Estudios De I+D+I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE DEVELOPMENT of ACCENTED ENGLISH SYNTHETIC VOICES By
THE DEVELOPMENT OF ACCENTED ENGLISH SYNTHETIC VOICES by PROMISE TSHEPISO MALATJI DISSERTATION Submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE in the FACULTY OF SCIENCE AND AGRICULTURE (School of Mathematical and Computer Sciences) at the UNIVERSITY OF LIMPOPO SUPERVISOR: Mr MJD Manamela CO-SUPERVISOR: Dr TI Modipa 2019 DEDICATION In memory of my grandparents, Cecilia Khumalo and Alfred Mashele, who always believed in me! ii DECLARATION I declare that THE DEVELOPMENT OF ACCENTED ENGLISH SYNTHETIC VOICES is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references and that this work has not been submitted before for any other degree at any other institution. ______________________ ___________ Signature Date iii ACKNOWLEDGEMENTS I want to recognise the following people for their individual contributions to this dissertation: • My brother, Mr B.I. Khumalo and the whole family for the unconditional love, support and understanding. • A distinct thank you to both my supervisors, Mr M.J.D. Manamela and Dr T.I. Modipa, for their guidance, motivation, and support. • The Telkom Centre of Excellence for Speech Technology for providing the resources and support to make this study a success. • My colleagues in Department of Computer Science, Messrs V.R. Baloyi and L.M. Kola, for always motivating me. • A special thank you to Mr T.J. Sefara for taking his time to participate in the study. • The six Computer Science undergraduate students who sacrificed their precious time to participate in data collection. -
Part 2: RHYTHM – DURATION and TIMING Część 2: RYTM – ILOCZAS I WZORCE CZASOWE
Part 2: RHYTHM – DURATION AND TIMING Część 2: RYTM – ILOCZAS I WZORCE CZASOWE From research to application: creating and applying models of British RP English rhythm and intonation Od badań do aplikacji: tworzenie i zastosowanie modeli rytmu i intonacji języka angielskiego brytyjskiego David R. Hill Department of Computer Science The University of Calgary, Alberta, Canada [email protected] ABSTRACT Wiktor Jassem’s contributions and suggestions for further work have been an essential influence on my own work. In 1977, Wiktor agreed to come to my Human-Computer Interaction Laboratory at the University of Calgary to collaborate on problems asso- ciated with British English rhythm and intonation in computer speech synthesis from text. The cooperation resulted in innovative models which were used in implementing the world’s first completely functional and still operational real-time system for arti- culatory speech synthesis by rule from plain text. The package includes the software tools needed for developing the databases required for synthesising other languages, as well as providing stimuli for psychophysical experiments in phonetics and phonology. STRESZCZENIE Pu bli ka cje Wik to ra Jas se ma i wska zów ki do dal szej pra cy w spo sób istot ny wpły nę - ły na mo ją wła sną pra cę. W 1997 ro ku Wik tor zgo dził się na przy jazd do mo je go La - bo ra to rium In te rak cji Czło wiek -Kom pu ter na Uni wer sy te cie w Cal ga ry aby wspól nie za jąć się pro ble ma mi zwią za ny mi z ryt mem w bry tyj skim an giel skim oraz in to na cją w syn te zie mo wy z tek stu. -
SPEECH ACOUSTICS and PHONETICS Text, Speech and Language Technology VOLUME 24
SPEECH ACOUSTICS AND PHONETICS Text, Speech and Language Technology VOLUME 24 Series Editors Nancy Ide, Vassar College, New York Jean V´eronis, Universited´ eProvence and CNRS, France Editorial Board Harald Baayen, Max Planck Institute for Psycholinguistics, The Netherlands Kenneth W. Church, AT&TBell Labs, New Jersey, USA Judith Klavans, Columbia University, New York, USA David T. Barnard, University of Regina, Canada Dan Tufis, Romanian Academy of Sciences, Romania Joaquim Llisterri, Universitat Autonoma de Barcelona, Spain Stig Johansson, University of Oslo, Norway Joseph Mariani, LIMSI-CNRS, France The titles published in this series are listed at the end of this volume. Speech Acoustics and Phonetics by GUNNAR FANT Department of Speech, Music and Hearing, Royal Institute of Technology, Stockholm, Sweden KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON A C.I.P Catalogue record for this book is available from the Library of Congress. ISBN 1-4020-2789-3 (PB) ISBN 1-4020-2373-1 (HB) ISBN 1-4020-2790-7 (e-book) Published by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. Sold and distributed in North, Central and South America by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers, P.O. Box 322, 3300 AH Dordrecht, The Netherlands. Printed on acid-free paper All Rights Reserved C 2004 Kluwer Academic Publishers No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. -
Half a Century in Phonetics and Speech Research
