Talking to Computers in Natural Language

Total Page:16

File Type:pdf, Size:1020Kb

Talking to Computers in Natural Language feature Talking to Computers in Natural Language Natural language understanding is as old as computing itself, but recent advances in machine learning and the rising demand of natural-language interfaces make it a promising time to once again tackle the long-standing challenge. By Percy Liang DOI: 10.1145/2659831 s you read this sentence, the words on the page are somehow absorbed into your brain and transformed into concepts, which then enter into a rich network of previously-acquired concepts. This process of language understanding has so far been the sole privilege of humans. But the universality of computation, Aas formalized by Alan Turing in the early 1930s—which states that any computation could be done on a Turing machine—offers a tantalizing possibility that a computer could understand language as well. Later, Turing went on in his seminal 1950 article, “Computing Machinery and Intelligence,” to propose the now-famous Turing test—a bold and speculative method to evaluate cial intelligence at the time. Daniel Bo- Figure 1). SHRDLU could both answer whether a computer actually under- brow built a system for his Ph.D. thesis questions and execute actions, for ex- stands language (or more broadly, is at MIT to solve algebra word problems ample: “Find a block that is taller than “intelligent”). While this test has led to found in high-school algebra books, the one you are holding and put it into the development of amusing chatbots for example: “If the number of custom- the box.” In this case, SHRDLU would that attempt to fool human judges by ers Tom gets is twice the square of 20% first have to understand that the blue engaging in light-hearted banter, the of the number of advertisements he runs, block is the referent and then perform grand challenge of developing serious and the number of advertisements is 45, the action by moving the small green programs that can truly understand then what is the numbers of customers block out of the way and then lifting the language in useful ways remains wide Tom gets?” [1]. Another landmark was blue block into the brown box. Inter- open. This article provides a brief the LUNAR system, developed by Bill pretation and execution are performed glimpse into the history of language un- Woods in the early 1970s at BBN [2]. jointly, and the key idea was that true derstanding systems, the challenges as- LUNAR provided a natural-language language understanding is only sensi- sociated with understanding language, interface into a database about moon ble when it connects with the world. and how machine learning is emerging rocks that had been brought back on For their time, these systems were as a major character in the story. the recent Apollo 11 mission. Scientists significant achievements. They were could ask LUNAR to: “list all the rocks able to handle fairly complex linguistic THE EARLY YEARS, that contain chronite and ulvospinel.” phenomena and integrate syntax, se- RULE-BASED SYSTEMS Around the same time, Terry Wino- mantics, and reasoning in an end-to- The first natural language understand- grad, then a Ph.D. student at MIT, de- end application. What is even more im- ing systems emerged in the early 1960s veloped another system called SHRDLU pressive is that these systems ran on a in Cambridge, MA, a hotbed for artifi- [3] that lived in a toy blocks world (see modicum of resources by today’s stan- 18 XRDS • FALL 2014 • VOL.21 • NO.1 dards. For example, LUNAR was writ- ral languages such as English with pro- terpretation, whereas in the latter, it ten in LISP for the DEC PDP-10, and all gramming languages such as Python. is “the women.” the code and data fit in only 80 KB of Python is unambiguous. The expres- In both of these examples, it is clear memory. In contrast, today, just start- sion lambda x : x.s plit(" ")[0:3] the words alone do not fully specify the ing a Python interpreter alone eats up has exactly one denotation (meaning) meaning. They are only a few impres- 5 MB, which is 60 times more. as dictated by the Python language sionistic brushstrokes, leaving the Over the following 20 years, these specification. English, on the other rest to be filled in by the reader. Hu- systems were extended, but soon it hand, can be ambiguous and vague. mans perform this completion based became increasingly difficult to make Consider the following pair of on knowledge about the world that we progress. Systems built for rocks and sentences from Yehoshua Bar-Hillel: cultivate throughout our lives. Com- blocks did not automatically general- “The pen is in the box” and “The box puters lack this knowledge, and there- ize to other domains, so adaptation is in the pen.” [4] In the first sentence, fore these inferential leaps are cur- was very burdensome. Also, to handle “pen” is most likely a writing instru- rently extremely difficult. This is why the never-ending