Generating the Voice of the Interactive Virtual Assistant Adriana Stan and Beáta Lőrincz
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Current Perspectives on Linux Accessibility Tools for Visually Impaired Users
ЕЛЕКТРОННО СПИСАНИЕ „ИКОНОМИКА И КОМПЮТЪРНИ НАУКИ“, БРОЙ 2, 2019, ISSN 2367-7791, ВАРНА, БЪЛГАРИЯ ELECTRONIC JOURNAL “ECONOMICS AND COMPUTER SCIENCE”, ISSUE 2, 2019, ISSN 2367-7791, VARNA, BULGARIA Current Perspectives on Linux Accessibility Tools for Visually Impaired Users Radka NACHEVA1 1 University of Economics, Varna, Bulgaria [email protected] Abstract. The development of user-oriented technologies is related not only to compliance with standards, rules and good practices for their usability but also to their accessibility. For people with special needs, assistive technologies have been developed to ensure the use of modern information and communication technologies. The choice of a particular tool depends mostly on the user's operating system. The aim of this research paper is to study the current state of the accessibility software tools designed for an operating system Linux and especially used by visually impaired people. The specific context of the considering of the study’s objective is the possibility of using such technologies by Bulgarian users. The applied approach of the research is content analysis of scientific publications, official documentation of Linux accessibility tools, and legal provisions and classifiers of international organizations. The results of the study are useful to other researchers who work in the area of accessibility of software technologies, including software companies that develop solutions for visually impaired people. For the purpose of the article several tests are performed with the studied tools, on the basis of which the conclusions of the study are made. On the base of the comparative study of assistive software tools the main conclusion of the paper is made: Bulgarian visually impaired users are limited to work with Linux operating system because of the lack of the Bulgarian language support. -
Digital Workaholics:A Click Away
GSJ: Volume 9, Issue 5, May 2021 ISSN 2320-9186 1479 GSJ: Volume 9, Issue 5, May 2021, Online: ISSN 2320-9186 www.globalscientificjournal.com DIGITAL WORKAHOLICS:A CLICK AWAY Tripti Srivastava Muskan Chauhan Rohit Pandey Galgotias University Galgotias University Galgotias University [email protected] muskanchauhansmile@g [email protected] m mail.com om ABSTRACT:-In today’s world, Artificial Intelligence (AI) has become an 1. INTRODUCTION integral part of human life. There are many applications of AI such as Chatbot, AI defines as those device that understands network security, complex problem there surroundings and took actions which solving, assistants, and many such. increase there chance to accomplish its Artificial Intelligence is designed to have outcomes. Artifical Intelligence used as “a cognitive intelligence which learns from system’s ability to precisely interpret its experience to take future decisions. A external data, to learn previous such data, virtual assistant is also an example of and to use these learnings to accomplish cognitive intelligence. Virtual assistant distinct outcomes and tasks through supple implies the AI operated program which adaptation.” Artificial Intelligence is the can assist you to reply to your query or developing branch of computer science. virtually do something for you. Currently, Having much more power and ability to the virtual assistant is used for personal develop the various application. AI implies and professional use. Most of the virtual the use of a different algorithm to solve assistant is device-dependent and is bind to various problems. The major application a single user or device. It recognizes only being Optical character recognition, one user. -
Deep Almond: a Deep Learning-Based Virtual Assistant [Language-To-Code Synthesis of Trigger-Action Programs Using Seq2seq Neural Networks]
Deep Almond: A Deep Learning-based Virtual Assistant [Language-to-code synthesis of Trigger-Action programs using Seq2Seq Neural Networks] Giovanni Campagna Rakesh Ramesh Computer Science Department Stanford University Stanford, CA 94305 {gcampagn, rakeshr1}@stanford.edu Abstract Virtual assistants are the cutting edge of end user interaction, thanks to endless set of capabilities across multiple services. The natural language techniques thus need to be evolved to match the level of power and sophistication that users ex- pect from virtual assistants. In this report we investigate an existing deep learning model for semantic parsing, and we apply it to the problem of converting nat- ural language to trigger-action programs for the Almond virtual assistant. We implement a one layer seq2seq model with attention layer, and experiment with grammar constraints and different RNN cells. We take advantage of its existing dataset and we experiment with different ways to extend the training set. Our parser shows mixed results on the different Almond test sets, performing better than the state of the art on synthetic benchmarks by about 10% but poorer on real- istic user data by about 15%. Furthermore, our parser is shown to be extensible to generalization, as well as or better than the current system employed by Almond. 1 Introduction Today, we can ask virtual assistants like Amazon Alexa, Apple’s Siri, Google Now to perform simple tasks like, “What’s the weather”, “Remind me to take pills in the morning”, etc. in natural language. The next evolution of natural language interaction with virtual assistants is in the form of task automation such as “turn on the air conditioner whenever the temperature rises above 30 degrees Celsius”, or “if there is motion on the security camera after 10pm, call Bob”. -
