Automatic Conversion of Natural Language to 3D Animation

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Conversion of Natural Language to 3D Animation Automatic Conversion of Natural Language to 3D Animation Minhua Ma B.A., M.A., M.Sc. Faculty of Engineering University of Ulster A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy July 2006 ii Table of Contents List of Figures vi List of Tables ix Acknowledgements x Abstract xi Abbreviations xii Note on access to contents xiv 1. INTRODUCTION......................................................................................................................... 1 1.1 Overview of language visualisation ....................................................................................... 2 1.1.1 Multimodal output............................................................................................................ 2 1.1.2 Animation......................................................................................................................... 3 1.1.3 Intelligent ......................................................................................................................... 4 1.2 Problems in language visualisation ........................................................................................ 4 1.3 Objectives of this research...................................................................................................... 5 1.4 Outline of this thesis............................................................................................................... 5 2. APPROACHES TO MULTIMODAL PROCESSING...............................................................8 2.1 Automatic text-to-graphics systems ........................................................................................8 2.1.1 CarSim ..............................................................................................................................9 2.1.2 WordsEye..........................................................................................................................9 2.1.3 Micons and CD-based language animation.....................................................................12 2.1.4 Spoken Image and SONAS.............................................................................................12 2.2 Embodied agents and virtual humans....................................................................................14 2.2.1 Virtual human standards .................................................................................................15 2.2.2 Virtual humans................................................................................................................19 2.2.3 BEAT and other interactive agents .................................................................................20 2.2.4 Divergence on agents’ behaviour production..................................................................21 2.2.5 Gandalf............................................................................................................................22 2.2.6 Humanoid Animation......................................................................................................23 2.3 Multimodal storytelling.........................................................................................................23 2.3.1 Interactive storytelling ....................................................................................................24 2.3.2 AESOPWORLD .............................................................................................................25 2.3.3 Oz....................................................................................................................................26 2.3.4 KidsRoom .......................................................................................................................27 2.3.5 Computer games..............................................................................................................28 2.3.6 Film-inspired computer animations ................................................................................29 2.3.7 Computer graphics films .................................................................................................31 2.3.8 Video-based computer animation generation..................................................................31 2.4 Summary of previous systems...............................................................................................32 2.5 Multimodal allocation ...........................................................................................................32 2.6 Non-speech audio ..................................................................................................................35 2.6.1 Auditory icons.................................................................................................................36 2.6.2 Earcons............................................................................................................................37 2.6.3 Sonification .....................................................................................................................37 2.6.4 Music synthesis ...............................................................................................................37 2.7 Mental imagery in cognitive science.....................................................................................39 iii 2.8 Summary ...............................................................................................................................40 3. NATURAL LANGUAGE SEMANTICS ...................................................................................41 3.1 Natural language semantic representations ...........................................................................41 3.1.1 Semantic networks ..........................................................................................................41 3.1.2 Conceptual Dependency theory and scripts ....................................................................41 3.1.3 Lexical Conceptual Structure (LCS)...............................................................................45 3.1.4 Event-logic truth conditions............................................................................................46 3.1.5 X-schemas and f-structs ..................................................................................................47 