data 12:00-12:20– Session 2: Metadata Gary Lefman, David Lewis and Felix Sasaki, A Brief Survey of Multimedia Annotation Localisation on the Web of Linked Data 12:20-12:50– Session 2: Metadata Daniel Jettka, Karim Kuropka, Cristina Vertan and Heike Zinsmeister, Towards a Linked Open Data Representation of a Grammar Terms Index 12:50-13:00 – Poster slam – Data Challenge 13:00 – 14:00 Lunch break 14:00 – 15:00 – Invited Talk Gerard de Mello, From Linked Data to Tightly Integrated Data 15:00 – 15:30 – Section 3: Crosslinguistic
    [Show full text]
  • From Natural Language to Programming Language
    110 Chapter 4 From Natural Language to Programming Language Xiao Liu Pennsylvania State University, USA Dinghao Wu Pennsylvania State University, USA ABSTRACT Programming remains a dark art for beginners or even professional programmers. Experience indicates that one of the first barriers for learning a new programming language is the rigid and unnatural syntax and semantics. After analysis of research on the language features used by non-programmers in describing problem solving, the authors propose a new program synthesis framework, dialog-based programming, which interprets natural language descriptions into computer programs without forcing the input formats. In this chapter, they describe three case studies that demonstrate the functionalities of this program synthesis framework and show how natural language alleviates challenges for novice programmers to conduct software development, scripting, and verification. INTRODUCTION Programming languages are formal languages with precise instructions for different software development purposes such as software implementation and verification. Due to its conciseness, the absence of redundancy causes less ambiguity in describing problems but on the other hand, reduces the expressiveness. Since the early days of automatic computing, researchers have considered the shortcomings DOI: 10.4018/978-1-5225-5969-6.ch004 Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. From Natural Language to Programming Language that programming requires to accommodate the precision with the adoption of formal symbolism (Myers, Pane, & Ko, 2004). They have been exploring techniques that could help untrained and lightly trained users to write programming code in a more natural way, and natural programming is then proposed (Biermann, 1983; Pollock, Vijay-Shanker, Hill, Sridhara, & Shepherd, 2013).
    [Show full text]
  • Mpi Cbs 2006–2007 12.28 Mb
    Research Report 2006/2007 Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Editors: D. Yves von Cramon Angela D. Friederici Wolfgang Prinz Robert Turner Arno Villringer Max Planck Institute for Human Cognitive and Brain Sciences Stephanstrasse 1a · D-04103 Leipzig, Germany Phone +49 (0) 341 9940-00 Fax +49 (0) 341 9940-104 [email protected] · www.cbs.mpg.de Editing: Christina Schröder Layout: Andrea Gast-Sandmann Photographs: Nikolaus Brade, Berlin David Ausserhofer, Berlin (John-Dylan Haynes) Martin Jehnichen, Leipzig (Angela D. Friederici) Norbert Michalke, Berlin (Ina Bornkessel) Print: Druckerei - Werbezentrum Bechmann, Leipzig Leipzig, November 2007 Research Report 2006/2007 The photograph on this page was taken in summer 2007, During the past two years, the Institute has resembled a depicting the building works at our Institute. It makes the building site not only from the outside, but also with re- point that much of our work during the past two years gard to its research profile. On the one hand, D. Yves von has been conducted, quite literally, beside a building site. Cramon has shifted the focus of his work from Leipzig Happily, this essential work, laying the foundations for to the Max Planck Institute for Neurological Research in our future research, has not interfered with our scientific Cologne. On the other hand, we successfully concluded progress. two new appointments. Since October 2006, Robert Turner has been working at the Institute as Director There were two phases of construction. The first results of the newly founded Department of Neurophysics, from the merger of both Institutes and will accommo- which has already established itself at international lev- date two new Departments including offices and multi- el.
    [Show full text]