intricacies of natural ment; in the second, it is most likely systems such as SHRDLU were con- language, the complexity of these sys- an enclosure for animals. Another fined to a microcosm, where such tems spiraled out of control. example from Winograd: “The city inferences are possible, and why pro- councilmen refused the women a gramming languages live solely in the READING BETWEEN THE LINES, permit because they feared violence” computer world. THE CHALLENGES OF LANGUAGE and “The ... because they advocated Despite differences between Eng- Why is it so difficult for a computer to revolution” [3]. Who does “they” refer lish and Python, there are some understand natural language? To an- to in each case? In the first sentence, important similarities. The first is Image by Lasse Behnke swer this, it is helpful to contrast natu- “the city councilmen” is the likely in- “compositionality”—an idea often XRDS • FALL 2014 • VOL.21 • NO.1 19 feature attributed to German logician Got- 1959 checkers program that learned to tlob Frege—that the meaning of the Language is an play from its own moves and game out- whole is derived from the meaning of amazing vehicle for comes. Today, machine learning plays the parts. Just as a Python interpreter a vital role in applications spanning computes (4 − 2) + 3 by understand- human expression, spam filtering, speech recognition, ad- ing numbers, operators, and a few capable of conveying vertisement placement, robotics, med- combination rules, humans under- ical diagnosis, etc. stand “red house” by understanding everything from Machine learning also drives many the constituent words. This compo- intense emotions to NLP tasks: part-of-speech tagging sitionality is what allows us to com- (e.g., identifying “London” as a prop- municate a dazzling array of different intricate scientific er noun), named-entity recognition meanings given just a relatively small arguments. (e.g., identifying “London” as a loca- vocabulary, or as German philosopher tion), syntactic parsing (e.g., identify- Wilhelm von Humboldt put it, “make ing “London” as the direct object of a infinite use of finite means.” sentence), and machine translation The ambiguous nature of natural to the same problems that plagued all (e.g., converting “London” to “Lon- language might seem like a flaw, but purely rule-based systems. dres” in French). One task closely tied in fact, it is exactly this ambiguity that to language understanding is ques- makes natural language so powerful. THE STATISTICAL REVOLUTION tion answering (e.g., responding to Think of language as a (cooperative) In the early 1990s, a revolution oc- “What is the largest city in England?” game between a speaker and a listen- curred. Up until then, natural lan- with “London”). A question-answering er. Game play proceeds as follows: 1. guage processing (NLP) research had system uses the question to retrieve the speaker thinks of a concept, 2. she been rule-based, where one directly relevant Web pages using a search chooses an utterance to convey that writes a program to perform a task. engine, extracts candidate answers concept, and 3. the listener interprets But with the increased availability from those pages, and then scores and the utterance. Both players win if of more data and more computing ranks the answers. the listener’s interpretation matches power, NLP went statistical. The sta- A shining achievement of ques- the speaker’s intention. To play this tistical paradigm requires a different tion answering was IBM’s Watson [5], game well, the speaker should thus mode of thinking: one (1) first col- a computer built for the quiz show choose the simplest utterance that lects examples of the desired input- “Jeopardy!” David Ferrucci’s team of conveys her intended concept—any- output behavior of the program, (2) 20 researchers worked tirelessly for thing the listener can infer can be writes a partial program with un- four years, and in 2011, Watson took omitted. For example, “cities that are known parameters, and (3) uses a on former “Jeopardy!” champions Brad in United States” can be shortened to machine learning algorithm to au- Rutter and Ken Jennings in a widely “U.S. cities.” How can a computer fill tomatically tune these parameters publicized match. Watson was victo- in these gaps, which depend on the based on the examples. rious. IBM had pulled off a similarly breadth of human experience involv- Statistical techniques have a long impressive feat in 1997 with Deep Blue, ing perception of the world and social history. As far back as 1795, Carl Fried- which defeated world chess champion, interactions? Projects such as Cyc at- rich Gauss developed the least squares Gary Kasparov. Somehow, “Jeopardy!” tempted to manually write down this method for fitting a line to a set of hit closer to home, as it dealt with lan- world knowledge (e.g., every tree is a points determined from measurement guage, something uniquely human, plant), but there is a lot of world out data.