THE DEVELOPMENT of ACCENTED ENGLISH SYNTHETIC VOICES By
THE DEVELOPMENT OF ACCENTED ENGLISH SYNTHETIC VOICES by PROMISE TSHEPISO MALATJI DISSERTATION Submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE in the FACULTY OF SCIENCE AND AGRICULTURE (School of Mathematical and Computer Sciences) at the UNIVERSITY OF LIMPOPO SUPERVISOR: Mr MJD Manamela CO-SUPERVISOR: Dr TI Modipa 2019 DEDICATION In memory of my grandparents, Cecilia Khumalo and Alfred Mashele, who always believed in me! ii DECLARATION I declare that THE DEVELOPMENT OF ACCENTED ENGLISH SYNTHETIC VOICES is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references and that this work has not been submitted before for any other degree at any other institution. ______________________ ___________ Signature Date iii ACKNOWLEDGEMENTS I want to recognise the following people for their individual contributions to this dissertation: • My brother, Mr B.I. Khumalo and the whole family for the unconditional love, support and understanding. • A distinct thank you to both my supervisors, Mr M.J.D. Manamela and Dr T.I. Modipa, for their guidance, motivation, and support. • The Telkom Centre of Excellence for Speech Technology for providing the resources and support to make this study a success. • My colleagues in Department of Computer Science, Messrs V.R. Baloyi and L.M. Kola, for always motivating me. • A special thank you to Mr T.J. Sefara for taking his time to participate in the study. • The six Computer Science undergraduate students who sacrificed their precious time to participate in data collection. -
The Role of Higher-Level Linguistic Features in HMM-Based Speech Synthesis
INTERSPEECH 2010 The role of higher-level linguistic features in HMM-based speech synthesis Oliver Watts, Junichi Yamagishi, Simon King Centre for Speech Technology Research, University of Edinburgh, UK [email protected] [email protected] [email protected] Abstract the annotation of a synthesiser’s training data on listeners’ re- action to the speech produced by that synthesiser is still unclear We analyse the contribution of higher-level elements of the lin- to us. In particular, we suspect that features such as pitch ac- guistic specification of a data-driven speech synthesiser to the cent type which might be useful in voice-building if labelled naturalness of the synthetic speech which it generates. The reliably, are under-used in conventional systems because of la- system is trained using various subsets of the full feature-set, belling/prediction errors. For building the systems to be evalu- in which features relating to syntactic category, intonational ated we therefore used data for which hand labelled annotation phrase boundary, pitch accent and boundary tones are selec- of ToBI events is available. This allows us to compare ideal sys- tively removed. Utterances synthesised by the different config- tems built from a corpus where these higher-level features are urations of the system are then compared in a subjective evalu- accurately annotated with more conventional systems that rely ation of their naturalness. exclusively on prediction of these features from text for annota- The work presented forms background analysis for an on- tion of their training data. going set of experiments in performing text-to-speech (TTS) conversion based on shallow features: features that can be triv- 2. -
Inside Chatbots – Answer Bot Vs. Personal Assistant Vs. Virtual Support Agent
WHITE PAPER Inside Chatbots – Answer Bot vs. Personal Assistant vs. Virtual Support Agent Artificial intelligence (AI) has made huge strides in recent years and chatbots have become all the rage as they transform customer service. Terminology, such as answer bots, intelligent personal assistants, virtual assistants for business, and virtual support agents are used interchangeably, but are they the same thing? The concepts are similar, but each serves a different purpose, has specific capabilities, varying extensibility, and provides a range of business value. 2018 © Copyright ServiceAide, Inc. 1-650-206-8988 | www.serviceaide.com | [email protected] INSIDE CHATBOTS – ANSWER BOT VS. PERSONAL ASSISTANT VS. VIRTUAL SUPPORT AGENT WHITE PAPER Before we dive into each solution, a short technical primer is in order. A chatbot is an AI-based solution that uses natural language understanding to “understand” a user’s statement or request and map that to a specific intent. The ‘intent’ is equivalent to the intention or ‘the want’ of the user, such as ordering a pizza or booking a flight. Once the chatbot understands the intent of the user, it can carry out the corresponding task(s). To create a chatbot, someone (the developer or vendor) must determine the services that the ‘bot’ will provide and then collect the information to support requests for the services. The designer must train the chatbot on numerous speech patterns (called utterances) which cover various ways a user or customer might express intent. In this development stage, the developer defines the information required for a particular service (e.g. for a pizza order the chatbot will require the size of the pizza, crust type, and toppings). -