Fonetik 2000, Swedish phonetics meeting in Skövde, May 24-26, 2000 (Expanded version, internal TMH report) Half a century in phonetics and speech research Gunnar Fant Department of Speech, Music and Hearing, KTH, Stockholm, 10044 Abstract This is a brief outlook of experiences during more than 50 years in phonetics and speech research. I will have something to say about my own scientific carrier, the growth of our department at KTH, and I will end up with an overview of research objectives in phonetics and a summary of my present activities. Introduction As you are all aware of, phonetics and speech research are highly interrelated and integrated in many branches of humanities and technology. In Sweden by tradition, phonetics and linguistics have had a strong position and speech technology is well developed and internationally respected. This is indeed an exciting field of growing importance which still keeps me busy. What have we been up to during half a century? Where do we stand today and how do we look ahead? I am not attempting a deep, thorough study, my presentation will in part be anecdotal, but I hope that it will add to the perspective, supplementing the brief account presented in Fant (1998) The early period 1945-1966 KTH and Ericsson 1945-1949 I graduated from the department of Telegraphy and Telephony of the KTH in May 1945. My supervisor, professor Torbern Laurent, a specialist in transmission line theory and electrical filters had an open mind for interdisciplinary studies. My thesis was concerned with theoretical matters of relations between speech intelligibility and reduction of overall system bandwidth, incorporating the effects of different types of hearing loss. -
Text to Speech Synthesis for Bangla Language
I.J. Information Engineering and Electronic Business, 2019, 2, 1-9 Published Online March 2019 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijieeb.2019.02.01 Text to Speech Synthesis for Bangla Language Khandaker Mamun Ahmed Department of Computer Science and Engineering, BRAC University, Dhaka, Bangladesh Email: [email protected] Prianka Mandal Department of Software Engineering, Daffodil International University, Dhaka, Bangladesh Email: [email protected] B M Mainul Hossain Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh Email: [email protected] Received: 13 September 2018; Accepted: 14 December 2018; Published: 08 March 2019 Abstract—Text-to-speech (TTS) synthesis is a rapidly A TTS system converts natural language text into growing field of research. Speech synthesis systems are speech and then, a computer system able to read text applicable to several areas such as robotics, education and aloud. A speech synthesizer converts written text to a embedded systems. The implementation of such TTS phonemic representation and then converts the phonemic system increases the correctness and efficiency of an representation to waveforms which can be output as application. Though Bangla is the seventh most spoken sound. language all over the world, uses of TTS system in There are several ways to create synthesized speech. applications are difficult to find for Bangla language Among them, concatenative synthesis and formant because of lacking simplicity and lightweightness in TTS synthesis are very popular. Concatenative synthesis is systems. Therefore, in this paper, we propose a simple based on concatenating pre-recorded speech of phonemes, and lightweight TTS system for Bangla language. -
Design and Implementation of Text to Speech Conversion for Visually Impaired People
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Covenant University Repository International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 7– No. 2, April 2014 – www.ijais.org Design and Implementation of Text To Speech Conversion for Visually Impaired People Itunuoluwa Isewon* Jelili Oyelade Olufunke Oladipupo Department of Computer and Department of Computer and Department of Computer and Information Sciences Information Sciences Information Sciences Covenant University Covenant University Covenant University PMB 1023, Ota, Nigeria PMB 1023, Ota, Nigeria PMB 1023, Ota, Nigeria * Corresponding Author ABSTRACT A Text-to-speech synthesizer is an application that converts text into spoken word, by analyzing and processing the text using Natural Language Processing (NLP) and then using Digital Signal Processing (DSP) technology to convert this processed text into synthesized speech representation of the text. Here, we developed a useful text-to-speech synthesizer in the form of a simple application that converts inputted text into synthesized speech and reads out to the user which can then be saved as an mp3.file. The development of a text to Figure 1: A simple but general functional diagram of a speech synthesizer will be of great help to people with visual TTS system. [2] impairment and make making through large volume of text easier. 2. OVERVIEW OF SPEECH SYNTHESIS Speech synthesis can be described as artificial production of Keywords human speech [3]. A computer system used for this purpose is Text-to-speech synthesis, Natural Language Processing, called a speech synthesizer, and can be implemented in Digital Signal Processing software or hardware. -
Voice Synthesizer Application Android
