Stebbins Cold Canyon Mushroom List List of Mushrooms Found by Bob and Barbara Sommer at the Stebbins Reserve 1985-2002

Total Page:16

File Type:pdf, Size:1020Kb

Stebbins Cold Canyon Mushroom List List of Mushrooms Found by Bob and Barbara Sommer at the Stebbins Reserve 1985-2002 Stebbins Cold Canyon Mushroom List List of mushrooms found by Bob and Barbara Sommer at the Stebbins Reserve 1985-2002. Time sampling was not systematic and there were major gaps between visits. Some of the species names have changed since the list was started; e.g. many Hygrocybes are now Hypholoma. Number found of a species is indicated by asterisks: *** abundant (> 30 specimens) ** many specimens (10-29) * few specimens (>10) In a few cases, records of time found and number found are missing. Nov/Dec January February March/April May/June Agaricus campestris * * * Agaricus hondensis * Agaricus semotus * Agaricus silvicola * Agaricus xanthdermus * Agrocybe pediades * Agrocybe praecox * Aleuria aurantiaca * Aleuria sp. Amanita calyptrata ** * * Amanita gemmata * Amanita inversa * Amanita ocreata * * Amanita pachycolea * * * Amanita phalloides * Amanita velosa *** Armillaria mellea * Armillaria ponderosa * Anthracobia melaloma *** Armillaria ponderosa * Astraeus hygrometricus * Bolbitius vitellinus * * * * Boletus amygdalinus * Boletus appendiculatus * Boletus flaviporus * Boletus rubripes * Boletus satanus * Boletus subtomentosus * Bovista plumbea ** * Clavaria vermicularis Clavariadelphus pistillaris * Clitocybe brunneocephala * Clitocybe dealbata * Clitocybe deceptiva ** ** * * Clitocybe inversa * Clitocybe sauveolens * Collybia dryophilia * * Collybia fuscopurpurea * Collybia sp * * Coprinus disseminatus * Coprinus domesticus * Coprinus impatiens * Coprinus micaceus * * Coprinus plicatilis * * Cortinarius collinitus * Cortinarius multiformis * Cortinarius sp ** ** ** Crepidotus mollis * Entoloma rhodopolium * Galerina autumnalis * Galerina furfuracea * Galerina heterocystis * Geastrum coronatum * Geastrum saccatum(triplex) ** * ** Hebeloma crustiliniforme * Grifola sulfureum Helvella acetabulum * Helvella crispa * Helvella lacunosa * ** Hericium erinaceus * * * Hygrocybe acutonia ** Hygrocybe brunneus * Hygrocybe coccinea * Hygrocybe conicus * Hygrocybe *** *** ** eburneus(borealis) Hygrocybe flavescens * * ** Hygrocybe gliocyclus * Hygrocybe punicea ** * * Hygrocybe sp * Inocybe fastigiata * Inocybe geophylla * * * *** Inocybe pyriodora * Inocybe sororia * * Laccaria laccata ** * Lactarius alnicola *** ** * Lactarius argillaceifolius * Lactarius chrysorheus * ** Lactarius involutus * Lactarius rufulus * Lactarius subflammeus * Lactarius trivialis * Lactarius vinaceo rufescens * Laetiporus sulfurus * Lepiota clypeolaria ** ** ** Lepiota sp * Lycoperdon marginatum Lycoperdon perlatum * Marasmius copelandia * Marasmius oreades * Marasmius plicatulus * Marasmius sp. * Morchella semilibera ** Mycena subcana * Mycena sp * Nolanea sericea * * Omphalina pyxidata * * ** Omphalotus olivascens ** * * * Otidea sp * Panaeolus acuminatus ** ** Panaeolus campanulatus * Panaeolus foenisicii ** Panellus stipticus * Peziza badia * Peziza sylvestris * Polyporus squamosus * Peziza violacea Psathyrella candolleana * ** Psathyrella gracilis * Psathyrella hydrophilia * Psathyrella longistriata * * Rhizopogon occidentalis ** * Russula albissima(albidula) ** * * Russula basifurcata * Russula brevipes *** ** * Russula cyanoxantha * Russula sp * Schizophyllum commune * Stereum hirsutum * * * Trametes versicolor * * * Tremella foliacea * Tremella meserentica * * Tubaria furfuracea * * * .