Welsh Language Technology Action Plan Progress Report 2020 Welsh Language Technology Action Plan: Progress Report 2020
Welsh language technology action plan Progress report 2020 Welsh language technology action plan: Progress report 2020 Audience All those interested in ensuring that the Welsh language thrives digitally. Overview This report reviews progress with work packages of the Welsh Government’s Welsh language technology action plan between its October 2018 publication and the end of 2020. The Welsh language technology action plan derives from the Welsh Government’s strategy Cymraeg 2050: A million Welsh speakers (2017). Its aim is to plan technological developments to ensure that the Welsh language can be used in a wide variety of contexts, be that by using voice, keyboard or other means of human-computer interaction. Action required For information. Further information Enquiries about this document should be directed to: Welsh Language Division Welsh Government Cathays Park Cardiff CF10 3NQ e-mail: [email protected] @cymraeg Facebook/Cymraeg Additional copies This document can be accessed from gov.wales Related documents Prosperity for All: the national strategy (2017); Education in Wales: Our national mission, Action plan 2017–21 (2017); Cymraeg 2050: A million Welsh speakers (2017); Cymraeg 2050: A million Welsh speakers, Work programme 2017–21 (2017); Welsh language technology action plan (2018); Welsh-language Technology and Digital Media Action Plan (2013); Technology, Websites and Software: Welsh Language Considerations (Welsh Language Commissioner, 2016) Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. -
Embed Text to Speech in Website
Embed Text To Speech In Website KingsleyUndefended kick-off or pinchbeck, very andantino. Avraham Plagued never and introspects tentier Morlee any undercurrent! always outburn Multistorey smugly andOswell brines except his herenthymemes. earthquake so accelerando that You in speech recognition Uses premium Acapela TTS voices with license for battle use my the. 21 Best proud to Speech Software 2021 Free & Paid Online TTS. Add the method to deity the complete API endpoint for your matter The most example URL represents a crop to Speech instance group is. Annyang is a JavaScript SpeechRecognition library that makes adding voice. The speech recognition portion of the WebSpeech API allows websites to enable. A high-quality unlimited TTS voice app that runs in your Chrome browser Tool for creating voice from despair or Google Drive file. Speech synthesis is so artificial production of human speech A computer system used for this claim is called a speech computer or speech synthesizer and telling be implemented in software building hardware products A text-to-speech TTS system converts normal language text into speech. Which reads completely consume it? How we Add run to Speech in WordPress WPBeginner. The divine tool accepts both typed and handwritten input and supports. RingCentral Embeddable Voice into Text Widget. It is to in your people. Most of the embed the files, voice from gallo romance, embed text to speech in website where the former is built in the pronunciation for only in the spelling with. The type an external program, and continue to a few steps in your blog publishers can be spoken version is speech text? Usted tiene teclear cualquier texto, website to in text speech recognition is the home with a female voice? The Chrome extension lets you highlight the text tag any webpage to hear even read aloud. -
The RACAI Text-To-Speech Synthesis System
The RACAI Text-to-Speech Synthesis System Tiberiu Boroș, Radu Ion, Ștefan Daniel Dumitrescu Research Institute for Artificial Intelligence “Mihai Drăgănescu”, Romanian Academy (RACAI) [email protected], [email protected], [email protected] of standalone Natural Language Processing (NLP) Tools Abstract aimed at enabling text-to-speech (TTS) synthesis for less- This paper describes the RACAI Text-to-Speech (TTS) entry resourced languages. A good example is the case of for the Blizzard Challenge 2013. The development of the Romanian, a language which poses a lot of challenges for TTS RACAI TTS started during the Metanet4U project and the synthesis mainly because of its rich morphology and its system is currently part of the METASHARE platform. This reduced support in terms of freely available resources. Initially paper describes the work carried out for preparing the RACAI all the tools were standalone, but their design allowed their entry during the Blizzard Challenge 2013 and provides a integration into a single package and by adding a unit selection detailed description of our system and future development speech synthesis module based on the Pitch Synchronous directions. Overlap-Add (PSOLA) algorithm we were able to create a fully independent text-to-speech synthesis system that we refer Index Terms: speech synthesis, unit selection, concatenative to as RACAI TTS. 1. Introduction A considerable progress has been made since the start of the project, but our system still requires development and Text-to-speech (TTS) synthesis is a complex process that although considered premature, our participation in the addresses the task of converting arbitrary text into voice. -
A Simplified Overview of Text-To-Speech Synthesis