3.2 Multimodal semantic representations....................................................................................49 3.2.1 Frame representation and frame-based systems..............................................................49 3.2.2 XML representations.......................................................................................................50 3.2.3 Summary of knowledge representations .........................................................................52 3.3 Temporal relations.................................................................................................................52 3.3.1 Punctual events................................................................................................................55 3.3.2 Verb entailment and troponymy......................................................................................56 3.4 Computational lexicons.........................................................................................................56 3.4.1 WordNet..........................................................................................................................57 3.4.2 FrameNet.........................................................................................................................58 3.4.3 The LCS database and VerbNet......................................................................................59 3.4.4 Comparison of lexicons...................................................................................................61 3.4.5 Generative lexicon ..........................................................................................................62 3.5 Language ontology ................................................................................................................62 3.5.1 Top concepts ...................................................................................................................62 3.5.2 Ontological categories of nouns......................................................................................63 3.5.3 Ontological categories of verbs.......................................................................................65 3.6 Summary ...............................................................................................................................68 4. LEXICAL VISUAL SEMANTIC REPRESENTATION........................................................ 69 4.1 Multimodal representation.................................................................................................... 69 4.2 Ontological categories of concepts (conceptual “parts of speech”) ..................................... 70 4.3 Lexical Visual Semantic Representation (LVSR)................................................................ 71 4.3.1 Finer EVENT predicates ................................................................................................ 74 4.3.2 Under-specification and selection restrictions ............................................................... 76 4.4 Visual semantics of events ................................................................................................... 78 4.4.1
Recommended publications
  • Download The
    COUNCIL FOR CHRISTIAN COLLEGES & UNIVERSITIES ADVANCE SPRING 2021 MAGAZINE Campus Stories The International Student Mental of Innovation Impact of COVID-19 Health in a Pandemic p. 20 p. 30 p. 38 THE LEADING NATIONAL VOICE OF CHRISTIAN HIGHER EDUCATION Are You Ready to Faithfully Engage with Culture? 1960 We have the opportunity to use our words and our voices for the common good. We insured our first Christian college in 1960. They’re still a customer today. How might we love God and our neighbors through In the midst of a divisive culture, public intellectuals This book offers a vision for ex- Find out why at the task of writing? speaking from an evangelical perspective have a pressing one’s faith through writing and for understanding critical role to play—within the church and beyond. brotherhoodmutual.com writing itself as a spiritual practice that cultivates virtue. Contributors Miroslav Volf, Amos Yong, Linda A. Drawing on authors and artists throughout the church’s Livingstone, Heather Templeton Dill, Katelyn Beaty, history, we learn how we might embrace writing as an act Emmanuel Katongole, John M. Perkins, and David of discipleship for today. Wright cast a vision for intellectuals who promote human fl ourishing. “When Christians compose with the aim of enacting “Whether as theologians, scholars, journalists, or charity, they listen with humility, they respond to others as social activists, Christians have been called to identify fellow children of God, and they demonstrate the discipline and argue for a vision of human fl ourishing that crosses required by the metanoic process of writing.
    [Show full text]
  • What the Neurocognitive Study of Inner Language Reveals About Our Inner Space Hélène Loevenbruck
    What the neurocognitive study of inner language reveals about our inner space Hélène Loevenbruck To cite this version: Hélène Loevenbruck. What the neurocognitive study of inner language reveals about our inner space. Epistémocritique, épistémocritique : littérature et savoirs, 2018, Langage intérieur - Espaces intérieurs / Inner Speech - Inner Space, 18. hal-02039667 HAL Id: hal-02039667 https://hal.archives-ouvertes.fr/hal-02039667 Submitted on 20 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Preliminary version produced by the author. In Lœvenbruck H. (2008). Épistémocritique, n° 18 : Langage intérieur - Espaces intérieurs / Inner Speech - Inner Space, Stéphanie Smadja, Pierre-Louis Patoine (eds.) [http://epistemocritique.org/what-the-neurocognitive- study-of-inner-language-reveals-about-our-inner-space/] - hal-02039667 What the neurocognitive study of inner language reveals about our inner space Hélène Lœvenbruck Université Grenoble Alpes, CNRS, Laboratoire de Psychologie et NeuroCognition (LPNC), UMR 5105, 38000, Grenoble France Abstract Our inner space is furnished, and sometimes even stuffed, with verbal material. The nature of inner language has long been under the careful scrutiny of scholars, philosophers and writers, through the practice of introspection. The use of recent experimental methods in the field of cognitive neuroscience provides a new window of insight into the format, properties, qualities and mechanisms of inner language.