Recommended publications
  • A Survey of Top-Level Ontologies to Inform the Ontological Choices for a Foundation Data Model
    A survey of Top-Level Ontologies To inform the ontological choices for a Foundation Data Model Version 1 Contents 1 Introduction and Purpose 3 F.13 FrameNet 92 2 Approach and contents 4 F.14 GFO – General Formal Ontology 94 2.1 Collect candidate top-level ontologies 4 F.15 gist 95 2.2 Develop assessment framework 4 F.16 HQDM – High Quality Data Models 97 2.3 Assessment of candidate top-level ontologies F.17 IDEAS – International Defence Enterprise against the framework 5 Architecture Specification 99 2.4 Terminological note 5 F.18 IEC 62541 100 3 Assessment framework – development basis 6 F.19 IEC 63088 100 3.1 General ontological requirements 6 F.20 ISO 12006-3 101 3.2 Overarching ontological architecture F.21 ISO 15926-2 102 framework 8 F.22 KKO: KBpedia Knowledge Ontology 103 4 Ontological commitment overview 11 F.23 KR Ontology – Knowledge Representation 4.1 General choices 11 Ontology 105 4.2 Formal structure – horizontal and vertical 14 F.24 MarineTLO: A Top-Level 4.3 Universal commitments 33 Ontology for the Marine Domain 106 5 Assessment Framework Results 37 F. 25 MIMOSA CCOM – (Common Conceptual 5.1 General choices 37 Object Model) 108 5.2 Formal structure: vertical aspects 38 F.26 OWL – Web Ontology Language 110 5.3 Formal structure: horizontal aspects 42 F.27 ProtOn – PROTo ONtology 111 5.4 Universal commitments 44 F.28 Schema.org 112 6 Summary 46 F.29 SENSUS 113 Appendix A F.30 SKOS 113 Pathway requirements for a Foundation Data F.31 SUMO 115 Model 48 F.32 TMRM/TMDM – Topic Map Reference/Data Appendix B Models 116 ISO IEC 21838-1:2019
    [Show full text]
  • Artificial Intelligence
    BROAD AI now and later Michael Witbrock, PhD University of Auckland Broad AI Lab @witbrock Aristotle (384–322 BCE) Organon ROOTS OF AI ROOTS OF AI Santiago Ramón y Cajal (1852 -1934) Cerebral Cortex WHAT’S AI • OLD definition: AI is everything we don’t yet know how program • Now some things that people can’t do: • unique capabilities (e.g. Style transfer) • superhuman performance (some areas of speech, vision, games, some QA, etc) • Current AI Systems can be divided by their kind of capability: • Skilled (Image recognition, Game Playing (Chess, Atari, Go, DoTA), Driving) • Attentive (Trading: Aidyia; Senior Care: CareMedia, Driving) • Knowledgeable, (Google Now, Siri, Watson, Cortana) • High IQ (Cyc, Soar, Wolfram Alpha) GOFAI • Thought is symbol manipulation • Large numbers of precisely defined symbols (terms) • Based on mathematical logic (implies (and (isa ?INST1 LegalAgreement) (agreeingAgents ?INST1 ?INST2)) (isa ?INST2 LegalAgent)) • Problems solved by searching for transformations of symbolic representations that lead to a solution Slow Development Thinking Quickly Thinking Slowly (System I) (System II) Human Superpower c.f. other Done well by animals and people animals Massively parallel algorithms Serial and slow Done poorly until now by computers Done poorly by most people Not impressive to ordinary people Impressive (prizes, high pay) "Sir, an animal’s reasoning is like a dog's walking on his hind legs. It is not done well; but you are surprised to find it done at all.“ - apologies to Samuel Johnson Achieved on computers by high- Fundamental design principle of power, low density, slow computers simulation of vastly different Computer superpower c.f. neural hardware human Recurrent Deep Learning & Deep Reasoning MACHINE LEARNING • Meaning is implicit in the data • Thought is the transformation of learned representations http://karpathy.github.io/2015/05/21/rnn- effectiveness/ .