Recommended publications
  • Panellus Stipticus
    VOLUME 55: 5 SEPTEMBER-OCTOBER 2015 www.namyco.org Regional Trustee Nominations Every year, on a rotating basis, four Regional Trustee positions are due for nomination and election by NAMA members in their respective region. The following regions have openings for three-year terms to begin in 2016: Appalachian, Boreal, Great Lakes, and Rocky Mountain. The affiliated clubs for each region are listed below; those without a club affiliation are members of the region where they live. Members of each region may nominate them- selves or another person in that region. Nominations close on October 31, 2015. Appalachian Cumberland Mycological Society Mushroom Club of Georgia North Alabama Mushroom Society South Carolina Upstate Mycological Society West Virginia Mushroom Club Western Pennsylvania Mushroom Club Boreal Alberta Mycological Society Foray Newfoundland & Labrador Great Lakes Hoosier Mushroom Society Illinois Mycological Association Michigan Mushroom Hunters Club Minnesota Mycological Society Mycological Society of Toronto Four Corners Mushroom Club Ohio Mushroom Society Mushroom Society of Utah Wisconsin Mycological Society New Mexico Mycological Society Rocky Mountains North Idaho Mycological Association Arizona Mushroom Club Pikes Peak Mycological Society Colorado Mycological Society Southern Idaho Mycological Association SW Montana Mycological Association Please send the information outlined on the form below to Adele Mehta by email: [email protected], or by mail: 4917 W. Old Shakopee Road, Bloomington, MN 55437. Regional
    [Show full text]
  • Bioluminescence in Mushroom and Its Application Potentials
    Nigerian Journal of Science and Environment, Vol. 14 (1) (2016) BIOLUMINESCENCE IN MUSHROOM AND ITS APPLICATION POTENTIALS Ilondu, E. M.* and Okiti, A. A. Department of Botany, Faculty of Science, Delta State University, Abraka, Nigeria. *Corresponding author. E-mail: [email protected]. Tel: 2348036758249. ABSTRACT Bioluminescence is a biological process through which light is produced and emitted by a living organism resulting from a chemical reaction within the body of the organism. The mechanism behind this phenomenon is an oxygen-dependent reaction involving substrates generally termed luciferin, which is catalyzed by one or more of an assortment of unrelated enzyme called luciferases. The history of bioluminescence in fungi can be traced far back to 382 B.C. when it was first noted by Aristotle in his early writings. It is the nature of bioluminescent mushrooms to emit a greenish light at certain stages in their life cycle and this light has a maximum wavelength range of 520-530 nm. Luminescence in mushroom has been hypothesized to attract invertebrates that aids in spore dispersal and testing for pollutants (ions of mercury) in water supply. The metabolites from luminescent mushrooms are effectively bioactive in anti-moulds, anti-bacteria, anti-virus, especially in inhibiting the growth of cancer cell and very useful in areas of biology, biotechnology and medicine as luminescent markers for developing new luminescent microanalysis methods. Luminescent mushroom is a novel area of research in the world which is beneficial to mankind especially with regards to environmental pollution monitoring and biomedical applications. Bioluminescence in fungi is a beautiful phenomenon to observe which should be of interest to Scientists of all endeavors.