    [Show full text]
  • Open Mind Common Sense: Knowledge Acquisition from the General Public
    Open Mind Common Sense: Knowledge Acquisition from the General Public Push Singh, Grace Lim, Thomas Lin, Erik T. Mueller Travell Perkins, Mark Tompkins, Wan Li Zhu MIT Media Laboratory 20 Ames Street Cambridge, MA 02139 USA {push, glim, tlin, markt, wlz}@mit.edu, [email protected], [email protected] Abstract underpinnings for commonsense reasoning (Shanahan Open Mind Common Sense is a knowledge acquisition 1997), there has been far less work on finding ways to system designed to acquire commonsense knowledge from accumulate the knowledge to do so in practice. The most the general public over the web. We describe and evaluate well-known attempt has been the Cyc project (Lenat 1995) our first fielded system, which enabled the construction of which contains 1.5 million assertions built over 15 years a 400,000 assertion commonsense knowledge base. We at the cost of several tens of millions of dollars. then discuss how our second-generation system addresses Knowledge bases this large require a tremendous effort to weaknesses discovered in the first. The new system engineer. With the exception of Cyc, this problem of scale acquires facts, descriptions, and stories by allowing has made efforts to study and build commonsense participants to construct and fill in natural language knowledge bases nearly non-existent within the artificial templates. It employs word-sense disambiguation and intelligence community. methods of clarifying entered knowledge, analogical inference to provide feedback, and allows participants to validate knowledge and in turn each other. Turning to the general public 1 In this paper we explore a possible solution to this Introduction problem of scale, based on one critical observation: Every We would like to build software agents that can engage in ordinary person has common sense of the kind we want to commonsense reasoning about ordinary human affairs.
    [Show full text]
  • CNS 2014 Program
    Cognitive Neuroscience Society 21st Annual Meeting, April 5-8, 2014 Marriott Copley Place Hotel, Boston, Massachusetts 2014 Annual Meeting Program Contents 2014 Committees & Staff . 2 Schedule Overview . 3 . Keynotes . 5 2014 George A . Miller Awardee . 6. Distinguished Career Contributions Awardee . 7 . Young Investigator Awardees . 8 . General Information . 10 Exhibitors . 13 . Invited-Symposium Sessions . 14 Mini-Symposium Sessions . 18 Poster Schedule . 32. Poster Session A . 33 Poster Session B . 66 Poster Session C . 98 Poster Session D . 130 Poster Session E . 163 Poster Session F . 195 . Poster Session G . 227 Poster Topic Index . 259. Author Index . 261 . Boston Marriott Copley Place Floorplan . 272. A Supplement of the Journal of Cognitive Neuroscience Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org 2014 Committees & Staff Governing Board Mini-Symposium Committee Roberto Cabeza, Ph.D., Duke University David Badre, Ph.D., Brown University (Chair) Marta Kutas, Ph.D., University of California, San Diego Adam Aron, Ph.D., University of California, San Diego Helen Neville, Ph.D., University of Oregon Lila Davachi, Ph.D., New York University Daniel Schacter, Ph.D., Harvard University Elizabeth Kensinger, Ph.D., Boston College Michael S. Gazzaniga, Ph.D., University of California, Gina Kuperberg, Ph.D., Harvard University Santa Barbara (ex officio) Thad Polk, Ph.D., University of Michigan George R. Mangun, Ph.D., University of California,
    [Show full text]
  • Automatic Affective Feedback in an Email Browser
    Automatic Affective Feedback in an Email Browser Hugo Liu Henry Lieberman Ted Selker Software Agents Group Software Agents Group Context-Aware Computing Group MIT Media Laboratory MIT Media Laboratory MIT Media Laboratory Cambridge, MA 02139 Cambridge, MA 02139 Cambridge, MA 02139 +1 617 253 5334 +1 617 253 0315 +1 617 253 6968 [email protected] [email protected] [email protected] ABSTRACT delighted us, the text sits unmoved in cold, square boxes on This paper demonstrates a new approach to recognizing and the computer screen. Nass et al.’s study of human- presenting the affect of text. The approach starts with a computer social interaction reveals that people naturally corpus of 400,000 responses to questions about everyday expect their interactions with computers to be social and life in Open Mind Common Sense. This so-called affective, just as with other people! [20],[21]. commonsense knowledge is the basis of a textual affect Sadly though, people have been so conditioned to expect so sensing engine. The engine dynamically analyzes a user’s little from the user interfaces of today that we are not even text and senses broad affective qualities of the story at the bothered by their inability to affectively respond to us like a sentence level. This paper shows how a commonsense friend or family member might do. affect model was constructed and incorporated into Chernov face style feedback in an affectively responsive This shortcoming in current user interfaces hinders email browser called EmpathyBuddy. This experimental progress in the bigger picture too. If software is to system reacts to sentences as they are typed.