    [Show full text]
  • Knowledge Graphs on the Web – an Overview Arxiv:2003.00719V3 [Cs
    January 2020 Knowledge Graphs on the Web – an Overview Nicolas HEIST, Sven HERTLING, Daniel RINGLER, and Heiko PAULHEIM Data and Web Science Group, University of Mannheim, Germany Abstract. Knowledge Graphs are an emerging form of knowledge representation. While Google coined the term Knowledge Graph first and promoted it as a means to improve their search results, they are used in many applications today. In a knowl- edge graph, entities in the real world and/or a business domain (e.g., people, places, or events) are represented as nodes, which are connected by edges representing the relations between those entities. While companies such as Google, Microsoft, and Facebook have their own, non-public knowledge graphs, there is also a larger body of publicly available knowledge graphs, such as DBpedia or Wikidata. In this chap- ter, we provide an overview and comparison of those publicly available knowledge graphs, and give insights into their contents, size, coverage, and overlap. Keywords. Knowledge Graph, Linked Data, Semantic Web, Profiling 1. Introduction Knowledge Graphs are increasingly used as means to represent knowledge. Due to their versatile means of representation, they can be used to integrate different heterogeneous data sources, both within as well as across organizations. [8,9] Besides such domain-specific knowledge graphs which are typically developed for specific domains and/or use cases, there are also public, cross-domain knowledge graphs encoding common knowledge, such as DBpedia, Wikidata, or YAGO. [33] Such knowl- edge graphs may be used, e.g., for automatically enriching data with background knowl- arXiv:2003.00719v3 [cs.AI] 12 Mar 2020 edge to be used in knowledge-intensive downstream applications.
    [Show full text]
  • Using Linked Data for Semi-Automatic Guesstimation
    Using Linked Data for Semi-Automatic Guesstimation Jonathan A. Abourbih and Alan Bundy and Fiona McNeill∗ [email protected], [email protected], [email protected] University of Edinburgh, School of Informatics 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom Abstract and Semantic Web systems. Next, we outline the process of GORT is a system that combines Linked Data from across guesstimation. Then, we describe the organisation and im- several Semantic Web data sources to solve guesstimation plementation of GORT. Finally, we close with an evaluation problems, with user assistance. The system uses customised of the system’s performance and adaptability, and compare inference rules over the relationships in the OpenCyc ontol- it to several other related systems. We also conclude with a ogy, combined with data from DBPedia, to reason and per- brief section on future work. form its calculations. The system is extensible with new Linked Data, as it becomes available, and is capable of an- Literature Survey swering a small range of guesstimation questions. Combining facts to answer a user query is a mature field. The DEDUCOM system (Slagle 1965) was one of the ear- Introduction liest systems to perform deductive query answering. DE- The true power of the Semantic Web will come from com- DUCOM applies procedural knowledge to a set of facts in bining information from heterogeneous data sources to form a knowledge base to answer user queries, and a user can new knowledge. A system that is capable of deducing an an- also supplement the knowledge base with further facts.
    [Show full text]
  • Why Has AI Failed? and How Can It Succeed?
    Why Has AI Failed? And How Can It Succeed? John F. Sowa VivoMind Research, LLC 10 May 2015 Extended version of slides for MICAI'14 ProblemsProblems andand ChallengesChallenges Early hopes for artificial intelligence have not been realized. Language understanding is more difficult than anyone thought. A three-year-old child is better able to learn, understand, and generate language than any current computer system. Tasks that are easy for many animals are impossible for the latest and greatest robots. Questions: ● Have we been using the right theories, tools, and techniques? ● Why haven’t these tools worked as well as we had hoped? ● What other methods might be more promising? ● What can research in neuroscience and psycholinguistics tell us? ● Can it suggest better ways of designing intelligent systems? 2 Early Days of Artificial Intelligence 1960: Hao Wang’s theorem prover took 7 minutes to prove all 378 FOL theorems of Principia Mathematica on an IBM 704 – much faster than two brilliant logicians, Whitehead and Russell. 1960: Emile Delavenay, in a book on machine translation: “While a great deal remains to be done, it can be stated without hesitation that the essential has already been accomplished.” 1965: Irving John Good, in speculations on the future of AI: “It is more probable than not that, within the twentieth century, an ultraintelligent machine will be built and that it will be the last invention that man need make.” 1968: Marvin Minsky, technical adviser for the movie 2001: “The HAL 9000 is a conservative estimate of the level of artificial intelligence in 2001.” 3 The Ultimate Understanding Engine Sentences uttered by a child named Laura before the age of 3.