    [Show full text]
  • The Genus Crepidotus (Fr.) Staude in Europe
    PERSOON I A Published by Rijksherbarium / Honus 8 01anicus. Leiden Volume 16. Part I. pp. 1-80 ( 1995) THE GENUS CREPIDOTUS (FR.) STAUDE IN EUROPE BEATRICE SENN-IRLET Systematisch-Gcobotanischcs lnsti1u1 dcr Univcrsit!lt Bern. C H-3013 Dern. Switzerland The gcnu~ Crepidotus in Europe is considered. After an examination of 550 collce1ions seven1ccn species and eigh1 varie1ies ore recognized. Two keys ore supplied; all taxa accept­ ed ore typified. Morphological. ecological and chorological chamc1ers arc cri1ically cvalua1cd. De crip· tivc stotis1ies arc used for basidiospore size. An infrageneric classifica1ion is proposed based on phcnctic rela1ionships using differcn1 cluster methods. The new combinations C. calo­ lepi.r var. sq11amulos1,s and C. cesatii var. subsplwerosporus arc inlroduced. The spore oma­ memouon as seen in the scanning electron microscope provides 1hc best character for species dclimilntion and classification. INTRODUCTION Fries ( 1821 : 272) established Agaricus eries De rm illus tribus Crepido111s for more or less pleurotoid species with ferruginous or pale argillaceous spores and an ephemeral. fibrillose veil (!). His fourteen species include such taxa as Paxillus arrorome111osus, Le11ti11el/11s v11/pi11us. Panel/us violaceo-fulvus and £1110/oma deplue11s which nowadays are placed in quite different genera and families. Only three of Fries' species belong to the genu Crepidotus as conceived now. T his demonstrates the importance of microscopic characters, neglected by Fries, for the circumscription of species and genera. Staude ( 1857) raised the tribus Crepidorus to generic rank with C. mollis as the sole species. Hesler & Smith ( 1965) dealt with the history of th e genus Crepido111s in more detail. In recent years several regional floras have been published, e.g.
    [Show full text]
  • Welsh Dune Fungi: Data Collation, Evaluation and Conservation Priorities
    Welsh Dune Fungi: Data Collation, Evaluation and Conservation Priorities S.E. Evans & P.J. Roberts Evidence Report No 134 About Natural Resources Wales Natural Resources Wales is the organisation responsible for the work carried out by the three former organisations, the Countryside Council for Wales, Environment Agency Wales and Forestry Commission Wales. It is also responsible for some functions previously undertaken by Welsh Government. Our purpose is to ensure that the natural resources of Wales are sustainably maintained, used and enhanced, now and in the future. We work for the communities of Wales to protect people and their homes as much as possible from environmental incidents like flooding and pollution. We provide opportunities for people to learn, use and benefit from Wales' natural resources. We work to support Wales' economy by enabling the sustainable use of natural resources to support jobs and enterprise. We help businesses and developers to understand and consider environmental limits when they make important decisions. We work to maintain and improve the quality of the environment for everyone and we work towards making the environment and our natural resources more resilient to climate change and other pressures. Page 2 of 57 www.naturalresourceswales.gov.uk Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way.
    [Show full text]
  • May 2015 Newsletter of the Central New York Mycological Society ______
    May 2015 Newsletter of the Central New York Mycological Society __________________________________________________________________________________________________________ Stereum hirsutum Hairy Parchment Stereum ostrea False Turkey-tail Stereum striatum Silky Parchment Strobilurus esculentus Spruce Cone Cap Trametes gibbosa Lenzites elegans/Trametes elegans/Lenzites gibbosa Trametes hirsuta Hairy Turkey Tail Trametes versicolor Turkey-tail Trichaptum biforme Violet Toothed Polypore Trichia favoginea Physcia stellaris Star Rosette Lichen They’re coming . and hopefully they’ll bring friends! (tentative) https://siskiyou.sou.edu/2015/04/08/morel-mushrooms-the-new-gold- rush/ ESF Masters student Brandon Haynes shared the results of his research using oyster mushroom spawn to filter E April Recap coli from waste water. Many thanks to Brandon for getting the year off to a great start with his interesting Thanks to Paula Desanto for providing the following program! species list from the winter foray at the Rand Tract in March: Next month Bernie Carr will educate us about trees and Daedaleopsis confragosa Thin-maze Flat Polypore the mushrooms they grow with. A must for all Fomes fomentarius Tinder Polypore mushroom hunters! The May foray will be at Morgan Irpex lacteus Milk-white Toothed Polypore Hill State Forest . Directions : from I-81S take the Tully Ischnoderma resinosum Resinous Polypore Exit and turn left from the exit ramp. Take the next left Panellus stipticus Luminescent Panellus Schizophyllum commune Common Split Gill onto Route 80. Follow Route 80 east through Tully and Stereum complicatum Crowded Parchment Apulia. Just beyond Venture Farms take a right onto Stereum hirsutum Hairy Stereum Herlihy Road. Follow this to the top of the hill and Stereum striatum Silky Parchment turn left (before Spruce Pond).