    [Show full text]
  • Bootstrapping Commonsense Knowledge
    ASTRID: Bootstrapping Commonsense Knowledge Hans Peter Willems MIND|CONSTRUCT March 2021 Abstract The need for Commonsense Knowledge in the machine becomes more and more apparent, as we try to move forward in the development of Artificial (General) Intelligence. It is becoming evident that this kind of knowledge is paramount in the human cognitive capacity and therefore also crucial for machine intelligence to ever reach any level of performance nearing that of a human brain. However, attaining a sufficient amount, and qualitative level, of human Commonsense Knowledge in the machine, appears to be an ‘AI­hard’ or ‘AI­complete’ problem. How do humans do this? There is a lot to be learned from child development, and although there are AI­projects that try to use a developmental model to ‘grow’ intelligence, there have not been any (relevant) Commonsense Knowledge projects that leveraged the child development paradigm. That is, until now. I present ASTRID (Analysis of Systemic Tagging Results in Intelligent Dynamics), a real­world implementation of a Cognitive Architecture based on human developmental models. The current state of this project is the result of a full decade of research and development. This paper describes the project background, underlying philosophies, objectives and current results and insights. Keywords: Commonsense Knowledge, Unsupervised Transfer Learning, Machine Intelligence, Semantics, Natural Language Processing, Deep Inference. ©2021 Hans Peter Willems ­ First published March 22, 2021 online @ https://www.mindconstruct.com This work is licensed under a Creative Commons Attribution­ShareAlike 4.0 License 2 ASTRID: Bootstrapping Commonsense Knowledge The case for Commonsense Knowledge As early as 1959, John McCarthy argued for the need of Commonsense Knowledge to attain human level Artificial Intelligence (McCarthy, 1959), currently referred to as Artificial General Intelligence (AGI).
    [Show full text]
  • Natural Language Understanding with Commonsense Reasoning
    E.T.S. DE INGENIEROS INFORMÁTICOS UNIVERSIDAD POLITÉCNICA DE MADRID MASTER TESIS MSc IN ARTIFICIAL INTELLIGENCE (MUIA) NATURAL LANGUAGE UNDERSTANDING WITH COMMONSENSE REASONING: APPLICATION TO THE WINOGRAD SCHEMA CHALLENGE AUTHOR: ALFONSO LÓPEZ TORRES SUPERVISOR: MARTÍN MOLINA GONZÁLEZ JUNE, 2016 This is for my children Carla and Alonso, and my wife Véronique Thanks for their unconditional support and patient (also for the coming adventures…) v Acknowledgments: I’d like to thank the advices and help received from Martín. I was very lucky being your student. vi RESUMEN En 1950, Alan Turing propuso un test para evaluar el grado de inteligencia humana que podría presentar una máquina. La idea principal era realmente sencilla: llevar a cabo una charla abierta entre un evaluador y la máquina. Si dicho evaluador era incapaz de discernir si el examinado era una persona o una máquina, podría afirmarse que el test había sido superado. Desde entonces, a lo largo de los últimos 60 años se han presentado numerosas propuestas a través de los cuales se han puesto al descubierto ciertas debilidades del test. Quizás la más importante es el hecho de centrarse en la inteligencia humana, dejando a un lado otros tipos de inteligencia. El test obliga en gran medida a definir en la máquina un comportamiento antropomórfico y de imitación con el único fin de pasar el test. Con el fin de superar estos y otros puntos débiles, Hector Levesque propuso en 2011 un nuevo reto, “The Winograd Schema Challenge”. Un sencillo test basado en Pregunta y Respuesta sobre una frase que describe una situación cotidiana.