    [Show full text]
  • What the Neurocognitive Study of Inner Language Reveals About Our Inner Space Hélène Loevenbruck
    What the neurocognitive study of inner language reveals about our inner space Hélène Loevenbruck To cite this version: Hélène Loevenbruck. What the neurocognitive study of inner language reveals about our inner space. Epistémocritique, épistémocritique : littérature et savoirs, 2018, Langage intérieur - Espaces intérieurs / Inner Speech - Inner Space, 18. hal-02039667 HAL Id: hal-02039667 https://hal.archives-ouvertes.fr/hal-02039667 Submitted on 20 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Preliminary version produced by the author. In Lœvenbruck H. (2008). Épistémocritique, n° 18 : Langage intérieur - Espaces intérieurs / Inner Speech - Inner Space, Stéphanie Smadja, Pierre-Louis Patoine (eds.) [http://epistemocritique.org/what-the-neurocognitive- study-of-inner-language-reveals-about-our-inner-space/] - hal-02039667 What the neurocognitive study of inner language reveals about our inner space Hélène Lœvenbruck Université Grenoble Alpes, CNRS, Laboratoire de Psychologie et NeuroCognition (LPNC), UMR 5105, 38000, Grenoble France Abstract Our inner space is furnished, and sometimes even stuffed, with verbal material. The nature of inner language has long been under the careful scrutiny of scholars, philosophers and writers, through the practice of introspection. The use of recent experimental methods in the field of cognitive neuroscience provides a new window of insight into the format, properties, qualities and mechanisms of inner language.
    [Show full text]
  • Logic-Based Technologies for Intelligent Systems: State of the Art and Perspectives
    information Article Logic-Based Technologies for Intelligent Systems: State of the Art and Perspectives Roberta Calegari 1,* , Giovanni Ciatto 2 , Enrico Denti 3 and Andrea Omicini 2 1 Alma AI—Alma Mater Research Institute for Human-Centered Artificial Intelligence, Alma Mater Studiorum–Università di Bologna, 40121 Bologna, Italy 2 Dipartimento di Informatica–Scienza e Ingegneria (DISI), Alma Mater Studiorum–Università di Bologna, 47522 Cesena, Italy; [email protected] (G.C.); [email protected] (A.O.) 3 Dipartimento di Informatica–Scienza e Ingegneria (DISI), Alma Mater Studiorum–Università di Bologna, 40136 Bologna, Italy; [email protected] * Correspondence: [email protected] Received: 25 February 2020; Accepted: 18 March 2020; Published: 22 March 2020 Abstract: Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future.
