<<

Florida State University Libraries

Electronic Theses, Treatises and Dissertations The Graduate School

2009 The Association of , a Pathogen, with the Carapace of the Caribbean Spiny Lobster, Panulirus Argus Megan M. Lowenberg

Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

THE ASSOCIATION OF PECTOBACTERIUM, A PLANT PATHOGEN, WITH THE

CARAPACE OF THE CARIBBEAN SPINY LOBSTER, PANULIRUS ARGUS

By

MEGAN M. LOWENBERG

A Thesis submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science

Degree Awarded: Fall Semester, 2009

The members of the committee approve the thesis of Megan Lowenberg defended on August 19, 2009.

______Robert H. Reeves Professor Directing Thesis

______Hank W. Bass Committee Member

______William F. Herrnkind Committee Member

Approved:

______P. Bryant Chase, Chair, Department of Biological Science

______Joseph Travis, Dean, College of Arts and Sciences

The Graduate School has verified and approved the above-named committee members.

ii

I dedicate this to my mother and father, Debra and Fred, my sister, Angela, and my brother, Matt.

iii ACKNOWLEDGEMENTS

I would first like to thank my advisor Dr. Robert Reeves for taking me as a graduate student and giving me this opportunity when he thought he was almost done. His patience, encouragement, and guidance throughout this process have been greatly appreciated. I want to thank Jane Reeves for all of her encouragement and optimism. I have learned a great deal of knowledge from the two of them not only about science, but also about friendship. They have been there for me through everything and I am extremely thankful and appreciative. A special thanks goes to Dr. Lauren Porter for allowing me to work with her on her project and letting me continue on with the work. She and Katie Cavnar have been so helpful, encouraging, and wonderful friends through all I have encountered; I want to sincerely thank the two of them.

To my committee members Dr. Hank Bass and Dr. William Herrnkind, I want to thank them for their support and advice on this project, and for allowing me to finish expeditiously.

I would like to thank Dr. Richard French (University of New Hampshire, Durham, NH) for his help, assistance, and collaborative work.

I would like to thank Chelsea Tehan, Katherine Hoops, Amanda Sautter, Marla Carter, and Rachel Chester for all of their help in the lab, but mostly for the friendship.

I would like to thank the incredible people that I worked with in the Department of Biological Science that helped make this possible. Special thanks goes to Dr. Steve Miller for his help with the DNA sequencing; Dr. Trisha Spears for her help with the phylogenetic work and using the program PAUP*; Kasia Chodyla for her help with the DNA alignment programs, Dr. Austin Mast and Eric Jones for helping me with the phylogenetic analyses and allowing me to invade their lab; Dr. Don Levitan for letting me use his lab to finish my work; and to Judy Bowers who has been supportive, motivating, and helped me in multiple ways throughout my time in graduate school.

I would like to thank Vanessa Prowler, Nikki Fogarty, Mia Adreani, Andres Plata Stapper, Heather Gamper, Katie Lotterhos, Caroline Stahala, Anna Strimaitis, Nate Jue, and all of my friends for their continual encouragement and enthusiasm.

I would like to thank my family for all of their support and encouragement throughout this process.

Last but definitely not least; I would like to sincerely thank Casey terHorst. His advice, inspiration, and encouragement have been a fundamental source of motivation during the writing process, especially near the end. He has been so supportive, through the ups and downs, that I appreciate it more than he will ever know. Thank you!

iv TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

ABSTRACT x

1. INTRODUCTION 1 Marine Diseases 1 Crustacean Shell Disease 1 Shell Disease in Panulirus argus 3 Shell Structure 4 Previous Work on P. argus 5 Pectobacterium, Formally Known as 6 Scope of Thesis 7

2. MATERIALS AND METHODS 8 Isolation of Bacterial Strains From Lobsters 8 Single Colony Isolation 9 Bacterial Strain Storage 10 Biochemical Analysis of Bacterial Isolates 11 DNA Extraction and Polymerase Chain Reaction 12 Fingerprinting and Analysis of the 16s-23s Intergene Region 16 Gel Electrophoresis of 16s, recA, and rdgC PCR Samples 16 Sequencing of Genes 17 DNA Alignment and Phylogenetic Analysis 18

3. RESULTS 23 Isolation of Bacterial Samples 23 Characterization and Identification of Bacterial Isolates 23 Biochemical Analysis 27 DNA Sequencing of Three Genes 31 Phylogenetic Analysis 33

4. DISCUSSION 41 Colony Morphology and Fingerprinting 41 Biochemical Analysis 42 16s rRNA Gene 42 recA Gene 43 rdgC Gene 43 Conclusions 44 Future Plans 45

v APPENDICES 47

A. 16s rDNA SEQUENCE ALIGNMENT 47

B. recA SEQUENCE ALIGNMENT 83

C. rdgC SEQUENCE ALIGNMENT 109

REFERENCES 125

BIOGRAPHICAL SKETCH 129

vi LIST OF TABLES

Table 1: PCR and sequencing primers 15

Table 2: Bacterial organisms, and their GenBank numbers, used in the 16s rDNA sequence alignment 20

Table 3: Bacterial organisms, and their GenBank numbers, used in the recA sequence alignment 21

Table 4: Bacterial organisms, and their GenBank numbers, used in the rdgC DNA sequence alignment 22

Table 5: Isolate number (LS #), sampling location, and sampling date of isolates tested 24

Table 6: Biochemical tests were conducted to see if the bacterial isolates possessed extracellular enzyme abilities 30

vii LIST OF FIGURES

Figure 1: Diseased lesions on the dorsal side of the carapace (picture A) and uropod (picture B) of two different lobsters 3

Figure 2: Map of the Florida Keys and Dry Tortugas 9

Figure 3: DNA fingerprinting and sequencing regions 14

Figure 4: Protein coding genes recombinase A (recA) and recombination-dependent growth C (rdgC) 15

Figure 5: Colony morphology for LS isolates 25

Figure 6: DNA fingerprinting using the 16s-23s rDNA intergene region (IGR) 26

Figure 7: Lanes 1-9 (LS129, 245, 248, 262, 263, 266, 276, 332, and 351, respectively) and 12-20 (LS353, 355, 356, 360, 365, 366, 367, 390, and 399, respectively) show the same fingerprint pattern 27

Figure 8: Biochemical agar plates were used to test for extracellular Enzymes released by each bacterial isolates 28

Figure 9: Lanes 1-8 (LS132, 167, 197, 202, 225, 236, 251, and 255, respectively) and 10-14 (LS276, 302, 321, 334, and an unknown Erwinia strain, respectively) display the 16s rDNA fragment that is approximately 1600bp in size 31

Figure 10: The bands shown in lanes 1-10 (LS171, 174, 179, 197, 202, 203, 204, 205, 207, and 215, respectively) and 12-21 (LS217, 218, 225, 226, 227, 230, 236, 237, 238, and 239, respectively) represent amplification of the recA gene 32