    [Show full text]
  • Talking to Computers in Natural Language
    feature Talking to Computers in Natural Language Natural language understanding is as old as computing itself, but recent advances in machine learning and the rising demand of natural-language interfaces make it a promising time to once again tackle the long-standing challenge. By Percy Liang DOI: 10.1145/2659831 s you read this sentence, the words on the page are somehow absorbed into your brain and transformed into concepts, which then enter into a rich network of previously-acquired concepts. This process of language understanding has so far been the sole privilege of humans. But the universality of computation, Aas formalized by Alan Turing in the early 1930s—which states that any computation could be done on a Turing machine—offers a tantalizing possibility that a computer could understand language as well. Later, Turing went on in his seminal 1950 article, “Computing Machinery and Intelligence,” to propose the now-famous Turing test—a bold and speculative method to evaluate cial intelligence at the time. Daniel Bo- Figure 1). SHRDLU could both answer whether a computer actually under- brow built a system for his Ph.D. thesis questions and execute actions, for ex- stands language (or more broadly, is at MIT to solve algebra word problems ample: “Find a block that is taller than “intelligent”). While this test has led to found in high-school algebra books, the one you are holding and put it into the development of amusing chatbots for example: “If the number of custom- the box.” In this case, SHRDLU would that attempt to fool human judges by ers Tom gets is twice the square of 20% first have to understand that the blue engaging in light-hearted banter, the of the number of advertisements he runs, block is the referent and then perform grand challenge of developing serious and the number of advertisements is 45, the action by moving the small green programs that can truly understand then what is the numbers of customers block out of the way and then lifting the language in useful ways remains wide Tom gets?” [1].
    [Show full text]
  • Revealing the Language of Thought Brent Silby 1
    Revealing the Language of Thought Brent Silby 1 Revealing the Language of Thought An e-book by BRENT SILBY This paper was produced at the Department of Philosophy, University of Canterbury, New Zealand Copyright © Brent Silby 2000 Revealing the Language of Thought Brent Silby 2 Contents Abstract Chapter 1: Introduction Chapter 2: Thinking Sentences 1. Preliminary Thoughts 2. The Language of Thought Hypothesis 3. The Map Alternative 4. Problems with Mentalese Chapter 3: Installing New Technology: Natural Language and the Mind 1. Introduction 2. Language... what's it for? 3. Natural Language as the Language of Thought 4. What can we make of the evidence? Chapter 4: The Last Stand... Don't Replace The Old Code Yet 1. The Fight for Mentalese 2. Pinker's Resistance 3. Pinker's Continued Resistance 4. A Concluding Thought about Thought Chapter 5: A Direction for Future Thought 1. The Review 2. The Conclusion 3. Expanding the mind beyond the confines of the biological brain References / Acknowledgments Revealing the Language of Thought Brent Silby 3 Abstract Language of thought theories fall primarily into two views. The first view sees the language of thought as an innate language known as mentalese, which is hypothesized to operate at a level below conscious awareness while at the same time operating at a higher level than the neural events in the brain. The second view supposes that the language of thought is not innate. Rather, the language of thought is natural language. So, as an English speaker, my language of thought would be English. My goal is to defend the second view.
    [Show full text]
  • Natural Language Processing (NLP) for Requirements Engineering: a Systematic Mapping Study
    Natural Language Processing (NLP) for Requirements Engineering: A Systematic Mapping Study Liping Zhao† Department of Computer Science, The University of Manchester, Manchester, United Kingdom, [email protected] Waad Alhoshan Department of Computer Science, The University of Manchester, Manchester, United Kingdom, [email protected] Alessio Ferrari Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo" (CNR-ISTI), Pisa, Italy, [email protected] Keletso J. Letsholo Faculty of Computer Information Science, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates, [email protected] Muideen A. Ajagbe Department of Computer Science, The University of Manchester, Manchester, United Kingdom, [email protected] Erol-Valeriu Chioasca Exgence Ltd., CORE, Manchester, United Kingdom, [email protected] Riza T. Batista-Navarro Department of Computer Science, The University of Manchester, Manchester, United Kingdom, [email protected] † Corresponding author. Context: NLP4RE – Natural language processing (NLP) supported requirements engineering (RE) – is an area of research and development that seeks to apply NLP techniques, tools and resources to a variety of requirements documents or artifacts to support a range of linguistic analysis tasks performed at various RE phases. Such tasks include detecting language issues, identifying key domain concepts and establishing traceability links between requirements. Objective: This article surveys the landscape of NLP4RE research to understand the state of the art and identify open problems. Method: The systematic mapping study approach is used to conduct this survey, which identified 404 relevant primary studies and reviewed them according to five research questions, cutting across five aspects of NLP4RE research, concerning the state of the literature, the state of empirical research, the research focus, the state of the practice, and the NLP technologies used.