Voice synthesizer application android Continue The Download Now link sends you to the Windows Store, where you can continue the download process. You need to have an active Microsoft account to download the app. This download may not be available in some countries. Results 1 - 10 of 603 Prev 1 2 3 4 5 Next See also: Speech Synthesis Receming Device is an artificial production of human speech. The computer system used for this purpose is called a speech computer or speech synthesizer, and can be implemented in software or hardware. The text-to-speech system (TTS) converts the usual text of language into speech; other systems display symbolic linguistic representations, such as phonetic transcriptions in speech. Synthesized speech can be created by concatenating fragments of recorded speech that are stored in the database. Systems vary in size of stored speech blocks; The system that stores phones or diphones provides the greatest range of outputs, but may not have clarity. For specific domain use, storing whole words or suggestions allows for high-quality output. In addition, the synthesizer may include a vocal tract model and other characteristics of the human voice to create a fully synthetic voice output. The quality of the speech synthesizer is judged by its similarity to the human voice and its ability to be understood clearly. The clear text to speech program allows people with visual impairments or reading disabilities to listen to written words on their home computer. Many computer operating systems have included speech synthesizers since the early 1990s. A review of the typical TTS Automatic Announcement System synthetic voice announces the arriving train to Sweden. -
Towards Expressive Speech Synthesis in English on a Robotic Platform
PAGE 130 Towards Expressive Speech Synthesis in English on a Robotic Platform Sigrid Roehling, Bruce MacDonald, Catherine Watson Department of Electrical and Computer Engineering University of Auckland, New Zealand s.roehling, b.macdonald, [email protected] Abstract Affect influences speech, not only in the words we choose, but in the way we say them. This pa- per reviews the research on vocal correlates in the expression of affect and examines the ability of currently available major text-to-speech (TTS) systems to synthesize expressive speech for an emotional robot guide. Speech features discussed include pitch, duration, loudness, spectral structure, and voice quality. TTS systems are examined as to their ability to control the fea- tures needed for synthesizing expressive speech: pitch, duration, loudness, and voice quality. The OpenMARY system is recommended since it provides the highest amount of control over speech production as well as the ability to work with a sophisticated intonation model. Open- MARY is being actively developed, is supported on our current Linux platform, and provides timing information for talking heads such as our current robot face. 1. Introduction explicitly stated otherwise the research is concerned with the English language. Affect influences speech, not only in the words we choose, but in the way we say them. These vocal nonverbal cues are important in human speech as they communicate 2.1. Pitch information about the speaker’s state or attitude more effi- ciently than the verbal content (Eide, Aaron, Bakis, Hamza, Pitch contour seems to be one of the clearest indica- Picheny, and Pitrelli 2004). -
Guía De Accesibilidad De Oracle Solaris 11 Desktop • Octubre De 2012 Contenido
Guía de accesibilidad de Oracle® Solaris 11 Desktop Referencia: E36637–01 Octubre de 2012 Copyright © 2011, 2012, Oracle y/o sus filiales. Todos los derechos reservados. Este software y la documentación relacionada están sujetos a un contrato de licencia que incluye restricciones de uso y revelación, y se encuentran protegidos por la legislación sobre la propiedad intelectual. A menos que figure explícitamente en el contrato de licencia o esté permitido por la ley, no se podrá utilizar, copiar, reproducir, traducir, emitir, modificar, conceder licencias, transmitir, distribuir, exhibir, representar, publicar ni mostrar ninguna parte,de ninguna forma, por ningún medio. Queda prohibida la ingeniería inversa, desensamblaje o descompilación de este software, excepto en la medida en que sean necesarios para conseguir interoperabilidad según lo especificado por la legislación aplicable. La información contenida en este documento puede someterse a modificaciones sin previo aviso y no se garantiza que se encuentre exenta de errores. Sidetecta algún error, le agradeceremos que nos lo comunique por escrito. Si este software o la documentación relacionada se entrega al Gobierno de EE.UU. o a cualquier entidad que adquiera licencias en nombre del Gobierno de EE.UU. se aplicará la siguiente disposición: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. -
Spoken Language Generation and Un- Derstanding by Machine: a Problems and Applications-Oriented Overview