Figure 11: Bands for the rdgC gene reveal a DNA fragment size approximately 490bp in length 33

Figure 12: Maximum Likelihood Tree, with branch lengths, of the 16s rRNA gene 35

Figure 13: Maximum Parsimony Tree, with branch lengths, of the 16s rRNA gene 36

viii Figure 14: Maximum Parsimony Tree, with branch lengths, of the recA gene 37

Figure 15: Maximum Parsimony Tree, with branch lengths, of the rdgC gene 38

Figure 16: Maximum Parsimony, Bootstrap Consensus Tree of the 16s rRNA gene 40

ix ABSTRACT

The Caribbean spiny lobster, Panulirus argus, is found throughout the Florida Keys and Dry Tortugas. In 1998, lobsters were discovered with small black, necrotic lesions on the carapace some associated with trauma. Since then the number of occurrences of shell disease has increased, a potential problem for the lobster fishery in the southeast. In an effort to determine the etiology of shell disease, bacterial samples were obtained from healthy and diseased lobsters from 28 different locations in the Florida Keys and Dry Tortugas. DNA fingerprinting of the 16s-23s rRNA intergene region (IGR) placed 487 isolates into five major groups of gamma-, one group of Gram-positive organisms, and individuals of low occurrence were placed in an “Other” group. Sequencing of the 16s rRNA gene and GenBank BLAST analysis identified the genus Erwinia was the second largest group that consisted of 89 isolates. Out of the 89 isolates, 88 were identified as Erwinia cypripedii. The E. cypripedii sequences were aligned with sequences from known strains of marine ; members of the Erwinia, , Pectobacterium, Pantoea genera; and other members from the gamma-Proteobacteria group. After performing phylogenetic analyses using the program PAUP*, the lobster isolates were placed into a monophyletic group distinct from, but closely related to, E. cypripedii. Erwinia spp. are normally associated with and rotting vegetation, and therefore, not seen in a marine environment especially on the carapace of an invertebrate. Since the isolates showed little diversity by 16S rRNA analysis, two protein coding genes, recombinase A (recA) and recombination-dependent growth C (rdgC), were picked to further analyze the Erwinia isolates. Once again the recA and rdgC gene sequences showed very little diversity among the isolates. Each isolate was also screened for extracellular enzyme production to see if they could break down proteins, lipids, and/or chitin, to establish a possible pathogenic role.

x CHAPTER 1

INTRODUCTION

Marine Diseases Over the past few decades, marine diseases have increased by magnitudes worldwide. A variety of including vertebrates, invertebrates, and marine plants have been impacted by disease. Although this is happening worldwide, it seems to be occurring more often in the Atlantic Ocean and Caribbean, as some literature has stated. Aside from location of occurrence, there are different factors that are responsible for the multiple types of disease that have been observed. A few examples of these factors are, but not limited to, infections caused by: fungi, viruses, bacteria, and parasites. Each marine species is affected differently, especially when the factor causing the infection is the same across many different species. When you narrow down the scope of interest to diseases in crustaceans, there are still several factors that cause infection. The lobster diseases for which some information is available are (a) shell disease, (b) infections caused by the fungi Fusarium sp., Haliphthoros milfordensis, and Lagenidium sp., (c) epibiontic growths, and (d) gaffkemia [33]. The diseases noted above were big issues during that time, but since then there have been several other problems that have occurred such as Panulirus argus Virus 1 (PaV1 virus), plus the devastating loss of commercial lobsters in Long Island Sound due to shell disease [31].

Crustacean Shell Disease Shell disease, burned spot disease, brown spot disease, and rust disease all refer to attempts to describe necrotic lesions of the exoskeleton of marine crustaceans [15]. The general term “shell disease” is used to describe pathologic erosions of the carapace. The disease has been reported to exist in nearly all environments where crustaceans occur, including rivers, lakes [6], estuaries [2, 26] and marine water [17, 30]. There are various

1 factors such as environmental stress, chemical and/or physical factors, and the presence of wounds that are said to be responsible, or at least contribute, to shell disease. Water quality is thought to be a key player in the environmental stress category and the onset of shell disease. With that being said, it makes sense since environmental stress is known to increase the incidence of disease in other animal populations. The gross signs of the disease are similar in all species; the exoskeleton is pitted and marred with necrotic lesions and, although the disease is not immediately fatal, death may occur [13]. In 1937 (Hess) the first case of shell disease was reported on the American lobster, Homarus americanus. Over the past two decades the incidence of shell disease has increased drastically in the American lobster. Originally it was only seen in lobsters that were held in impoundments. During the last 5 years, however, a new form of shell disease has been found at unusually high levels in free-living lobster populations [31]. Since the discovery of shell disease in the American lobster, scientists have followed the progression of the disease since this animal is a major natural commodity in the northeast. Many other species of marine crustaceans have been examined and shell disease appears to be a ubiquitous problem. For example, brown spot disease of the Gulf Coast shrimp was studied and characterized by Cipriani et al. in 1979. The disease was found in shrimp that were held in holding tanks and occasionally in the marine environment, and thought to occur do to injuries. Blue crabs in the Albemarle-Pamlico estuary, North Carolina have been observed with a severe form of shell disease where up to one forth of the carapace may be missing [22]. Also, The Caribbean spiny lobster, Panulirus argus, is yet another example of shell disease seen among the crustaceans (Figure 1).

2

← ↑

A B

Figure 1: Diseased lesions on the dorsal side of the carapace (picture A) and uropod (picture B) of two different lobsters. In picture A, the black arrows show two areas that are dark, pitted, melanized areas due to infection. The pitted areas occur when infection causes the shell to become weak and break off and the melanization occurs when the immune system is trying to seal the wound and wall off the area of infection. When injuries occur on the tail, in picture B, the lobster is more susceptible to infection. The wound allows bacteria to penetrate the area and cause disease, which is indicated by the black arrow.

