Catalogue of Fungus Fair
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
December 2020
MushRumors Newsletter of the Northwest Mushroomers Association Vol. 31, No. 4 December 2020 The white barrel bird's nest, Nidula niveotomentosa, near Acme, Washington, December 2020. Photo by Richard Morrison #ThatWasTheYearThatWas Mark Johnson Needless to say 2020 was an unusual year for our club, but I much discussion, and we went at it on a month-by-month basis, will say it anyway, “Twenty-twenty was a very weird year for our trying to remain hopeful that things would get better. mushroomers club!” As you may recall (by not recalling them!), Club members forayed by themselves and with their pod there was no spring Survivors’ Banquet this year, no organized members and shared pictures of what they found. They also forays, no potlucks or cooking demos, no in-person meetings, no got identification online through our interactive google groups annual show, and no ID classes. emails, and on iNaturalist. This awesome newsletter continued So, what did we do? The club’s board met more often this to come out. We also joined the “Zoom Era” culture with several year than during some years when all of these things did happen. talks: in August, Daniel Winkler gave a talk about the intriguing Cancelling each of these normal activities ahead of time required Continued next page Contents: 3 Walks, Finds | 5 McAdoo | 6 MotM | 8 FunDis | 9 Candy cap | 10 au gratin | 11 NMA December 2020 #ThatWasTheYearThatWas, continued President’s Predictions Next month, on Thursday, January 14, Richard Morrison gives a talk to the club (and anyone else who wants to watch). -
Agaricales, Basidiomycota) Occurring in Punjab, India
Current Research in Environmental & Applied Mycology 5 (3): 213–247(2015) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2015 Online Edition Doi 10.5943/cream/5/3/6 Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India Amandeep K1*, Atri NS2 and Munruchi K2 1Desh Bhagat College of Education, Bardwal–Dhuri–148024, Punjab, India. 2Department of Botany, Punjabi University, Patiala–147002, Punjab, India. Amandeep K, Atri NS, Munruchi K 2015 – Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India. Current Research in Environmental & Applied Mycology 5(3), 213–247, Doi 10.5943/cream/5/3/6 Abstract This paper includes the results of eco-taxonomic studies of coprophilous mushrooms in Punjab, India. The information is based on the survey to dung localities of the state during the various years from 2007-2011. A total number of 172 collections have been observed, growing as saprobes on dung of various domesticated and wild herbivorous animals in pastures, open areas, zoological parks, and on dung heaps along roadsides or along village ponds, etc. High coprophilous mushrooms’ diversity has been established and a number of rare and sensitive species recorded with the present study. The observed collections belong to 95 species spread over 20 genera and 07 families of the order Agaricales. The present paper discusses the distribution of these mushrooms in Punjab among different seasons, regions, habitats, and growing habits along with their economic utility, habitat management and conservation. This is the first attempt in which various dung localities of the state has been explored systematically to ascertain the diversity, seasonal availability, distribution and ecology of coprophilous mushrooms. -
G. Gulden & E.W. Hanssen Distribution and Ecology of Stipitate Hydnaceous Fungi in Norway, with Special Reference to The