    [Show full text]
  • Lignicolous Macrofungi in the Beech Forest of the Mountain Ridge Lisets
    International Journal of Biological Sciences and Research | IJBSR | Vol. 1, No. 3, p. 131-146, 2018 Lignicolous Macrofungi In The Beech Forest Of The Mountain Ridge Lisets (Forebalkan) in Bulgaria Maria Lacheva Department of Botany and Agrometeorology, Agricultural University-Plovdiv 12, Mendeleev Str., 4000 Plovdiv, Bulgaria, e-mail: [email protected] ABSTRACT The current research is based on lignicolous macrofungi collected from mountain ridge Lisets and its environs between 2004 and 2011. As a result of field and laboratory studies, 73 species were identified. Seven (7) fungi belong to Pezizomycota and 66 to Agaricomycota. Of these fungi 55 represent new records for Forebalkan floristic region. Two (2) species includes in the Red List of fungi in Bulgaria: Clavicorona pyxidata (Pers. : Fr.) Doty, and Phyllotopsis nidulans (Pers. : Fr.) Singer. This paper presents the most up-to-date and extensive list of lignicolous macrofungi of mountain ridge Lisets, Forebalkan floristic region. Key words: beech communities, conservation value, Forebalkan, fungal diversity, lignicolous macrofungi, mountain ridge Lisets, rare taxa Maria Lacheva . GNARW © 2018 Page | 131 https://www.gnarw.com International Journal of Biological Sciences and Research | IJBSR | Vol. 1, No. 3, p. 131-146, 2018 INTRODUCTION The mountain ridge Lisets is situated in Northern Bulgaria, Western Forebalkan (Bondev, 2002). According to the physical and geographical characteristics is situated within the Stara Planina (Balkan) region (Georgiev, 1985; Yordanova et al., 2002). Climatically the mountain ridge belonds to Temperate-continental climatic Zone (Velev, 2002). The highest points is peaks Kamen Lisets (1073 m) and Cherti grad (1283 m). The study area is covered mainly by natural forest due to the prevailing climatic and edaphic conditions and limited timber extraction.
    [Show full text]
  • Microbial Degradation of Chlorinated Dioxins
    Available online at www.sciencedirect.com Chemosphere 71 (2008) 1005–1018 www.elsevier.com/locate/chemosphere Review Microbial degradation of chlorinated dioxins Jim A. Field *, Reyes Sierra-Alvarez Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA Received 18 June 2007; received in revised form 30 September 2007; accepted 18 October 2007 Available online 20 February 2008 Abstract Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were introduced into the biosphere on a large scale as by-products from the manufacture of chlorinated phenols and the incineration of wastes. Due to their high toxicity they have been the subject of great public and scientific scrutiny. The evidence in the literature suggests that PCDD/F compounds are subject to biodegradation in the environment as part of the natural chlorine cycle. Lower chlorinated dioxins can be degraded by aerobic bacteria from the genera of Sphingomonas, Pseudomonas and Burkholderia. Most studies have evaluated the cometabolism of monochlorinated dioxins with unsubstituted dioxin as the primary substrate. The degradation is usually initiated by unique angular dioxygenases that attack the ring adjacent to the ether oxygen. Chlorinated dioxins can also be attacked cometabolically under aerobic conditions by white-rot fungi that utilize extracellular lignin degrading peroxidases. Recently, bacteria that can grow on monochlorinated dibenzo- p-dioxins as a sole source of carbon and energy have also been characterized (Pseudomonas veronii). Higher chlorinated dioxins are known to be reductively dechlorinated in anaerobic sediments. Similar to PCB and chlorinated benzenes, halorespiring bacteria from the genus Dehalococcoides are implicated in the dechlorination reactions.