Shell Disease in Panulirus argus The spiny lobster is the most prevalent species of lobster in the Caribbean, Gulf of Mexico, and South Atlantic and is part of a very important commercial and recreational crustacean fishery in Florida [24]. At one time shell disease in the spiny lobster was thought to exist only in captivity. But in 1998, the first cases of shell disease were discovered in lobsters harvested in the Dry Tortugas and the Florida Keys [25]. When the lesions were first discovered, there was nothing in the literature that described or made reference to shell disease in this species. Actually, there were no citations that even described what the normal bacterial flora is for P. argus. According to Porter, in 2004, many thought the lesions were “strange discolorations.” Over a six year period, the rate at which shell disease was seen in the wild had increased significantly. In 2004 a survey was conducted on trap-caught P. argus that showed out of 200 animals caught, 19% of them had lesions indicative of shell disease [25]. When lesions appear on the shell of P. argus, there is not a substantial visual difference from the lesions found on other crustaceans, especially when compared with

3 the American lobster. Lesions appear to be eroded areas that look like “burn marks” due to their blackened, melanized color. Typically, the disease is most noticeable on the dorsal side of the carapace where the lesions first appear as either a single small pit or a series of small pits in the shell. Over time the pits start to grow bigger and spread outward, and in the American lobster they become large continuous lesions or consume the entire shell. Opportunistic microorganisms, such as bacteria, reside on the carapace as normal flora or live in the surrounding environment. When the shell of the lobster is compromised, due to physical damage, suppression of the immune system, or poor nutrition, the opportunistic bacteria are able to invade and start the production of necrotic lesions by attacking the chitin, proteins, and lipids of the exoskeleton. Microorganisms generally do not penetrate into the soft tissues underlying the chitinous exoskeleton [27, 28, 29], but these lesions may provide a portal of entry to epidermal tissue for secondary invaders [13]. Depending on how severe the lesions are, a lobster can overcome shell disease. One way of doing this is by the lobsters’ inflammatory response to bacterial invasion and infection. In fact, the effectiveness of the inflammatory response is demonstrated by the ability of infected lobsters to molt out of the disease [32]. Another way to overcome shell disease is due to growth. In order for lobsters to grow they must periodically shed their exoskeleton. Therefore, lobsters may overcome minor shell disease by successfully molting [23]. After molting, in either case, the area that once was diseased has been scared or weakened in a way that is now more susceptible to becoming diseased again. However, if there were just a few lesions, and they were relatively small, the lobster has a good chance of surviving.

Shell Structure The integument is the outermost layer of cells that forms a barrier to protect the lobster from the outside environment. The lobster integument consists of a basement membrane, cellular epidermis, and cuticle [11]. The exoskeleton of the lobster consists of three distinct layers of chitinous endocuticle with an outer layer of non- chitinous epicuticle [5]. The four layers that form the exoskeleton, or cuticle, are referred to as the epicuticle, exocuticle, endocuticle, and membranous layer. The epicuticle is

4 very thin and is composed of proteins, lipids, and calcium salts, but not chitin, and the exocuticle is a calcified matrix of chitin and protein [11]. Also, the endocuticle consists of calcified chitin and protein whereas the membranous layer contains chitin and protein but is not calcified. Chitin is linear polymer of β-1−>4-N- acetylglucosamine. Multiple polymers form a hard fibrous material that serves as a protective barrier from infections and the surrounding environment. It is secreted by a single layer of cells (epidermis) and gains its stiffness and structural complexity mainly by being folded and curved in many complex ways [35]. The Caribbean spiny lobster and American lobster have similar exoskeletons. However, the spiny lobster seems to have more overlapping layers of chitinous endocuticle than the American lobster. This is thought to give the spiny lobster more protection against disease. Indeed, so far the complete destruction of the carapace seen in the American lobster has not been observed in P. argus.

Previous Work on P. argus The identity of the bacteria that are responsible for shell disease in the Caribbean spiny lobster, among other crustaceans, has not been determined. However, the majority of isolates associated with lesions usually include a multitude of different marine bacteria with the majority being Gram-negative, rod-shaped bacteria [3, 4, 12, 24, 27, 28]. Aside from them being common marine bacteria that are widely distributed, they are also thought to be associated with the normal flora of a healthy lobster shell. In a study conducted by Dr. Lauren Porter, over 400 bacterial isolates were collected from the carapace of healthy and diseased lobsters, and were analyzed by DNA fingerprinting of the 16s-23s rRNA intergene region (IGR). Fingerprint groups were constructed and placed into categories indicative of the number of isolates identified. Based on this categorization, three major fingerprint groups, Vibrio, Psychrobacter, and Erwinia, were identified [25]. The medium significance groups contained Pseudoalteromonas, Gram positives (Bacillus, Pediococcus, and Staphylococcus), Halomonas, and Pseudomonas. Also, there were several minor groups and even individuals with unique fingerprints that were unable to be grouped together, but were identified by DNA sequence analysis. These isolates, because of their minor numbers, were not considered to be significant

5 members of the cuticle flora, rather they may be transient flora that were present at the time of sampling [25]. Members from each fingerprint group were then prepared for 16s rDNA sequencing, along with 80 other isolates that were randomly picked. BLAST analysis on GENBANK was used to identify the each isolate and showed that the sequence information grouped the same way as the fingerprints. Between the major fingerprint and sequencing groups, it was not surprising to see that one of the groups was the Vibrios. Vibrios are among the most common of the marine bacteria, and they are often associated with marine invertebrates and vertebrates [24]. However, what was surprising to see was that one of the other major groups belongs to the genus Erwinia.

Pectobacterium, Formally Known as Erwinia The is a large family of bacteria that consist of Gram- negative, rod-shaped microorganisms that posses peritrichous flagella. Most bacteria in this family are facultative anaerobes and many are responsible for human and plant diseases. They are motile, and can ferment sugars anaerobically, producing acid such as lactic acid and many other end products. The genus Erwinia is classified within the Enterobacteriaceae family, and members are primarily plant associated-bacteria and plant pathogens. Bacteria have been classified traditionally into the genus Erwinia mainly on the basis of their association with plants as either pathogens, epiphytes or saprophytes [20]. The species status is usually defined by biochemical and physiological tests [33]. Previously, members of the genus Erwinia were classified into four natural clusters; the carotovora group, the amylovora group, the herbicola group, and the atypical group [7, 8, 9, 10]. Groups were constructed based on properties such as causing soft rot and the presence of extracellular enzymes; causing dry necrosis or wilting in their specific host plants; and production of a yellow pigment and relationship to Enterobacter agglomerans. A fourth heterogeneous group was defined which includes strains of the herbicola group and Enterobacter agglomerans, respectively [19]. However, this original system that was developed for classification was not successful due to the diversity of the genus. More recently the sequencing of the 16s rRNA gene has been used for comparing and classifying the Erwinia group. Analysis of 16s rRNA sequences has been

6 demonstrated to be one of the most powerful methods for investigating the natural relationships of microorganisms [19, 37]. The genus Erwinia has been broken up into the following genera: Pectobacterium, Enterobacter, Pantoea, Brenneria, Erwinia, Dickeya, and . Although the genus has been split up into several other genera that should not be considered important for the sake of this paper. What is important to know is that all Erwinia species are associated with terrestrial plants and not marine animals.