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256982222 Spoken Language Generation and Understanding by Machine: A Problems and Applications Oriented Overview Chapter · January 1980 DOI: 10.1007/978-94-009-9091-3_1 CITATIONS READS 6 826 1 author: David Hill The University of Calgary 58 PUBLICATIONS 489 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Computer-Human Interaction View project Animating speech View project All content following this page was uploaded by David Hill on 03 December 2015. The user has requested enhancement of the downloaded file. Spoken Language Generation and Un- derstanding by Machine: a Problems and Applications-Oriented Overview David R. Hill Department of Computer Science, University of Calgary, AB, Canada © 1979, 2015 David R. Hill Summary Speech offers humans a means of spontaneous, convenient and effective communication for which neither preparation nor tools are required, and which may be adapted to suit the developing requirements of a communication situation. Although machines lack the feedback, based on understanding and shared experience that is essential to this form of communication in general, speech is so fundamental to the psychol- ogy of the human, and offers such a range of practical advantages, that it is profitable to develop and apply means of speech communication with machines under constraints that allow the provision of adequate dialog and feedback. The paper details the advantages of speech com- munication and outlines speech production and perception in terms relevant to understanding the rest of the paper. The hierarchy/heterar- chy of processes involved in both automatic speech understanding and the machine generation of speech is examined from a variety of points of view and the current capabilities in terms of viable applications are noted. -
Speech Generation: from Concept and from Text
Speech Generation From Concept and from Text Martin Jansche CS 6998 2004-02-11 Components of spoken output systems Front end: From input to control parameters. • From naturally occurring text; or • From constrained mark-up language; or • From semantic/conceptual representations. Back end: From control parameters to waveform. • Articulatory synthesis; or • Acoustic synthesis: – Based predominantly on speech samples; or – Using mostly synthetic sources. 2004-02-11 1 Who said anything about computers? Wolfgang von Kempelen, Mechanismus der menschlichen Sprache nebst Beschreibung einer sprechenden Maschine, 1791. Charles Wheatstone’s reconstruction of von Kempelen’s machine 2004-02-11 2 Joseph Faber’s Euphonia, 1846 2004-02-11 3 Modern articulatory synthesis • Output produced by an articulatory synthesizer from Dennis Klatt’s review article (JASA 1987) • Praat demo • Overview at Haskins Laboratories (Yale) 2004-02-11 4 The Voder ... Developed by Homer Dudley at Bell Telephone Laboratories, 1939 2004-02-11 5 ... an acoustic synthesizer Architectural blueprint for the Voder Output produced by the Voder 2004-02-11 6 The Pattern Playback Developed by Franklin Cooper at Haskins Laboratories, 1951 No human operator required. Machine plays back previously drawn spectrogram (spectrograph invented a few years earlier). 2004-02-11 7 Can you understand what it says? Output produced by the Pattern Playback. 2004-02-11 8 Can you understand what it says? Output produced by the Pattern Playback. These days a chicken leg is a rare dish. It’s easy to tell the depth of a well. Four hours of steady work faced us. 2004-02-11 9 Synthesis-by-rule • Realization that spectrograph and Pattern Playback are really only recording and playback devices. -
Instituto De Computação Universidade Estadual De Campinas
INSTITUTO DE COMPUTAÇÃO UNIVERSIDADE ESTADUAL DE CAMPINAS A Systematic Literature Review on Awareness of Others in Accessible Collaborative RIAs Leonelo D. A. Almeida M. Cecília C. Baranauskas Technical Report - IC-12-26 - Relatório Técnico December - 2012 - Dezembro The contents of this report are the sole responsibility of the authors. O conteúdo do presente relatório é de única responsabilidade dos autores. A Systematic Literature Review on Awareness of Others in Accessible Collaborative RIAs Leonelo D. A. Almeida, M. Cecília C. Baranauskas Institute of Computing, University of Campinas (UNICAMP) Albert Einstein Av., 1251, 13083-970, Campinas-SP, Brazil {leonelo.almeida, cecilia}@ic.unicamp.br Abstract. The more robust and dynamic aspects of Web 2.0 applications (also named Rich Internet Applications, RIAs) stimulate the participation and collaboration among people while interacting with such shared interaction spaces. An evident consequence (e.g. Facebook, Instagran, and Twitter) is the increasing influence of RIAs on other media channels as TV and newspapers. However, the current state-of-art of Web 2.0 does not provide equitative opportunities of interaction for people. Accessibility in RIAs is still a challenging objective. Also, for aspects as awareness of others on RIAs that provided collaboration features the development of accessible mechanisms is not restricted to semantic markup but it also involves data structures, politeness, load of data, and other characteristics. This technical report presents a Systematic Literature Review process designed for investigating the aspect of awareness of others in accessible collaborative RIAs; it also reports included and excluded studies and the data collected from the reviewed studies. Keywords: Web 2.0, Accessibility, Systematic Literature Review.