DOI: 10.2478/som-1992-0001 sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 sommerfeltia~ J is owned and edited by the Botanical Garden and Museum, University of Oslo. SOMMERFELTIA is named in honour of the eminent Norwegian botanist and clergyman S0ren Christian Sommerfelt (1794-1838). The generic name Sommerfeltia has been used in (1) the lichens by Florke 1827, now Solorina, (2) Fabaceae by Schumacher 1827, now Drepanocarpus, and (3) Asteraceae by Lessing 1832, nom. cons. SOMMERFELTIA is a series of monographs in plant taxonomy, phytogeo graphy, phytosociology, plant ecology, plant morphology, and evolutionary botany. Most papers are by Norwegian authors. Authors not on the staff of the Botanical Garden and Museum in Oslo pay a page charge of NOK 30.00. SOMMERFEL TIA appears at irregular intervals, normally one article per volume. Editor: Rune Halvorsen 0kland. Editorial Board: Scientific staff of the Botanical Garden and Museum. Address: SOMMERFELTIA, Botanical Garden and Museum, University of Oslo, Trondheimsveien 23B, N-0562 Oslo 5, Norway. Order: On a standing order (payment on receipt of each volume) SOMMER FELTIA is supplied at 30 % discount. Separate volumes are supplied at the prices indicated on back cover. sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 ISBN 82-7420-014-4 ISSN 0800-6865 Gulden, G. and Hanssen, E.W. 1992. Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline. -
MMA MASTERLIST - Sorted Alphabetically
MMA MASTERLIST - Sorted Alphabetically Sunday, December 10, 20Taxa Count: 2115 Page 1 of 26 Agaricus abruptibulbus Amanita amerimuscaria Agaricus arvensis Amanita amerirubescens nom. prov. Agaricus campestris Amanita atkinsoniana Agaricus haemorrhoidarius Amanita aureosolea nom. prov. Agaricus micromegethus Amanita battarrae Agaricus pattersonae Amanita bisporigera Agaricus placomyces Amanita brunnescens Agaricus semotus Amanita ceciliae Agaricus silvaticus Amanita cinereoconia Agaricus silvicola Amanita citrina Agaricus sp. Amanita citrina f. lavendula Agaricus subrutilescens Amanita cokeri Agaricus xanthrodermus Amanita cothurnata Agrocybe acericola Amanita crenulata Agrocybe aegerita Amanita crocea Agrocybe dura Amanita elongata Agrocybe erebia Amanita excelsa var. spissa Agrocybe firma Amanita farinosa Agrocybe pediades Amanita flavoconia Agrocybe praecox Amanita flavorubens Agrocybe sp. Amanita flavorubescens Agrocybe tabacina Amanita frostiana Albatrellus caeruleoporus Amanita fulva var. alba Albatrellus confluens Amanita fulva var. crassivolvata Albatrellus ovinus Amanita gemmata Albatrellus sp. Amanita jacksonii Alboleptonia sericella Amanita longipes Albugo candida Amanita murrilliana Aleuria aurantia Amanita onusta Aleuria rhenana Amanita pantherina, cf. Aleurodiscus amorphus Amanita phalloides Aleurodiscus oakesii Amanita porphyria Amanita abrupta Amanita praecox nom. prov. Amanita aestivalis Amanita pseudovolvata nom. prov. Amanita albocreata Amanita RET T01 Amanita amerifulva nom. prov. Amanita ristichii Amanita rubescens -
The Biosynthesis of Plant and Fungal Sesquiterpenoids in Ustilago Maydis and Discovery of a Bioactive Compound from Fistulina Hepatica
The biosynthesis of plant and fungal sesquiterpenoids in Ustilago maydis and discovery of a bioactive compound from Fistulina hepatica Inaugural-Dissertation Zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Jungho Lee aus Daegu Düsseldorf, September 2020 aus dem Institut für Mikrobiologie der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. Michael Feldbrügge Korreferent : Prof. Dr. Julia Frunzke Tag der mündlichen Prüfung: 26. Oktober 2020 Eidesstattliche Erklärung Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist. Die Dissertation wurde in ihrer jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht. Ich habe zuvor keine erfolglosen Promotionsversuche unternommen. Ort, Datum Unterschrift Die Untersuchungen zur vorliegenden Arbeit wurden von Oktober 2016 bis September 2020 in Düsseldorf an der Heinrich-Heine-Universität in dem Institut für Mikrobiologie unter der Betreuung von Herrn Prof. Dr. Michael Feldbrügge