Scope of Thesis Determining the etiology of shell disease in the Caribbean spiny lobster is a necessary and important step in controlling the disease. We have discovered that the second largest group of bacterial isolates found on the shell of the lobster (89 of 352 isolates) is identified as Erwinia cypripedii (Pectobacterium cypripedii), an organism that has always been associated with plant pathology and rotting vegetation. Why is it found in a marine environment on the surface of a crustacean? The initial aims of this project were to: (1) characterize this unusual bacterium (Why it is found in this habitat?); (2) determine the diversity of the Erwinia isolates; (3) determine if the “Erwinia” isolates are able to utilize the chitin (a molecule similar to cellulose) as an energy source; and (4) examine the role of the “Erwinia” isolates in shell disease, whether the bacterium initiates the infection or is part of a mixed bacterial infection.

7 CHAPTER 2

MATERIALS AND METHODS

Isolation of Bacterial Strains From Lobsters Lobsters were collected from multiple sites throughout the Florida Keys and Dry Tortugas (Figure 2). Scuba divers collected the lobsters and brought them to the surface for further inspection. Each lobster was examined for necrotic lesions on their carapace. When diseased areas were found, they were swabbed with a sterile cotton swab and immediately streaked onto individual agar plates. Non-diseased areas of the carapace, for both healthy and diseased lobsters, were also swabbed for bacterial isolation. The agar plates contained a solid, modified, all-purpose medium known as 25% Luria-Bertani (LB) to support bacterial growth (see below). After the agar plates were inoculated they were brought back to the laboratory for further work up. Each plate was examined after 72 hours, which appeared to be the optimal growth time for the microorganisms. Bacterial colonies were examined and characterized based on colony morphology such as, but not limited to: color, texture, surface appearance, and edge appearance/symmetry. Three to five of the predominant colony types were selected from each plate.

8

Figure 2: Map of the Florida Keys and Dry Tortugas. Areas in the upper, middle, and lower Keys and the Dry Tortugas (highlighted areas) were sampled. The original picture has been revised (www.NOAA.gov).

Single Colony Isolation Inoculated plates, brought back from the field, were allowed to incubate for 24 to 72 hours at room temperature, approximately 23° Celsius (C), in order to see if there was any bacterial growth. At first LB agar was used to isolate bacterial strains, but a number of bacteria swarmed over the entire agar surface on this medium. LB agar consists of the following ingredients: 5 grams (g) of yeast extract (Difco Inc), 10 g of Bacto-tryptone (Becton, Dickinson & Co), 10 g of sodium chloride (NaCl, Fisher Scientific), and 15 g of Bacto-agar (Becton, Dickinson & Co) per one liter (L) of distilled water. An alternative, oligotrophic medium, 25% LB agar, consisted of: 1.25 g of yeast extract, 2.5 g Bacto- tryptone, 10 g of NaCl, and 15 g of Bacto-agar per 1 L of distilled water. Basically, the yeast extract and Bacto-tryptone ingredients were reduced to 25% of the normal amount used. By making this adjustment, the swarming problem was eliminated and single colony isolation of the bacterial strains was possible. After the medium was prepared, it was sterilized by autoclaving, and poured into disposable 100 x 15 millimeter (mm) Petri dishes. Once the plates solidified, they were inverted and placed in a 37°C warm room to incubate for 24 hours. Incubation is necessary to make sure there is not any bacterial

9 contamination before using the plates. Plates were inspected after 24 hours, and then either used immediately or placed in a 4°C cold room to store for later use. Bacterial isolates were separated from confluent growth in order to achieve single colony isolation. The original plates that were brought back to the lab were used to inoculate primary plates, which were then incubated for 24 to 72 hours at room temperature. Inoculation was performed using the “continuous streak” method. This method is used as a way of diluting the bacterial cells so that single colony isolation is achieved towards the end of the streak. Colonies were picked from the primary plates in order to inoculate secondary plates, using the “continuous streak” method, that were also incubated for 24 to 72 hours at room temperature. The secondary plates were used to ensure proper colony isolation and purity of each bacterium. The primary and secondary plates contained 25% LB agar.

Bacterial Strain Storage After bacterial cultures were isolated and checked for purity, they were then prepared for storage as individual frozen cultures. Each isolate was grown in 2 milliliters (ml) of regular LB broth for 24 hours while constantly shaking. Once they reached 24- hour growth, the cells were placed into individually labeled 1.5 ml microcentrifuge tubes and centrifuged at maximum speed (10,000 rpm) for one minute. Once the DNA pellet formed at the bottom of each tube, the supernatant was decanted. The bacterial pellet was resuspended in 1ml of fresh LB broth and 70 microliters (µl) of dimethylsulfoxide (DMSO). DMSO is used to prevent ice crystals from forming while preserving the bacterial cells, and is typically used at 7% by volume. The samples were transferred into sterile cryovials and immediately placed in a -80°C freezer where they became part of a permanent strain collection.

10 Biochemical Analysis of Bacterial Isolates Extracellular enzyme production was tested in each bacterial isolate of interest. In general, extracellular enzymes are released from bacteria into the surrounding environment in order to degrade and utilize certain components for energy and growth. The exoskeleton of a lobster consists of chitin with proteins implanted throughout, and a waxy lipid outer layer. With that being said, a bacterial isolate should be able to degrade at least one of the three components that make up the exoskeleton in order to cause shell disease. The isolates were screened to see if they could degrade lipids, proteins, and/or chitin, to establish a possible pathogenic role. Therefore, the three extracellular enzymes of interest in this study were chitinase, protease, and lipase. Three different biochemical agar plates were made and used to test each bacterial isolate for these enzymes. Each bacterial isolate was grown on 25% LB agar plates from frozen culture so that a fresh bacterial culture would be used for each biochemical test. Colonies from the plates were picked with a sterile wooden stick and used to stab-inoculate each biochemical test plate. Stab-inoculation refers to stabbing the agar with a stick that contains a bacterial colony, and the surface of the agar is broken but not stabbed all the way through the agar. Chitinase activity was tested using chitin attained from crab shells. The method used for chitin purification before use involved dissolving 100 g of chitin powder (Sigma Chemical Co) in 500 ml of concentrated hydrochloric acid (HCl). The HCl caused the formation of two different layers when added to the chitin: a supernatant layer, which consisted of the dissolved chitin, and a precipitant layer, which was the remaining proteins, lipids, and other materials that remained from the crab shell. The supernatant layer was separated by decantation and slowly poured into glass-distilled water in order to cause the chitin to precipitate out of solution. The chitin precipitant was rinsed a few times with glass-distilled water, the pH was adjusted to 8.0 with Tris-base and 10 M sodium hydroxide (NaOH), and the chitin/water mixture was brought to a 1 L volume. The chitinase plates were prepared using 1 L of 10% LB agar (0.05 g yeast extract, 0.1 g Bacto-tryptone, 10 g NaCl, and 15 g Bacto-agar per liter) mixed with 100 ml of the purified chitin solution. Plates were poured using disposable 100 x 15mm Petri dishes, allowed to solidify properly, and then incubated at 37°C for 24 hours to ensure media sterility. After the media solidified, it was noticeably cloudy due to the suspended chitin.