    [Show full text]
  • Estudios De I+D+I
    ESTUDIOS DE I+D+I Número 51 Proyecto SIRAU. Servicio de gestión de información remota para las actividades de la vida diaria adaptable a usuario Autor/es: Catalá Mallofré, Andreu Filiación: Universidad Politécnica de Cataluña Contacto: Fecha: 2006 Para citar este documento: CATALÁ MALLOFRÉ, Andreu (Convocatoria 2006). “Proyecto SIRAU. Servicio de gestión de información remota para las actividades de la vida diaria adaptable a usuario”. Madrid. Estudios de I+D+I, nº 51. [Fecha de publicación: 03/05/2010]. <http://www.imsersomayores.csic.es/documentos/documentos/imserso-estudiosidi-51.pdf> Una iniciativa del IMSERSO y del CSIC © 2003 Portal Mayores http://www.imsersomayores.csic.es Resumen Este proyecto se enmarca dentro de una de las líneas de investigación del Centro de Estudios Tecnológicos para Personas con Dependencia (CETDP – UPC) de la Universidad Politécnica de Cataluña que se dedica a desarrollar soluciones tecnológicas para mejorar la calidad de vida de las personas con discapacidad. Se pretende aprovechar el gran avance que representan las nuevas tecnologías de identificación con radiofrecuencia (RFID), para su aplicación como sistema de apoyo a personas con déficit de distinta índole. En principio estaba pensado para personas con discapacidad visual, pero su uso es fácilmente extensible a personas con problemas de comprensión y memoria, o cualquier tipo de déficit cognitivo. La idea consiste en ofrecer la posibilidad de reconocer electrónicamente los objetos de la vida diaria, y que un sistema pueda presentar la información asociada mediante un canal verbal. Consta de un terminal portátil equipado con un trasmisor de corto alcance. Cuando el usuario acerca este terminal a un objeto o viceversa, lo identifica y ofrece información complementaria mediante un mensaje oral.
    [Show full text]
  • Text to Speech Synthesis for Bangla Language
    I.J. Information Engineering and Electronic Business, 2019, 2, 1-9 Published Online March 2019 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijieeb.2019.02.01 Text to Speech Synthesis for Bangla Language Khandaker Mamun Ahmed Department of Computer Science and Engineering, BRAC University, Dhaka, Bangladesh Email: [email protected] Prianka Mandal Department of Software Engineering, Daffodil International University, Dhaka, Bangladesh Email: [email protected] B M Mainul Hossain Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh Email: [email protected] Received: 13 September 2018; Accepted: 14 December 2018; Published: 08 March 2019 Abstract—Text-to-speech (TTS) synthesis is a rapidly A TTS system converts natural language text into growing field of research. Speech synthesis systems are speech and then, a computer system able to read text applicable to several areas such as robotics, education and aloud. A speech synthesizer converts written text to a embedded systems. The implementation of such TTS phonemic representation and then converts the phonemic system increases the correctness and efficiency of an representation to waveforms which can be output as application. Though Bangla is the seventh most spoken sound. language all over the world, uses of TTS system in There are several ways to create synthesized speech. applications are difficult to find for Bangla language Among them, concatenative synthesis and formant because of lacking simplicity and lightweightness in TTS synthesis are very popular. Concatenative synthesis is systems. Therefore, in this paper, we propose a simple based on concatenating pre-recorded speech of phonemes, and lightweight TTS system for Bangla language.
    [Show full text]