durchgeführt. Teile dieser Arbeit wurden veröffentlicht in: Lee, J., Hilgers, F., Loeschke, A., Jaeger, K. E., Feldbrügge, M., 2020, Ustilago maydis serves as a novel production host for the synthesis of plant and fungal sesquiterpenoids. Frontiers in Microbiology 11, 1655. Lee, J., Shi, Y., Grün, P., Gube, M., Feldbrügge, M., Bode, H. B., Hennicke, F., 2020, Identification of feldin, an antifungal polyine from the beefsteak fungus Fistulina hepatica. Biomolecules 10, 1502. Summary Summary Sesquiterpenoids are important secondary metabolites with various pharma- and nutraceutical properties. -
Mycodiversity Studies in Selected Ecosystems of Greece: 5
Uploaded — May 2011 [Link page — MYCOTAXON 115: 535] Expert reviewers: Giuseppe Venturella, Solomon P. Wasser Mycodiversity studies in selected ecosystems of Greece: 5. Basidiomycetes associated with woods dominated by Castanea sativa (Nafpactia Mts., central Greece) ELIAS POLEMIS1, DIMITRIS M. DIMOU1,3, LEONIDAS POUNTZAS4, DIMITRIS TZANOUDAKIS2 & GEORGIOS I. ZERVAKIS1* 1 [email protected], [email protected] Agricultural University of Athens, Lab. of General & Agricultural Microbiology Iera Odos 75, 11855 Athens, Greece 2 University of Patras, Dept. of Biology, Panepistimioupoli, 26500 Rion, Greece 3 Koritsas 10, 15343 Agia Paraskevi, Greece 4 Technological Educational Institute of Mesologgi, 30200 Mesologgi, Greece Abstract — Very scarce literature data are available on the macrofungi associated with sweet chestnut trees (Castanea sativa, Fagaceae). We report here the results of an inventory of basidiomycetes, which was undertaken in the region of Nafpactia Mts., central Greece. The investigated area, with woods dominated by C. sativa, was examined for the first time in respect to its mycodiversity. One hundred and four species belonging in 54 genera were recorded. Fifteen species (Conocybe pseudocrispa, Entoloma nitens, Lactarius glaucescens, Lichenomphalia velutina, Parasola schroeteri, Pholiotina coprophila, Russula alutacea, R. azurea, R. pseudoaeruginea, R. pungens, R. vitellina, Sarcodon glaucopus, Tomentella badia, T. fibrosa and Tubulicrinis sororius) are reported for the first time from Greece. In addition, 33 species constitute new habitats/hosts/substrates records. Key words — biodiversity, macromycete, Mediterranean, mushroom Introduction Castanea sativa Mill., Fagaceae (sweet chestnut) generally prefers north- facing slopes where the rainfall is greater than 600 mm, on moderately acid soils (pH 4.5–6.5) with a light texture. It covers ca. -
Pt Reyes Species As of 12-1-2017 Abortiporus Biennis Agaricus
Pt Reyes Species as of 12-1-2017 Abortiporus biennis Agaricus augustus Agaricus bernardii Agaricus californicus Agaricus campestris Agaricus cupreobrunneus Agaricus diminutivus Agaricus hondensis Agaricus lilaceps Agaricus praeclaresquamosus Agaricus rutilescens Agaricus silvicola Agaricus subrutilescens Agaricus xanthodermus Agrocybe pediades Agrocybe praecox Alboleptonia sericella Aleuria aurantia Alnicola sp. Amanita aprica Amanita augusta Amanita breckonii Amanita calyptratoides Amanita constricta Amanita gemmata Amanita gemmata var. exannulata Amanita calyptraderma Amanita calyptraderma (white form) Amanita magniverrucata Amanita muscaria Amanita novinupta Amanita ocreata Amanita pachycolea Amanita pantherina Amanita phalloides Amanita porphyria Amanita protecta Amanita velosa Amanita smithiana Amaurodon sp. nova Amphinema byssoides gr. Annulohypoxylon thouarsianum Anthrocobia melaloma Antrodia heteromorpha Aphanobasidium pseudotsugae Armillaria gallica Armillaria mellea Armillaria nabsnona Arrhenia epichysium Pt Reyes Species as of 12-1-2017 Arrhenia retiruga Ascobolus sp. Ascocoryne sarcoides Astraeus hygrometricus Auricularia auricula Auriscalpium vulgare Baeospora myosura Balsamia cf. magnata Bisporella citrina Bjerkandera adusta Boidinia propinqua Bolbitius vitellinus Suillellus (Boletus) amygdalinus Rubroboleus (Boletus) eastwoodiae Boletus edulis Boletus fibrillosus Botryobasidium longisporum Botryobasidium sp. Botryobasidium vagum Bovista dermoxantha Bovista pila Bovista plumbea Bulgaria inquinans Byssocorticium californicum -