11 The low nutrient agar (10% LB) was used to insure that the chitin would be used as the primary carbon source. Each bacterial isolate was used to inoculate the plates and then incubated at room temperature. After 72 hours of incubation observations were recorded. Due to the media being visibly cloudy, a positive result would show a zone of clearing, or halo, around the area that was stab-inoculated. The Lipase test used a medium that consisted of a 1% vol/vol suspension of

TWEEN-80 (Fisher Scientific) and 0.01% calcium chloride (CaCl2) mixed with 1 L of 25% LB agar. Plates were poured using the same method as stated above, and inoculated with each bacterial isolate. After 72 hours of incubation at room temperature, plates were observed and results were recorded. If lipase activity was present, the fatty acids esters in TWEEN were hydrolyzed and the free fatty acids precipitated as calcium acylates, easily visualized as crystals in a halo around the bacterial colony [14 25]. In this scenario, the halo or zone of hydrolysis appeared around the area that was stab-inoculated. Protease activity was tested using a medium that contained standard skim milk agar that was adjusted to include 1% NaCl, which is suitable for marine microorganisms. The me dium was constructed using 100 g of powdered skim milk (Difco Inc) mixed with 1 L of 25% LB agar. Plates were poured, inoculated with each bacterial isolate, and incubated for 72 hours at room temperature. After the incubation period, plates were observed and results were recorded. When the plates solidified they appeared solid white in color due to the suspended protein (mainly casein) in the skim milk powder. A positive test resulted in a zone of clearing around the stab-inoculated site.

DNA Extraction and Polymerase Chain Reaction Each bacterial isolate was streaked on a 25% LB agar plate from frozen culture. After 48 hours of incubation at room temperature, plates were examined for homogeneity. An isolated colony was picked from each plate and placed into a sterile, labeled 1.5 ml microcentrifuge tube containing 50 µl of 10 millimolar (mM) ethylenediaminetetraacetic acid (EDTA). The tubes were boiled for five minutes to lyse the bacterial cells and release their DNA. The crude DNA lysates were vortexed for approximately 10 seconds and then centrifuged briefly. These supernatants were used as

12 the DNA templates for all of the bacterial isolates, and only a small amount (1.0 µl) was required for PCR analysis. Polymerase chain reactions (PCRs) were set up for each of the bacterial isolates using a recipe referred to as the Master Mix (MM) in our lab. In general, the MM was made 1 ml at a time and contained the following ingredients: 705 µl sterile glass-distilled water, 50 µl each of forward and reverse primers (diluted to approximately 50 nM), 70 µl magnesium chloride (50 mM MgCl), 100 µl of 10 x Taq buffer, 10 µl of 5 mM each deoxynucleotide triphosphate (dNTP, Sigma), and 5 µl Taq DNA polymerase. The Taq DNA polymerase, MgCl, and 10 x Taq buffer were provided in a kit, ordered from Invitrogen. The MM was mixed thoroughly, centrifuged briefly, and typically dispensed as 20 µl aliquots into sterile, labeled 0.5 µl microcentrifuge tubes. A single DNA lysate was added to its corresponding labeled tube; 0.1 µl of DNA lysate and 20 µl of MM per PCR tube. The reactions were run on an MJ Research, PTC-100 programmable thermal cycler using the following program: step 1) initial denature step of the DNA template for 5 minutes (min) at 95°C; step 2) second denature step of the DNA template for 30 seconds (s) at 95°C; step 3) primer annealing step for 30 s at 50°C; step 4) single strand DNA extension step for 3 min at 72°C; step 5) steps 2-4 are repeated for 29 more cycles; step 6) long extension step for 5 min at 72°C; step 7) samples remain at 4°C for an infinite amount of time to inhibit the polymerization reaction. Parts of three genes, 16s ribosomal RNA (16s rRNA) gene, recombinase A (recA) gene, and recombination-dependent growth C (rdgC) gene; and the 16s-23s intergene region (IGR), were PCR amplified using the MM recipe and PCR program as described above. [PCR amplified regions are shown in Figures 3 and 4; the primer sequences are shown in Table 1.]

13

DNA Fingerprinting

Cc 8

PCR Fragment

16S rDNA IGR 23S rDNA

Ac

PCR Fragment

F c C 2 DNA Sequencing

Figure 3: DNA fingerprinting and sequencing regions. The IGR is amplified using primers constructed from conserved regions; the 3’ end of the 16s rRNA gene (forward primer Cc) and the 5’ end of the 23s rRNA gene (reverse primer 8). Primers Cc and 8 were used for fingerprint analysis. For DNA sequencing, three primers were constructed from conserved regions within the 16s rRNA gene. Primers F2c and C (5’ end and 3’ end respectively; E. coli map position 8→25 and 1406→1392 respectively) were used for PCR amplification; and primer Ac (E. coli position 522→536), an internal primer, was used to sequence approximately 800 bp within the 16s rRNA gene.

14

DNA Sequencing

recA-F ← ~ 730bp fra gment → recA-R ↓ ↓ A recA

rdgC-F ← ~ 425bp fragment → rdgC-R ↓ ↓ B rdgC

Figure 4: P rotein coding genes recombinase A (recA) and recombinati on-depen dent growth C (rdgC). A) Primers recA-F and recA-R ampli fied the recA gene; B) Pr imers rdg C-F and rdgC-R ampl ified the rdgC gene. DNA fragments wer e approximately 7 30bp and 425bp in length, re spectively. (Pictures not drawn to scale.)

Table 1: PCR and sequencing primers.

Primer DNA Sequence Description Reference Cc 5’-GTACACACCGCCCGT3’ IGR forward Reeves et al. 8 5’-AGGGCATCCACCGTG-3’ IGR reverse Reeves et al. F2c 5’-AGAGTTTGATCATGGCTC-3’ 16s forward Reeves et al. C 5’-ACGGGCGGTGTGTAC-3’ 16s reverse Reeves et al. Ac 5'-CAGCCGCGGTAATAC-3' 16s (sequencing) Reeves et al. recA-F 5’-GGTAAAGGGTCTATCATGCG-3’ recA forward Malgorzata et al. recA-R 5’-CCTTCACCATACATAATTTGGA-3’ recA reverse Malgorzata et al. rdgC-F 5'-TGGAAGCGGAACAGAGCC-3' rdgC forward This Work rdgC-R 5'-ACATCGGCGATCACCAGC-3' rdgC reverse This Work