    [Show full text]
  • CNS 2014 Program
    Cognitive Neuroscience Society 21st Annual Meeting, April 5-8, 2014 Marriott Copley Place Hotel, Boston, Massachusetts 2014 Annual Meeting Program Contents 2014 Committees & Staff . 2 Schedule Overview . 3 . Keynotes . 5 2014 George A . Miller Awardee . 6. Distinguished Career Contributions Awardee . 7 . Young Investigator Awardees . 8 . General Information . 10 Exhibitors . 13 . Invited-Symposium Sessions . 14 Mini-Symposium Sessions . 18 Poster Schedule . 32. Poster Session A . 33 Poster Session B . 66 Poster Session C . 98 Poster Session D . 130 Poster Session E . 163 Poster Session F . 195 . Poster Session G . 227 Poster Topic Index . 259. Author Index . 261 . Boston Marriott Copley Place Floorplan . 272. A Supplement of the Journal of Cognitive Neuroscience Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org 2014 Committees & Staff Governing Board Mini-Symposium Committee Roberto Cabeza, Ph.D., Duke University David Badre, Ph.D., Brown University (Chair) Marta Kutas, Ph.D., University of California, San Diego Adam Aron, Ph.D., University of California, San Diego Helen Neville, Ph.D., University of Oregon Lila Davachi, Ph.D., New York University Daniel Schacter, Ph.D., Harvard University Elizabeth Kensinger, Ph.D., Boston College Michael S. Gazzaniga, Ph.D., University of California, Gina Kuperberg, Ph.D., Harvard University Santa Barbara (ex officio) Thad Polk, Ph.D., University of Michigan George R. Mangun, Ph.D., University of California,
    [Show full text]
  • Knowledge on the Web: Towards Robust and Scalable Harvesting of Entity-Relationship Facts
    Knowledge on the Web: Towards Robust and Scalable Harvesting of Entity-Relationship Facts Gerhard Weikum Max Planck Institute for Informatics http://www.mpi-inf.mpg.de/~weikum/ Acknowledgements 2/38 Vision: Turn Web into Knowledge Base comprehensive DB knowledge fact of human knowledge assets extraction • everything that (Semantic (Statistical Web) Web) Wikipedia knows • machine-readable communities • capturing entities, (Social Web) classes, relationships Source: DB & IR methods for knowledge discovery. Communications of the ACM 52(4), 2009 3/38 Knowledge as Enabling Technology • entity recognition & disambiguation • understanding natural language & speech • knowledge services & reasoning for semantic apps • semantic search: precise answers to advanced queries (by scientists, students, journalists, analysts, etc.) German chancellor when Angela Merkel was born? Japanese computer science institutes? Politicians who are also scientists? Enzymes that inhibit HIV? Influenza drugs for pregnant women? ... 4/38 Knowledge Search on the Web (1) Query: sushi ingredients? Results: Nori seaweed Ginger Tuna Sashimi ... Unagi http://www.google.com/squared/5/38 Knowledge Search on the Web (1) Query:Query: JapaneseJapanese computerscomputeroOputer science science ? institutes ? http://www.google.com/squared/6/38 Knowledge Search on the Web (2) Query: politicians who are also scientists ? ?x isa politician . ?x isa scientist Results: Benjamin Franklin Zbigniew Brzezinski Alan Greenspan Angela Merkel … http://www.mpi-inf.mpg.de/yago-naga/7/38 Knowledge Search on the Web (2) Query: politicians who are married to scientists ? ?x isa politician . ?x isMarriedTo ?y . ?y isa scientist Results (3): [ Adrienne Clarkson, Stephen Clarkson ], [ Raúl Castro, Vilma Espín ], [ Jeannemarie Devolites Davis, Thomas M. Davis ] http://www.mpi-inf.mpg.de/yago-naga/8/38 Knowledge Search on the Web (3) http://www-tsujii.is.s.u-tokyo.ac.jp/medie/ 9/38 Take-Home Message If music was invented Information is not Knowledge.
    [Show full text]
  • Revealing the Language of Thought Brent Silby 1
    Revealing the Language of Thought Brent Silby 1 Revealing the Language of Thought An e-book by BRENT SILBY This paper was produced at the Department of Philosophy, University of Canterbury, New Zealand Copyright © Brent Silby 2000 Revealing the Language of Thought Brent Silby 2 Contents Abstract Chapter 1: Introduction Chapter 2: Thinking Sentences 1. Preliminary Thoughts 2. The Language of Thought Hypothesis 3. The Map Alternative 4. Problems with Mentalese Chapter 3: Installing New Technology: Natural Language and the Mind 1. Introduction 2. Language... what's it for? 3. Natural Language as the Language of Thought 4. What can we make of the evidence? Chapter 4: The Last Stand... Don't Replace The Old Code Yet 1. The Fight for Mentalese 2. Pinker's Resistance 3. Pinker's Continued Resistance 4. A Concluding Thought about Thought Chapter 5: A Direction for Future Thought 1. The Review 2. The Conclusion 3. Expanding the mind beyond the confines of the biological brain References / Acknowledgments Revealing the Language of Thought Brent Silby 3 Abstract Language of thought theories fall primarily into two views. The first view sees the language of thought as an innate language known as mentalese, which is hypothesized to operate at a level below conscious awareness while at the same time operating at a higher level than the neural events in the brain. The second view supposes that the language of thought is not innate. Rather, the language of thought is natural language. So, as an English speaker, my language of thought would be English. My goal is to defend the second view.