Checklist of Macro-Fungi from Baramati Area of Pune District, MS, India
Int.J.Curr.Microbiol.App.Sci (2019) 8(7): 2187-2192 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 07 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.807.265 Checklist of Macro-Fungi from Baramati Area of Pune District, MS, India Anuradha K. Bhosale*, Vivek Kadam, Prasad Bankar, Sandhya Shitole, Sourabh Chandankar, Sujit Wagh and M.B. Kanade P. G. Research Center, Department of Botany, Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati, Dist. Pune - 413 102, Maharashtra, India *Corresponding author ABSTRACT Macro-fungi are the fungal species that produce fruiting bodies visible to naked eyes and occurs widely in the rainy season. The macro-fungi plays K e yw or ds important role in nutrient dynamics, soil health, as pollution indicator, Macro-fungi species mutualism and its interaction and even has its economic role in diversity carbon cycling and the mobilization of nitrogen and phosphorous. Present investigation emphasizes on study of macro-fungi from Baramati area of Article Info Pune district of Maharashtra. During the study frequent field visits, listing Accepted: of genera and their species, identification and photography has done. In the 17 June 2019 Available Online: checklist total 64 fungal species belonging to 37 genera, 03 sub-divisions, 10 July 2019 13 orders and 23 families were reported. The contribution of Basidiomycotina fungi was 90% followed by Ascomycotina (7.8%) and Zygomycotina (1.6%). Introduction than 27000 fungal species throughout the India. The number of mushroom species Fungi are amongst the most important alone, recorded in the world were 41,000 of organisms in the world, not only because of which approximately 850 species were their vital role in ecosystem functions recorded from India (Deshmukh, 2004) mostly (Blackwell, 2011) but also for their influence belonging to gilled mushrooms. -
Mushrooms Commonly Found in Northwest Washington
MUSHROOMS COMMONLY FOUND IN NORTHWEST WASHINGTON GILLED MUSHROOMS SPORES WHITE Amanita constricta Amanita franchettii (A. aspera) Amanita gemmata Amanita muscaria Amanita pachycolea Amanita pantherina Amanita porphyria Amanita silvicola Amanita smithiana Amanita vaginata Armillaria nabsnona (A. mellea) Armillaria ostoyae (A. mellea) Armillaria sinapina (A. mellea) Calocybe carnea Clitocybe avellaneoalba Clitocybe clavipes Clitocybe dealbata Clitocybe deceptiva Clitocybe dilatata Clitocybe flaccida Clitocybe fragrans Clitocybe gigantean Clitocybe ligula Clitocybe nebularis Clitocybe odora Hygrophoropsis (Clitocybe) aurantiaca Lepista (Clitocybe) inversa Lepista (Clitocybe) irina Lepista (Clitocybe) nuda Gymnopus (Collybia) acervatus Gymnopus (Collybia) confluens Gymnopus (Collybia) dryophila Gymnopus (Collybia) fuscopurpureus Gymnopus (Collybia) peronata Rhodocollybia (Collybia) butyracea Rhodocollybia (Collybia) maculata Strobilurus (Collybia) trullisatus Cystoderma cinnabarinum Cystoderma amianthinum Cystoderma fallax Cystoderma granulosum Flammulina velutipes Hygrocybe (Hygrophorus) conica Hygrocybe (Hygrophorus) minuiatus Hygrophorus bakerensis Hygrophorus camarophyllus Hygrophorus piceae Laccaria amethysteo-occidentalis Laccaria bicolor Laccaria laccata Lactarius alnicola Lactarius deliciousus Lactarius fallax Lactarius kaufmanii Lactarius luculentus Lactarius obscuratus Lactarius occidentalis Lactarius pallescens Lactarius parvis Lactarius pseudomucidus Lactarius pubescens Lactarius repraesentaneus Lactarius rubrilacteus Lactarius -