Proceedings of the World Congress on Engineering 2014 Vol I, WCE 2014, July 2 - 4, 2014, London, U.K. A Simplified Overview of Text-To-Speech Synthesis J. O. Onaolapo, F. E. Idachaba, J. Badejo, T. Odu, and O. I. Adu open-source software while SpeakVolumes is commercial. It must however be noted that Text-To-Speech systems do Abstract — Computer-based Text-To-Speech systems render not sound perfectly natural due to audible glitches [4]. This is text into an audible form, with the aim of sounding as natural as possible. This paper seeks to explain Text-To-Speech synthesis because speech synthesis science is yet to capture all the in a simplified manner. Emphasis is placed on the Natural complexities and intricacies of human speaking capabilities. Language Processing (NLP) and Digital Signal Processing (DSP) components of Text-To-Speech Systems. Applications and II. MACHINE SPEECH limitations of speech synthesis are also explored. Text-To-Speech system processes are significantly different Index Terms — Speech synthesis, Natural Language from live human speech production (and language analysis). Processing, Auditory, Text-To-Speech Live human speech production depends of complex fluid mechanics dependent on changes in lung pressure and vocal I. INTRODUCTION tract constrictions. Designing systems to mimic those human Text-To-Speech System (TTS) is a computer-based constructs would result in avoidable complexity. system that automatically converts text into artificial A In general terms, a Text-To-Speech synthesizer comprises human speech [1]. Text-To-Speech synthesizers do not of two parts; namely the Natural Language Processing (NLP) playback recorded speech; rather, they generate sentences unit and the Digital Signal Processing (DSP) unit. -
Synthesis and Recognition of Speech Creating and Listening to Speech
ISSN 1883-1974 (Print) ISSN 1884-0787 (Online) National Institute of Informatics News NII Interview 51 A Combination of Speech Synthesis and Speech Oct. 2014 Recognition Creates an Affluent Society NII Special 1 “Statistical Speech Synthesis” Technology with a Rapidly Growing Application Area NII Special 2 Finding Practical Application for Speech Recognition Feature Synthesis and Recognition of Speech Creating and Listening to Speech A digital book version of “NII Today” is now available. http://www.nii.ac.jp/about/publication/today/ This English language edition NII Today corresponds to No. 65 of the Japanese edition [Advance Notice] Great news! NII Interview Yamagishi-sensei will create my voice! Yamagishi One result is a speech translation sys- sound. Bit (NII Character) A Combination of Speech Synthesis tem. This system recognizes speech and translates it Ohkawara I would like your comments on the fu- using machine translation to synthesize speech, also ture challenges. and Speech Recognition automatically translating it into every language to Ono The challenge for speech recognition is how speak. Moreover, the speech is created with a human close it will come to humans in the distant speech A Word from the Interviewer voice. In second language learning, you can under- case. If this study is advanced, it will be possible to Creates an Affluent Society stand how you should pronounce it with your own summarize the contents of a meeting and to automati- voice. If this is further advanced, the system could cally take the minutes. If a robot understands the con- have an actor in a movie speak in a different language tents of conversations by multiple people in a natural More and more people have begun to use smart- a smartphone, I use speech input more often. -
Commercial Tools in Speech Synthesis Technology
International Journal of Research in Engineering, Science and Management 320 Volume-2, Issue-12, December-2019 www.ijresm.com | ISSN (Online): 2581-5792 Commercial Tools in Speech Synthesis Technology D. Nagaraju1, R. J. Ramasree2, K. Kishore3, K. Vamsi Krishna4, R. Sujana5 1Associate Professor, Dept. of Computer Science, Audisankara College of Engg. and Technology, Gudur, India 2Professor, Dept. of Computer Science, Rastriya Sanskrit VidyaPeet, Tirupati, India 3,4,5UG Student, Dept. of Computer Science, Audisankara College of Engg. and Technology, Gudur, India Abstract: This is a study paper planned to a new system phonetic and prosodic information. These two phases are emotional speech system for Telugu (ESST). The main objective of usually called as high- and low-level synthesis. The input text this paper is to map the situation of today's speech synthesis might be for example data from a word processor, standard technology and to focus on potential methods for the future. ASCII from e-mail, a mobile text-message, or scanned text Usually literature and articles in the area are focused on a single method or single synthesizer or the very limited range of the from a newspaper. The character string is then preprocessed and technology. In this paper the whole speech synthesis area with as analyzed into phonetic representation which is usually a string many methods, techniques, applications, and products as possible of phonemes with some additional information for correct is under investigation. Unfortunately, this leads to a situation intonation, duration, and stress. Speech sound is finally where in some cases very detailed information may not be given generated with the low-level synthesizer by the information here, but may be found in given references.