An in Silico Drug Repurposing for COVID-19[Version 1; Peer Review: 2
F1000Research 2020, 9:1166 Last updated: 22 JUL 2021 RESEARCH ARTICLE Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19 [version 1; peer review: 2 approved] Krishnaprasad Baby1*, Swastika Maity1*, Chetan H. Mehta2, Akhil Suresh2, Usha Y. Nayak2, Yogendra Nayak 1 1Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India 2Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India * Equal contributors v1 First published: 23 Sep 2020, 9:1166 Open Peer Review https://doi.org/10.12688/f1000research.26359.1 Latest published: 23 Sep 2020, 9:1166 https://doi.org/10.12688/f1000research.26359.1 Reviewer Status Invited Reviewers Abstract Background: The coronavirus disease 2019 (COVID-19) pandemic, 1 2 caused by severe acute respiratory syndrome coronavirus-2 (SARS- CoV-2), took more lives than combined epidemics of SARS, MERS, version 1 H1N1, and Ebola. Currently, the prevention and control of spread are 23 Sep 2020 report report the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug 1. Harish Holla, Central University of repurposing was explored by many research groups, and many target proteins have been examined. The major protease (Mpro), and RNA- Karnataka, Kalaburagi, India dependent RNA polymerase (RdRp) are two target proteins in SARS- 2. Hemachandra Reddy , Texas Tech CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of University Health Sciences Center, Lubbock, homology between those of two previously known coronaviruses, USA SARS-CoV and MERS-CoV.
[Show full text]