    [Show full text]
  • Wikitology Wikipedia As an Ontology
    Creating and Exploiting a Web of Semantic Data Tim Finin University of Maryland, Baltimore County joint work with Zareen Syed (UMBC) and colleagues at the Johns Hopkins University Human Language Technology Center of Excellence ICAART 2010, 24 January 2010 http://ebiquity.umbc.edu/resource/html/id/288/ Overview • Introduction (and conclusion) • A Web of linked data • Wikitology • Applications • Conclusion introduction linked data wikitology applications conclusion Conclusions • The Web has made people smarter and more capable, providing easy access to the world's knowledge and services • Software agents need better access to a Web of data and knowledge to enhance their intelligence • Some key technologies are ready to exploit: Semantic Web, linked data, RDF search engines, DBpedia, Wikitology, information extraction, etc. introduction linked data wikitology applications conclusion The Age of Big Data • Massive amounts of data is available today on the Web, both for people and agents • This is what‟s driving Google, Bing, Yahoo • Human language advances also driven by avail- ability of unstructured data, text and speech • Large amounts of structured & semi-structured data is also coming online, including RDF • We can exploit this data to enhance our intelligent agents and services introduction linked data wikitology applications conclusion Twenty years ago… Tim Berners-Lee‟s 1989 WWW proposal described a web of relationships among named objects unifying many info. management tasks. Capsule history • Guha‟s MCF (~94) • XML+MCF=>RDF
    [Show full text]
  • AI/ML Finding a Doing Machine
    Digital Readiness: AI/ML Finding a doing machine Gregg Vesonder Stevens Institute of Technology http://vesonder.com Three Talks • Digital Readiness: AI/ML, The thinking system quest. – Artificial Intelligence and Machine Learning (AI/ML) have had a fascinating evolution from 1950 to the present. This talk sketches the main themes of AI and machine learning, tracing the evolution of the field since its beginning in the 1950s and explaining some of its main concepts. These eras are characterized as “from knowledge is power” to “data is king”. • Digital Readiness: AI/ML, Finding a doing machine. – In the last decade Machine Learning had a remarkable success record. We will review reasons for that success, review the technology, examine areas of need and explore what happened to the rest of AI, GOFAI (Good Old Fashion AI). • Digital Readiness: AI/ML, Common Sense prevails? – Will there be another AI Winter? We will explore some clues to where the current AI/ML may reunite with GOFAI (Good Old Fashioned AI) and hopefully expand the utility of both. This will include extrapolating on the necessary melding of AI with engineering, particularly systems engineering. Roadmap • Systems – Watson – CYC – NELL – Alexa, Siri, Google Home • Technologies – Semantic web – GPUs and CUDA – Back office (Hadoop) – ML Bias • Last week’s questions Winter is Coming? • First Summer: Irrational Exuberance (1948 – 1966) • First Winter (1967 – 1977) • Second Summer: Knowledge is Power (1978 – 1987) • Second Winter (1988 – 2011) • Third Summer (2012 – ?) • Why there might not be a third winter! Henry Kautz – Engelmore Lecture SYSTEMS Winter 2 Systems • Knowledge is power theme • Influence of the web, try to represent all knowledge – Creating a general ontology organizing everything in the world into a hierarchy of categories – Successful deep ontologies: Gene Ontology and CML Chemical Markup Language • Indeed extreme knowledge – CYC and Open CYC – IBM’s Watson Upper ontology of the world Russell and Norvig figure 12.1 Properties of a subject area and how they are related Ferrucci, D., et.al.
    [Show full text]