Urban Meadowscaping Handbook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Plants at Fort Ross State Historic Park
19005 Coast Highway One, Jenner, CA 95450 ■ 707.847.3437 ■ [email protected] ■ www.fortross.org Title: Vascular Plants at Fort Ross State Historic Park Author(s): Dorothy Scherer Published by: California Native Plant Society i Source: Fort Ross Conservancy Library URL: www.fortross.org Fort Ross Conservancy (FRC) asks that you acknowledge FRC as the source of the content; if you use material from FRC online, we request that you link directly to the URL provided. If you use the content offline, we ask that you credit the source as follows: “Courtesy of Fort Ross Conservancy, www.fortross.org.” Fort Ross Conservancy, a 501(c)(3) and California State Park cooperating association, connects people to the history and beauty of Fort Ross and Salt Point State Parks. © Fort Ross Conservancy, 19005 Coast Highway One, Jenner, CA 95450, 707-847-3437 .~ ) VASCULAR PLANTS of FORT ROSS STATE HISTORIC PARK SONOMA COUNTY A PLANT COMMUNITIES PROJECT DOROTHY KING YOUNG CHAPTER CALIFORNIA NATIVE PLANT SOCIETY DOROTHY SCHERER, CHAIRPERSON DECEMBER 30, 1999 ) Vascular Plants of Fort Ross State Historic Park August 18, 2000 Family Botanical Name Common Name Plant Habitat Listed/ Community Comments Ferns & Fern Allies: Azollaceae/Mosquito Fern Azo/la filiculoides Mosquito Fern wp Blechnaceae/Deer Fern Blechnum spicant Deer Fern RV mp,sp Woodwardia fimbriata Giant Chain Fern RV wp Oennstaedtiaceae/Bracken Fern Pleridium aquilinum var. pubescens Bracken, Brake CG,CC,CF mh T Oryopteridaceae/Wood Fern Athyrium filix-femina var. cyclosorum Western lady Fern RV sp,wp Dryopteris arguta Coastal Wood Fern OS op,st Dryopteris expansa Spreading Wood Fern RV sp,wp Polystichum munitum Western Sword Fern CF mh,mp Equisetaceae/Horsetail Equisetum arvense Common Horsetail RV ds,mp Equisetum hyemale ssp.affine Common Scouring Rush RV mp,sg Equisetum laevigatum Smooth Scouring Rush mp,sg Equisetum telmateia ssp. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
DCDB: an Updated On-Line Database of Chromosome Numbers of Tribe Delphinieae (Ranunculaceae)
DCDB: an updated on-line database of chromosome numbers of tribe Delphinieae (Ranunculaceae) Maria Bosch1, Joan Simon1, Jordi López-Pujol2 & Cèsar Blanché1 1BioC-GReB, Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona. Av. Joan XXIII s/n. 08028 Barcelona, Catalonia (Spain) 2BioC-GReB, Botanic Institute of Barcelona (IBB-CSIC-ICUB). Passeig del Migdia s/n. 08028 Barcelona, Catalonia (Spain) VERSION 2.0 UPDATED 23/IV/2016 Abstract. A new version of the earlier chromosome database of tribe Delphinieae (Simon, J., M. Bosch, J. Molero & C. Blanché. 1999. A conspect of chromosome numbers in tribe Delphinieae (Ranunculaceae). Biodiversity Electronic Publications, 1 [Available online at http://hdl.handle.net/2445/95875]) is presented, after an accurate extensive literature and Internet survey, by adding the chromosome counts for the genera Aconitum L. (including Gymnaconitum (Stapf) Wei Wang & Z. D. Chen), Delphinium L. (including Staphisagria Spach), Consolida (DC.) S.F. Gray and Aconitella Spach, accumulated in the last 17 years. A total number of 2598 reports are presented, belonging to 389 species, representing a 44.5% of the total species number of the tribe (an increase of c. 137% compared with the 1097 reports gathered in the 1999 version). This increase is due both to chromosome research progress (analysed as counts/year) and an improved information capture system (including checking of populations location through Cyrillic alphabet, and Japanese and Chinese writing systems). Additionally, recent taxonomic advances, synonimization and new phylogenetic criteria have also been taken in account. The main basic number x = 8 is found at 2x, 3x, 4x, 5x, 6x, and 8x ploidy levels, whereas x = 9 is much rarer. -
A Guide to Priority Plant and Animal Species in Oregon Forests