15

Fingerprinting and Analysis of the 16s-23s Intergene Region The intergene region (IGR) located between the 16s and 23s rRNA genes was amplified by PCR using two primers, a forward primer located near the 3’-end of the 16s rRNA gene and a reverse primer located near the 5’-end of the 23s rRNA gene (Reeves et al., 1995). The DNA fragments of this region were separated by gel electrophoresis using a 2% agarose gel, which is 2 g agarose (VWR), dissolved in 100 ml of 2 x TBE (90 mM Tris-base, 90 mM boric acid, and 1 mM sodium-EDTA). The running buffer is also 2 X TBE. For each bacterial isolate, 10 µl of PCR product was mixed with 2 µl of gel loading buffer (GLB, 0.01% bromophenol blue and xylene cyanol ff plus 5% ficol in TBE), and added to an individual well within the gel. In order to compare the various fragment sizes of each isolate, 5 µl of a 100 base-pair (bp) DNA ladder (Promega Inc) was loaded in a separate well. Electrophoresis was for 90 minutes at 90 volts. Afterwards, the gels were stained with ethidium bromide (EtBr), at a concentration of 5 µg/L, for 30 min. At this point, the gels were observed using a Bio-Rad gel documentation system, which used ultraviolet (UV) light and a digital camera to record the images. The images were observed and the IGR fingerprint pattern in each lane was compared to the 100 bp DNA ladder, and fragment sizes were recorded.

Gel Electrophoresis of 16s, recA, and rdgC PCR Samples The PCR MM for each gene was prepared as described above, but instead of aliquoting 20 µl of MM per sample, 100 µl was used. The increase in MM per sample was required in order to recover enough DNA from each PCR for sequencing. After PCR, 5 µl of each PCR product was mixed with 5 µl of 2 x TBE and 2 µl of GLB and each was loaded into individual lanes on the agarose gel. For comparison, 5 µl of a 100 bp DNA ladder and a low molecular mass ladder (Invitrogen) were also loaded into separate lanes. Only 5 µl of PCR product was used per isolate to check for: successful PCR amplification, proper yield of a single DNA fragment, and appropriate fragment size. If all three criteria were met, then the PCR DNA fragments were ready for purification.

16 Purification was performed using a QIAquick PCR Purification Kit (Qiagen) that contained individual spin columns, loading buffer (PB) and washing buffer (PE). Before sequencing, it was important to purify the PCR samples in case there was any remaining primer or dNTP that might interfere with or alter the sequencing reactions. Each PCR product (95 µl) was mixed with 500 µl of PB buffer and pipetted into individual spin columns. The columns, inserted into collections tubes, were centrifuged at 10,000 rpm for 1 min. The PB buffer was dumped from the collection tubes and 750 µl of PE buffer was pipetted into each spin column. Once again the columns were centrifuged for 1 minute, the buffer was dumped from the collection tubes, and then spun again for another minute to remove any residual PE buffer. Next, the spin columns were removed from the collection tubes, placed into labeled, sterile 1.5 ml microcentrifuge tubes, and 50 µl of sterile glass distilled water was added. The microcentrifuge tubes were spun again for 1 min, which then completed the purification process. Purified DNA fragments were recovered in 50 µl of sterile glass distilled water. At this point the DNA concentration of the purified PCR product (50 µl) had to be estimated before DNA sequencing. Therefore, gel electrophoresis was performed again using the same procedure as above where 5 µl of purified PCR product, 5 µl of 2 x TBE, and 2 µl of GLB were mixed for each isolate and loaded into individual lanes. Once again, 5 µl of a 100-bp DNA ladder and low molecular weight mass ladder were also loaded for comparison. The low molecular weight mass ladder was used for estimating the DNA concentration of each isolate. After the gels were stained with EtBr, the intensity of the fluorescent bands displayed by each isolate was compared to the mass ladder bands to determine the approximate DNA concentration.

Sequencing of Genes After determining the DNA concentration for each isolate, the purified fragments were sent to the sequencing laboratory that is located in the Department of Biological Science at Florida State University. Dr. Steven Miller, who manages the lab, sequenced the fragments. Sequencing was performed by the Sanger-dideoxy method using an Applied Biosystems 3130xl Genetic Analyzer with Capillary Electrophoresis.

17 An internal primer, AC (CAGCCGCGGTAATAC), was designed to amplify the 16s rRNA gene and yielded a DNA sequence that was approximately 800 bp in length. The primers that were used to PCR amplify the recA gene (recA-F 5’- GGTAAAGGGTCTATCATGCG-3’), and the rdgC gene (rdgC-F 5'- TGGAAGCGGAACAGAGCC-3'), are the same primers that were used for sequencing. The DNA sequences that were obtained from recA and rdgC were approximately 730 bp and 425 bp in length, respectively.

DNA Alignment and Phylogenetic Analysis Sequences obtained from each isolate per gene were checked to make sure the results were reliable, that each DNA base was assigned the correct nucleotide. The program Sequencher was used to perform this function. Next, the National Center for Biotechnology Information (NCBI) website was used to compare the unknown DNA sequences for each isolate with sequences that are available through the NCBI database (GenBank) using a tool called BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). BLAST, basic local alignment search tool, searches for relationships between sequences in GenBank and the unidentified input sequence [1, 21, 25]. After the unknown bacterial sequences were checked, sequences from the database that displayed a close relationship, along with sequences from the same class of bacteria, were downloaded and used. Known sequences from the gamma Proteobacteria group, the genus Erwinia, the genus Brenneria, the genus Pectobacterium, the genus Pantoea, and other marine microorganisms were used in the alignment for phylogenetic analysis (GenBank numbers are found in Tables 2, 3, and 4). Three separate, multiple-sequence, alignments were constructed based on the sequence of each gene using the program ClustalX. Also, to be consistent, the same known sequences located from GenBank and BLAST tried to be used in each alignment. The rdgC alignment was the only alignment where the same known sequences could not be found. PAUP* uses the files created by ClustalX to build trees by any one of several methods [16]. The version of PAUP* (Phylogenetic Analysis Using Parsimony) used to formulate the phylogenetic trees was PAUP*4.0b10, meaning beta version ten. Each of

18 the multiple sequence alignments was explored by character-based methods. Character- based methods use the multiple alignment directly by comparing characters within each column (each site) in the alignment [16]. Maximum Parsimony (MP) is a character-based method that was used to build the first set of the phylogenetic trees. In the first set of analyses, the heuristic search method was selected and the maximum number of trees generated was set at 500. Within the 500 trees generated, PAUP searched for the best MP tree. For equal MP trees, they were saved in order to construct a 50% Majority Rule (MR) consensus tree. The tree showed nodes that were in common at least 50% of the time, respectively. The second set of analyses used the bootstrapping method to create trees from a subsample of sites from each alignment based on the subsample information. Using PAUP*, the parsimony and heuristic methods were chosen to generate the trees. Each alignment was used to perform 1000 bootstrap replicates to achieve 95% reproducibility. Also, 500 trees per alignment were generated, and a bootstrap consensus tree was constructed from each set of trees. Analyses were also performed using another character-based method called Maximum Likelihood (ML). ML constructs trees from the data with the intent of showing what most likely would have occurred due to evolution. Once again the heuristic search was employed for ML and the first set of analyses was conducted for each sequence alignment. Equal ML trees were saved and the number of trees saved was set at 500. Once the trees were saved, a 50% Majority Rule (MR) tree was created that shows the nodes that were in common ≥ 50% of the time. Next the data were bootstrapped for the second set of analyses. For each gene/alignment, 1000 bootstrap replicates were performed and 500 trees were saved using the same parameters as mentioned before. Once the trees were saved, a Bootstrap Consensus tree was created to show the degree of support (based of off a scale from 1- 100) at each node in the tree.