The Macrofungi Checklist of Liguria (Italy): the Current Status of Surveys
Posted November 2008. Summary published in MYCOTAXON 105: 167–170. 2008. The macrofungi checklist of Liguria (Italy): the current status of surveys MIRCA ZOTTI1*, ALFREDO VIZZINI 2, MIDO TRAVERSO3, FABRIZIO BOCCARDO4, MARIO PAVARINO1 & MAURO GIORGIO MARIOTTI1 *[email protected] 1DIP.TE.RIS - Università di Genova - Polo Botanico “Hanbury”, Corso Dogali 1/M, I16136 Genova, Italy 2 MUT- Università di Torino, Dipartimento di Biologia Vegetale, Viale Mattioli 25, I10125 Torino, Italy 3Via San Marino 111/16, I16127 Genova, Italy 4Via F. Bettini 14/11, I16162 Genova, Italy Abstract— The paper is aimed at integrating and updating the first edition of the checklist of Ligurian macrofungi. Data are related to mycological researches carried out mainly in some holm-oak woods through last three years. The new taxa collected amount to 172: 15 of them belonging to Ascomycota and 157 to Basidiomycota. It should be highlighted that 12 taxa have been recorded for the first time in Italy and many species are considered rare or infrequent. Each taxa reported consists of the following items: Latin name, author, habitat, height, and the WGS-84 Global Position System (GPS) coordinates. This work, together with the original Ligurian checklist, represents a contribution to the national checklist. Key words—mycological flora, new reports Introduction Liguria represents a very interesting region from a mycological point of view: macrofungi, directly and not directly correlated to vegetation, are frequent, abundant and quite well distributed among the species. This topic is faced and discussed in Zotti & Orsino (2001). Observations prove an high level of fungal biodiversity (sometimes called “mycodiversity”) since Liguria, though covering only about 2% of the Italian territory, shows more than 36 % of all the species recorded in Italy. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M. -
Hebelomina (Agaricales) Revisited and Abandoned
Plant Ecology and Evolution 151 (1): 96–109, 2018 https://doi.org/10.5091/plecevo.2018.1361 REGULAR PAPER Hebelomina (Agaricales) revisited and abandoned Ursula Eberhardt1,*, Nicole Schütz1, Cornelia Krause1 & Henry J. Beker2,3,4 1Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 2Rue Père de Deken 19, B-1040 Bruxelles, Belgium 3Royal Holloway College, University of London, Egham, Surrey TW20 0EX, United Kingdom 4Plantentuin Meise, Nieuwelaan 38, B-1860 Meise, Belgium *Author for correspondence: [email protected] Background and aims – The genus Hebelomina was established in 1935 by Maire to accommodate the new species Hebelomina domardiana, a white-spored mushroom resembling a pale Hebeloma in all aspects other than its spores. Since that time a further five species have been ascribed to the genus and one similar species within the genus Hebeloma. In total, we have studied seventeen collections that have been assigned to these seven species of Hebelomina. We provide a synopsis of the available knowledge on Hebelomina species and Hebelomina-like collections and their taxonomic placement. Methods – Hebelomina-like collections and type collections of Hebelomina species were examined morphologically and molecularly. Ribosomal RNA sequence data were used to clarify the taxonomic placement of species and collections. Key results – Hebelomina is shown to be polyphyletic and members belong to four different genera (Gymnopilus, Hebeloma, Tubaria and incertae sedis), all members of different families and clades. All but one of the species are pigment-deviant forms of normally brown-spored taxa. The type of the genus had been transferred to Hebeloma, and Vesterholt and co-workers proposed that Hebelomina be given status as a subsection of Hebeloma.