A GUIDE TO Priority Plant and Animal Species IN OREGON FORESTS A publication of the Oregon Forest Resources Institute Sponsors of the first animal and plant guidebooks included the Oregon Department of Forestry, the Oregon Department of Fish and Wildlife, the Oregon Biodiversity Information Center, Oregon State University and the Oregon State Implementation Committee, Sustainable Forestry Initiative. This update was made possible with help from the Northwest Habitat Institute, the Oregon Biodiversity Information Center, Institute for Natural Resources, Portland State University and Oregon State University. Acknowledgments: The Oregon Forest Resources Institute is grateful to the following contributors: Thomas O’Neil, Kathleen O’Neil, Malcolm Anderson and Jamie McFadden, Northwest Habitat Institute; the Integrated Habitat and Biodiversity Information System (IBIS), supported in part by the Northwest Power and Conservation Council and the Bonneville Power Administration under project #2003-072-00 and ESRI Conservation Program grants; Sue Vrilakas, Oregon Biodiversity Information Center, Institute for Natural Resources; and Dana Sanchez, Oregon State University, Mark Gourley, Starker Forests and Mike Rochelle, Weyerhaeuser Company. Edited by: Fran Cafferata Coe, Cafferata Consulting, LLC. Designed by: Sarah Craig, Word Jones © Copyright 2012 A Guide to Priority Plant and Animal Species in Oregon Forests Oregonians care about forest-dwelling wildlife and plants. This revised and updated publication is designed to assist forest landowners, land managers, students and educators in understanding how forests provide habitat for different wildlife and plant species. Keeping forestland in forestry is a great way to mitigate habitat loss resulting from development, mining and other non-forest uses. Through the use of specific forestry techniques, landowners can maintain, enhance and even create habitat for birds, mammals and amphibians while still managing lands for timber production. -
Longevity of Scarified Seed of Three Native Legumes Under Different Seed Storage Conditions Annie Young-Mathews, Kathy Pendergrass and Amy Bartow
FINAL STUDY REPORT NRCS Plant Materials Center, Corvallis, OR December 2017 Longevity of Scarified Seed of Three Native Legumes under Different Seed Storage Conditions Annie Young-Mathews, Kathy Pendergrass and Amy Bartow ABSTRACT Seed mixes are often needed at short notice for revegetation or erosion control plantings, and many native Pacific Northwest legumes used for such plantings require mechanical scarification in order to obtain rapid, even germination. Mechanical scarification and seed storage conditions have the potential to affect the long-term viability of seed. Studies were conducted at the USDA Natural Resources Conservation Service Corvallis Plant Materials Center, Corvallis, Oregon to determine the response of riverbank lupine (Lupinus rivularis), broadleaf lupine (Lupinus latifolius), and rosy bird’s-foot trefoil (Lotus aboriginus) to seed storage environment and scarification treatment over the course of five years. Seed of all three legume species showed little response to either storage environment or scarification, retaining greater than 90% viability levels over the five years of the study. Results suggest that scarified legume seed might be maintained for several years in “ready-to-go” seed mixes, even under less than ideal storage conditions, thus facilitating rapid revegetation efforts when the need arises. INTRODUCTION In western Oregon, seed mixes are often needed at short notice for revegetation of retired logging roads, road cuts, reseeding after fires, or for other erosion control plantings. The Salem and Eugene Districts of the Oregon Bureau of Land Management (BLM) were interested in developing simple seed mixes, including legumes and grasses, which could be seeded in projects on the west slopes of the Cascades and Coast Range in western Oregon. -