    [Show full text]
  • Los Alamos National Laboratory
    LA-13385-MS Distribution and Diversity of Fungal Species in and Adjacent to the Los Alamos National Laboratory OF WS DOCUMBff S IWM* Tl Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENC-36. An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution,however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]
  • Catalogue of Fungus Fair
    Oakland Museum, 6-7 December 2003 Mycological Society of San Francisco Catalogue of Fungus Fair Introduction ......................................................................................................................2 History ..............................................................................................................................3 Statistics ...........................................................................................................................4 Total collections (excluding "sp.") Numbers of species by multiplicity of collections (excluding "sp.") Numbers of taxa by genus (excluding "sp.") Common names ................................................................................................................6 New names or names not recently recorded .................................................................7 Numbers of field labels from tables Species found - listed by name .......................................................................................8 Species found - listed by multiplicity on forays ..........................................................13 Forays ranked by numbers of species .........................................................................16 Larger forays ranked by proportion of unique species ...............................................17 Species found - by county and by foray ......................................................................18 Field and Display Label examples ................................................................................27
    [Show full text]
  • Sites of Importance for Nature Conservation Wales Guidance (Pdf)
    Wildlife Sites Guidance Wales A Guide to Develop Local Wildlife Systems in Wales Wildlife Sites Guidance Wales A Guide to Develop Local Wildlife Systems in Wales Foreword The Welsh Assembly Government’s Environment Strategy for Wales, published in May 2006, pays tribute to the intrinsic value of biodiversity – ‘the variety of life on earth’. The Strategy acknowledges the role biodiversity plays, not only in many natural processes, but also in the direct and indirect economic, social, aesthetic, cultural and spiritual benefits that we derive from it. The Strategy also acknowledges that pressures brought about by our own actions and by other factors, such as climate change, have resulted in damage to the biodiversity of Wales and calls for a halt to this loss and for the implementation of measures to bring about a recovery. Local Wildlife Sites provide essential support between and around our internationally and nationally designated nature sites and thus aid our efforts to build a more resilient network for nature in Wales. The Wildlife Sites Guidance derives from the shared knowledge and experience of people and organisations throughout Wales and beyond and provides a common point of reference for the most effective selection of Local Wildlife Sites. I am grateful to the Wales Biodiversity Partnership for developing the Wildlife Sites Guidance. The contribution and co-operation of organisations and individuals across Wales are vital to achieving our biodiversity targets. I hope that you will find the Wildlife Sites Guidance a useful tool in the battle against biodiversity loss and that you will ensure that it is used to its full potential in order to derive maximum benefit for the vitally important and valuable nature in Wales.
    [Show full text]
  • Nicolás Niveiro1,4,5, Marina Uhart2,3 & Edgardo Albertó2
    Rodriguésia 71: e02272018. 2020 http://rodriguesia.jbrj.gov.br DOI: http://dx.doi.org/10.1590/2175-7860202071038 Original Paper Revision of the genera Agrocybe and Cyclocybe (Strophariaceae, Agaricales, Basidiomycota) in Argentina Revision of the genera Agrocybe and Cyclocybe (Strophariaceae, Agaricales, Basidiomycota) in Argentina Nicolás Niveiro1,4,5, Marina Uhart2,3 & Edgardo Albertó2 Abstract Agrocybe is characterized by the collybioid to tricholomatoid basidiomata with rusty to dark spore-print, a hymeniform pileipellis, and basidiosspores with a reduced to broad germ-pore. Recently, the species with reduced germ-pore were segregated to Cyclocybe. The knowledge of these genera in Argentina is scanty, although they have been partially studied in the country, but there is not a field that deals exhaustively with it. Macro- and micromorphological characters of specimens obtained in the feld and from different national herbaria (BAFC, CTES, LIL, LPS) were analyzed. Cultivation techniques were used to obtain basidiomata, allowing for a macro- and micromorphological study of fresh developing basidiomes. We concluded that in Argentina there are, so far, 14 species of Agrocybe (one of them with 3 varieties) and two of Cyclocybe including to C. wrightii, which is proposed as a new combination. Sixteen species are described and a key to the Argentinian species of Agrocybe and Cyclocybe is proposed. Key words: biodiversity; taxonomy; South America; Cyclocybe wrightii. Resumen Agrocybe se caracteriza por sus basidiomas collibiodes a tricholomatoides, esporada con coloraciones ferrugineas a oscuras, pileipellis himeniforme y esporas con poro germinativo. Recientemente, las especies con poro germinativo reducido fueron segregadas a Cyclocybe. El conocimiento de estos géneros en Argentina es escaso, aunque hay estudios parciales de varios micólogos, no hay un trabajo que lo trate exhaustivamente en forma conjunta.
    [Show full text]