19

Table 2: Bacterial organisms, and their GenBank numbers, used in the 16s rDNA sequence alignment.

Gene Genebank # Organism 16s rRNA AJ431369 Halomonas frigidi 16s rRNA AM237354 Psychrobacter faecalis 16s rRNA EF530555 Pectobacterium carotovorum ssp. atrosepticum 16s rRNA AJ223408 Pectobacterium carotovorum ssp. wasabiae 16s rRNA AJ233409 Brenneria alni 16s rRNA U80200 Pectobacterium chrysanthemi 16s rRNA U80198 Pectobacterium carotovora ssp. betavasculorum 16s rRNA Z75316 16s rRNA X93214 16s rRNA AY946291 16s rRNA AB244459 16s rRNA AJ233411 Pectobacterium carotovorum 16s rRNA AF373192 Pectobacterium carotovorum ssp. odoriferum 16s rRNA U80201 Pectobacterium cypripedii 16s rRNA U80210 Brenneria salicis 16s rRNA AF373196 Pantoea agglomerans

16s rRNA U80208 Pantoea stewartii 16s rRNA U80209 Pantoea uredovora 16s rRNA X83265 Erwinia amylovora 16s rRNA EF122435 Erwinia pyrifoliae 16s rRNA AJ233414 Erwinia mallotivora

16s rRNA DQ360844 strain ATCC 25922 16s rRNA Z83203 Hafnia alvei 16s rRNA X96966 dysenteriae 16s rRNA AM184233 Escherichia coli O157:H7 16s rRNA X07652 16s rRNA DQ504310 Pseudoalteromonas luteoviolacea 16s rRNA AB364957 16s rRNA AB365067 Shewanella frigidimarina strain: Pi 5 16s rRNA DQ530296 Vibrio fischeri 16s rRNA DQ530297 Vibrio harveyi

20

Table 3: Bacteri al organisms, an d their G enBank numbers, used in the recA sequence alignment.

Gene Genebank # Organism recA DQ859876 Pectobacterium cypripedii strain I CMP 1591 recA AY219005 Pantoea ananatis strain INE14 recA AY219004 Pantoea ananatis strain ATC C 19321 recA AY264801 Pantoea stewartii ssp. recA AY219007 Pantoea agglomerans strain DW1 recA DQ859889 Serratia marcescens strain ICMP 761 7 recA X05691 Pseudomonas aeruginosa recA AY464420 Escherichia coli strain O157:H7 recA X55552 Escherichia coli recA DQ859858 strain ICMP 1567 4 recA X55553 recA DQ859859 Klebsiella pneumoniae strain ICMP 15667 recA DQ859856 Citrobacter freundii strain ICMP 7610 recA DQ859890 Hafnia alvei strain ICMP 15666 recA DQ859886 Erwinia americana strain ICMP 15665 recA DQ859877 Erwinia mallotivora strain ICMP 5705 recA DQ859884 Erwinia amylovora strain ICMP 1540 recA DQ859885 Erwinia pyrifoliae strain ICMP 1 recA X55555 Proteus vulgaris recA AY217086 Pectobacterium carotovorum ssp. wasab iae recA DQ523478 Pectobacterium carotovorum ssp. Atrosepticum UG5997 recA AY264799 Pectobacterium carotovorum ssp. carotovorum strain recA AY217085 Pectobacterium carotovorum ssp. odoriferum recA AY217084 Pectobacterium carotovorum ssp. betavasculorum recA DQ859888 Yersinia enterocolitica strain ICMP 15678 recA X55554 Pectobacterium carotovorum recA AY210782 Brenneria salicis recA DQ859871 Brenneria alni strain ICMP 12481 recA DQ859873 Erwinia chrysanthemi strain ICMP 5703

21

Table 4: Bac terial organism s, and their GenBank numbers, that u sed in the rdgC DNA sequence alig nment. Gene Genebank # Organism rdgC 145297124 Aeromonas salmonicida ssp. sa lmonicida rdgC 196154825 Alteromonas macleodii rdgC 146309667 Enterobacter species 638 rdgC 159531786 Escherichia coli O157:H 7 rdgC 188027207 Erwinia tasmaniensis rdgC 224962304 Erwinia pyrifoliae rdgC 49609491 Pectobacterium carotovorum ssp. atr oseptica rdgC 152968582 Klebsiella pneumoniae rdgC 172046403 rdgC 21233663 Proteus vulgaris rdgC 110645304 Pseudomonas aeruginosa rdgC 146280397 Pseudomonas stutze ri rdgC 109896332 Pseudoalteromonas atla ntica rdgC 77358982 Pseudoalteromonas halo planktis rdgC 119862398 Psychromonas ingrahamii rdgC 62178570 ssp. enterica serovar Choleraesuis rdgC 24111450 Shigella flexneri rdgC 157320013 Serratia proteamaculans rdgC 114332481 Shewanella frigidimarina rdgC 172087630 Vibrio fischeri rdgC 117956319 rdgC 162418099 rdgC 122087364 Yersinia enterocolitica ssp. enterocolitica

22 CHAPTER 3

RESULTS

Isolation of Bacterial Samples Bacterial isolates from the carapace of P. argus were sampled from 28 locations in the Florida Keys and Dry Tortugas. These sampling sites were located throughout the range of the Florida Keys and the Dry Tortugas, and for comparative purposes, the range was divided into four regions: upper Keys, middle Keys, lower Keys, and Dry Tortugas (Porter, dissertation). Between each region, the number of animals sampled and collected were consistent except for the middle Keys region, where only three sites were sampled. Therefore, fewer bacterial isolates were collected from the middle Keys region. All together, there were 487 bacterial isolates collected from healthy and diseased lobsters and 89 of them were the focus of this study (Table 5)

Characterization and Identification of Bacterial Isolates Bacteria that were analyzed for this study were picked based on two criteria, colony morphology and DNA fingerprint. After inoculation on 25% LB agar plates, isolates were incubated at room temperature for 24-72 hours. Each isolate was observed carefully under a dissecting microscope and placed into one large group due to colony similarities. Each colony appeared to have a cream color pigment, a smooth and circular shape, and a shiny translucent surface. Also, each colony had a darker center in relation to the rest of the colony, which looked similar to a bull’s eye. However, there were two isolates (LS207 and LS302) that had slightly different colony morphologies; they were pigmented yellow instead of cream (Figure 5).