Restoration Objectives and Strategies for Terrestrial Habitats and Species of the Willamette Sub-Basin
Protection, Restoration, and Management of Terrestrial Habitats and Species of the Willamette Sub-Basin Technical Appendix 1 Contents 1. Introduction 1 1.1 Purpose and Objectives 1 1.2 Scope and Scale of the Report 2 1.3 Principal Sources of Data 5 1.4 Analytical Approaches 7 1.5 Building Upon Previous Efforts 11 1.6 How to Apply this Report and Databases to Decision-making 14 2. Focal Habitats and Associated Focal Species 31 2.1 Introduction 31 2.2 Focal Habitat: Oak Woodlands 37 2.2.1 Definition 37 2.2.2 Recognition of Importance 37 2.2.3 Status and Distribution 37 2.2.4 Past Impacts, Limiting Factors, and Future Threats 38 2.2.5 Protection, Restoration, and Management 39 2.2.6 Compatibility of Oak Woodland Management and Stream Habitat Management. 40 2.2.7 Contribution of Oak Woodlands to Regional Biodiversity 40 2.2.8 Selected Focal Species 40 2.2.9 Synthesis: Indicators of Oak Woodland Ecological Condition and Sustainability 53 2.3 Focal Habitat: Upland Prairie, Savanna, and Rock Outcrops 55 2.3.1 Description 55 2.3.2 Recognition of Importance 55 2.3.3 Status and Distribution 56 2.3.4 Past Impacts, Limiting Factors, and Future Threats 57 2.3.5 Protection, Restoration, and Management 58 2.3.6 Compatibility of Upland Prairie-Savanna Management and Stream Management 58 2.3.7 Contribution of Upland Prairie-Savanna to Regional Biodiversity 59 2.3.8 Selected Focal Species 59 2.3.9 Synthesis: Indicators of Ecological Condition and Sustainability for Upland Prairie- Savanna 77 2.4 Focal Habitat: Wetland Prairie and Seasonal Marsh 81 2.4.1 -
Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection
sustainability Review Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection Brandon Schlautman 1,2,* ID , Spencer Barriball 1, Claudia Ciotir 2,3, Sterling Herron 2,3 and Allison J. Miller 2,3 1 The Land Institute, 2440 E. Water Well Rd., Salina, KS 67401, USA; [email protected] 2 Saint Louis University Department of Biology, 1008 Spring Ave., St. Louis, MO 63110, USA; [email protected] (C.C.); [email protected] (S.H.); [email protected] (A.J.M.) 3 Missouri Botanical Garden, 4500 Shaw Blvd. St. Louis, MO 63110, USA * Correspondence: [email protected]; Tel.: +1-785-823-5376 Received: 12 February 2018; Accepted: 4 March 2018; Published: 7 March 2018 Abstract: Annual cereal and legume grain production is dependent on inorganic nitrogen (N) and other fertilizers inputs to resupply nutrients lost as harvested grain, via soil erosion/runoff, and by other natural or anthropogenic causes. Temperate-adapted perennial grain legumes, though currently non-existent, might be uniquely situated as crop plants able to provide relief from reliance on synthetic nitrogen while supplying stable yields of highly nutritious seeds in low-input agricultural ecosystems. As such, perennial grain legume breeding and domestication programs are being initiated at The Land Institute (Salina, KS, USA) and elsewhere. This review aims to facilitate the development of those programs by providing criteria for evaluating potential species and in choosing candidates most likely to be domesticated and adopted as herbaceous, perennial, temperate-adapted grain legumes. We outline specific morphological and ecophysiological traits that may influence each candidate’s agronomic potential, the quality of its seeds and the ecosystem services it can provide. -
Peacock Larkspur (Delphinium Pavonaceum)
