Commonsense Knowledge Base Completion with Structural and Semantic Context Chaitanya Malaviya}, Chandra Bhagavatula}, Antoine Bosselut}|, Yejin Choi}| }Allen Institute for Artificial Intelligence |University of Washington fchaitanyam,
[email protected], fantoineb,
[email protected] Abstract MotivatedByGoal prevent go to tooth Automatic KB completion for commonsense knowledge dentist decay eat graphs (e.g., ATOMIC and ConceptNet) poses unique chal- candy lenges compared to the much studied conventional knowl- HasPrerequisite edge bases (e.g., Freebase). Commonsense knowledge graphs Causes brush use free-form text to represent nodes, resulting in orders of your tooth HasFirstSubevent Causes magnitude more nodes compared to conventional KBs ( ∼18x tooth bacteria decay more nodes in ATOMIC compared to Freebase (FB15K- pick 237)). Importantly, this implies significantly sparser graph up your toothbrush structures — a major challenge for existing KB completion ReceivesAction methods that assume densely connected graphs over a rela- HasPrerequisite tively smaller set of nodes. good Causes breath NotDesires In this paper, we present novel KB completion models that treat by can address these challenges by exploiting the structural and dentist infection semantic context of nodes. Specifically, we investigate two person in cut key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densifi- cation and (2) transfer learning from pre-trained language Figure 1: Subgraph from ConceptNet illustrating semantic models to knowledge graphs for enhanced contextual rep- diversity of nodes. Dashed blue lines represent potential resentation of knowledge. We describe our method to in- edges to be added to the graph. corporate information from both these sources in a joint model and provide the first empirical results for KB com- pletion on ATOMIC and evaluation with ranking metrics on ConceptNet.