Peacock larkspur (Delphinium pavonaceum) ENDANGERED Flowers (left), habit (center), and habitat (right) of peacock larkspur. Photos by Melissa Carr. If downloading images from this website, please credit the photographer. Family Ranunculaceae Taxonomic notes The Flora of North America North of Mexico treats peacock larkspur as a hybrid between Delphinium menziesii ssp. pallidum and D. trolliifolium. However, based on its unique morphology and fertile, self-sustaining populations, peacock larkspur is treated here as a distinct species (D. pavonaceum), following the Oregon Flora Project treatment of the taxon. Peacock larkspur has been reported to produce viable hybrid seeds when crossed with Delphinium leucophaeum, D. menziesii, D. oreganum, and D. nuttallii. Plant description Peacock larkspur is a leafy perennial 30-90 cm tall that grows from a cluster of globose tubers. The deeply cleft leaves are mostly cauline, becoming bract-like above, the lowest leaves with petioles up to 22 cm long. Flowers are arranged in a pyramidal raceme, with lower pedicels much longer than the upper ones. The sepals are white to cream, sometimes slightly greenish blue on the back and greenish at the tip, and more or less reflexed to spreading. The lower petals are white or faintly bluish tinged toward the base and glandular-pubescent with a hairy tuft at the base of the blade. The upper petals are bluish to lavender-tipped. The follicles are up to 1.6 cm long and often glandular-pubescent. Distinguishing characteristics Peacock larkspur is distinguished from Delphinium leucophaeum, the only other white- flowered larkspur west of the Cascades, by its taller habit (30-90 cm versus 20-60 cm in D. -
Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S
Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S. Fish and Wildlife Service G. Leppig and A. Pickart and California Department of Fish Game Release 4.0 June 2014* www.fws.gov/refuge/humboldt_bay/ Habitat- Habitat - Occurs on Species Status Occurs within Synonyms Common name specific broad Lanphere- Jepson Manual (2012) (see codes at end) refuge (see codes at end) (see codes at end) Ma-le'l Units UD PW EW Adoxaceae Sambucus racemosa L. red elderberry RF, CDF, FS X X N X X Aizoaceae Carpobrotus chilensis (Molina) sea fig DM X E X X N.E. Br. Carpobrotus edulis ( L.) N.E. Br. Iceplant DM X E, I X Alismataceae lanceleaf water Alisma lanceolatum With. FM X E plantain northern water Alisma triviale Pursh FM X N plantain Alliaceae three-cornered Allium triquetrum L. FS, FM, DM X X E leek Allium unifolium Kellogg one-leaf onion CDF X N X X Amaryllidaceae Amaryllis belladonna L. belladonna lily DS, AW X X E Narcissus pseudonarcissus L. daffodil AW, DS, SW X X E X Anacardiaceae Toxicodendron diversilobum Torrey poison oak CDF, RF X X N X X & A. Gray (E. Greene) Apiaceae Angelica lucida L. seacoast angelica BM X X N, C X X Anthriscus caucalis M. Bieb bur chevril DM X E Cicuta douglasii (DC.) J. Coulter & western water FM X N Rose hemlock Conium maculatum L. poison hemlock RF, AW X I X Daucus carota L. Queen Anne's lace AW, DM X X I X American wild Daucus pusillus Michaux DM, SW X X N X X carrot Foeniculum vulgare Miller sweet fennel AW, FM, SW X X I X Glehnia littoralis (A. -
Thomas Coulter's Californian Exsiccata
Aliso: A Journal of Systematic and Evolutionary Botany Volume 37 Issue 1 Issue 1–2 Article 2 2019 Plantae Coulterianae: Thomas Coulter’s Californian Exsiccata Gary D. Wallace California Botanic Garden, Claremont, CA Follow this and additional works at: https://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Wallace, Gary D. (2020) "Plantae Coulterianae: Thomas Coulter’s Californian Exsiccata," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 37: Iss. 1, Article 2. Available at: https://scholarship.claremont.edu/aliso/vol37/iss1/2 Aliso, 37(1–2), pp. 1–73 ISSN: 0065-6275 (print), 2327-2929 (online) PLANTAE COULTERIANAE: THOMAS COULTER’S CALIFORNIAN EXSICCATA Gary D. Wallace California Botanic Garden [formerly Rancho Santa Ana Botanic Garden], 1500 North College Avenue, Claremont, California 91711 ([email protected]) abstract An account of the extent, diversity, and importance of the Californian collections of Thomas Coulter in the herbarium (TCD) of Trinity College, Dublin, Ireland, is presented here. It is based on examination of collections in TCD, several other collections available online, and referenced literature. Additional infor- mation on historical context, content of herbarium labels and annotations is included. Coulter’s collections in TCD are less well known than partial duplicate sets at other herbaria. He was the first botanist to cross the desert of southern California to the Colorado River. Coulter’s collections in TCD include not only 60 vascular plant specimens previously unidentified as type material but also among the first moss andmarine algae specimens known to be collected in California. A list of taxa named for Thomas Coulter is included. -
Soap Creek Valley, Oregon, 1500-1999
Using Oral Histories to Document Changing Forest Cover Patterns: Soap Creek Valley, Oregon, 1500-1999 by Bob Zybach A THESIS submitted to Oregon State University in partial fulfillment of the requirements of the degree of Master of Arts in Interdisciplinary Studies Presented March 5, 1999 Commencement June, 2000 Copyright by Bob Zybach March 5, 1999 All Rights Reserved AN ABSTRACT OF THE THESIS OF Bob Zybach for the degree of Master of Arts in Interdisciplinary Studies in Forest Science, Anthropology. and Anthropology presented on March 5, 1999. Title: Using Oral Histories to Document Changing Forest Cover Patterns: Soap Creek Valley, Oregon, 1500 - 1999. Abstract approved: ________________________________________________ Steven Radosevich This thesis examines forest history of a portion of the Douglas-fir Region: Soap Creek Valley, a 15,000 acre sub-basin of the Luckiamute River in northern Benton County, Oregon. The primary reasons for the research were to test oral history methodology, document sub-basin scale forest cover pattern changes, and determine basic causes of change. Oral history research methods include interdisciplinary scientific and gray literature reviews, archival research, consultations with local experts, personal observations, and location and/or creation of relevant interviews and interview transcripts. Key findings of this research are: 1) Soap Creek Valley forest cover patterns reflect local human values at any given point in historical time (as modified by local nonhuman disturbances and wild plant and animal -
Proceedings of a Conference on Native Plant Restoration and Management on Public Lands in the Pacific Northwest
Proceedings of a Conference on Native Plant Restoration and Management on Public Lands in the Pacific Northwest: Rare Plants, Invasive Species and Ecosystem Management LaSells Stewart Center, Oregon State University Corvallis, Oregon Feb. 11-13, 2003 Edited and compiled by Thomas N. Kaye, Melanie Gisler, and Rob Fiegener A symposium co-sponsored by: USDI Bureau of Land Management, Institute for Applied Ecology, USDA Forest Service, Native Plant Society of Oregon Proceedings of a Conference on Native Plant Restoration and Management on Public Lands in the Pacific Northwest: Rare Plants, Invasive Species, and Ecosystem Management , Corvallis, Oregon, Feb. 11-13, 2003 Preface: Native plant conservation is a multi-disciplinary field and its success requires an integrated approach. Plant restoration and management on public lands in the Pacific Northwest face many challenges but also present opportunities for cooperative projects, research, on-the- ground action, and community outreach. On February 11-13, 2003, 300 people joined together for a symposium on native plant management in the Pacific Northwest to share information and discuss experiences. Topics covered rare and endangered species conservation and reintroduction, invasive plants, species and habitat restoration, ecosystems, and policy. The meeting featured talks by experts in these fields, and the audience included biologists, land managers, non-profit organizations, and the general public. Michael Way, a member of the International Team for the Millennium Seed Bank Project from the Royal Botanical Gardens, Kew, was our keynote speaker. Mr. Way is the International Coordinator for the Americas and is responsible for the development of seed conservation projects with partners in Mexico, Chile, and the USA.