23

Table 5: Isolate number (LS #), sampling location, and sampling date of isolates tested. This group of isolates represents the group that is the most similar to the genus Erwinia.

LS # Location Date LS # Location Date 86 North Coal Docks Dry Tortugas 10/27/99 246 Cottrell Lower Keys 08/06/00 98 Tortugas Dry Tortugas 10/27/99 247 Cottrell Lower Keys 08/06/00 99 Tortugas Dry Tortugas 10/27/99 248 Cottrell Lower Keys 08/06/00 129 Elbow Reef Upper Keys 08/03/00 249 Cottrell Lower Keys 08/06/00 132 Elbow Reef Upper Keys 08/03/00 251 Cottrell Lower Keys 08/06/00 134 Elbow Reef Upper Keys 08/03/00 255 Cottrell Lower Keys 08/06/00 135 Elbow Reef Upper Keys 08/03/00 262A Elbow Reef Upper Keys 08/03/00 136 Elbow Reef Upper Keys 08/03/00 263 Elbow Reef Upper Keys 08/03/00 137 Elbow Reef Upper Keys 08/03/00 264B Elbow Reef Upper Keys 08/03/00 138 Elbow Reef Upper Keys 08/03/00 265 Elbow Reef Upper Keys 08/03/00 139 Elbow Reef Upper Keys 08/03/00 266 Elbow Reef Upper Keys 08/03/00 141 Elbow Reef Upper Keys 08/03/00 267 American Shoals Lower Keys 08/05/00 142 Elbow Reef Upper Keys 08/03/00 268 Molasses Reef Upper Keys 08/03/00 143 Elbow Reef Upper Keys 08/03/00 276 Ellis Rock Lower Keys 08/08/00 147A Elbow Reef Upper Keys 08/03/00 277 Ellis Rock Lower Keys 08/08/00 148 Elbow Reef Upper Keys 08/03/00 278 Ellis Rock Lower Keys 08/08/00 149 Elbow Reef Upper Keys 08/03/00 279 Ellis Rock Lower Keys 08/08/00 150 Elbow Reef Upper Keys 08/03/00 280 Ellis Rock Lower Keys 08/08/00 152 Elbow Reef Upper Keys 08/03/00 283A Ellis Rock Lower Keys 08/08/00 167 Pacific Reef Upper Keys 08/02/00 292 Ellis Rock Lower Keys 08/08/00 171 Carysfort Reef Upper Keys 08/02/00 302 Marquesas Ledge Lower Keys 08/09/00 174 Carysfort Reef Upper Keys 08/02/00 306 Marquesas Ledge Lower Keys 08/09/00 179 Carysfort Reef Upper Keys 08/02/00 321 Destroyer Dry Tortugas 08/08/00 197 Looe Key Middle Keys 08/05/00 332 Marquesas Coral Heads Lower Keys 08/10/00 202 Sombrero Reef Middle Keys 08/04/00 334 Marquesas Coral Heads Lower Keys 08/10/00 203 Sombrero Reef Middle Keys 08/04/00 349 Cosgrove Ledge Lower Keys 08/10/00 204 Sombrero Reef Middle Keys 08/04/00 350 Cosgrove Ledge Lower Keys 08/10/00 205 Sombrero Reef Middle Keys 08/04/00 351 Cosgrove Ledge Lower Keys 08/10/00 207 Pelican Lower Keys 08/06/00 353 Cosgrove Ledge Lower Keys 08/10/00 215 Pelican Lower Keys 08/06/00 354 Cosgrove Ledge Lower Keys 08/10/00 217 Pelican Lower Keys 08/06/00 355 Cosgrove Ledge Lower Keys 08/10/00 218 Pelican Lower Keys 08/06/00 356 Cosgrove Ledge Lower Keys 08/10/00 225 Pelican Lower Keys 08/06/00 358 Cosgrove Ledge Lower Keys 08/10/00 226 Pelican Lower Keys 08/06/00 359A Cosgrove Ledge Lower Keys 08/10/00 227 Pelican Lower Keys 08/06/00 360A Cosgrove Ledge Lower Keys 08/10/00 230 Pelican Lower Keys 08/06/00 365 Cosgrove Ledge Lower Keys 08/10/00 236 Tennessee Tower Middle Keys 08/04/00 366 Cosgrove Ledge Lower Keys 08/10/00 237 Tennessee Tower Middle Keys 08/04/00 367 Cosgrove Ledge Lower Keys 08/10/00 238 Tennessee Tower Middle Keys 08/04/00 381 Coal Bin Dry Tortugas 08/10/00 239 Tennessee Tower Middle Keys 08/04/00 390 Coal Bin Dry Tortugas 08/10/00 243A Tennessee Tower Middle Keys 08/04/00 399 Cosgrove Ledge Lower Keys 08/10/00 245 Cottrell Lower Keys 08/06/00

24

↓ ↓ →

A B C Figure 5: Colony morphology for LS isolates. All, but two, LS isolates had the same colony morphology as shown in picture A (LS204). Pictures B and C (LS207 and LS302 respectively) represent the two isolates that had different colony morphologies and pigmentation. One characteristic that every isolate had was the center of its colony, a dark dividing center that is depicted by the arrows.

Each isolate was fingerprinted after PCR amplification of the 16s-23s rRNA intergene region (IGR). The IGR region can be used to fingerprint bacteria because the region varies in length and there are multiple copies within the genome. Figure 6 is a picture of a 2% agarose gel that has several different fingerprint patterns of isolates from lobster shells. In this figure, there are a few isolates that display the unique “Erwinia” fingerprint, two pair of strong doublet bands seen in lanes 1-4. All of the LS isolates that were used for this study were picked based on their fingerprint pattern as shown in figure 7.

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

←2100bp

←1000bp

←600bp

←200bp

Figure 6: DNA fingerprints using the 16s-23s rDNA intergene region (IGR). Bacterial isolates from the strain collection were selected for PCR amplification of the IGR and then DNA fingerprinted. The amplified DNA samples were run on a 2% agarose gel in order to compare them with each other and to a known standard such as the 100 base-pair DNA ladder shown in lane 22 (The dark band is 600bp.). Lanes 1-21 are LS isolates 136-140 and Lanes169-184 respectively. Lanes 1-4, 8, 11, and 16 display the Erwinia fingerprint; lanes 6, 7, 9, 12, and 14 display the Vibrio group fingerprints; lanes 10, 15, 20, and 21 display the Pseudoalteromonas group fingerprints; and lanes 5 and 19 display the Gram positive group fingerprints (Bacillus and Pediococcus respectively). No reaction was seen in lanes 13, 17, and 18. (Original figure from Porter et al.)

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 7: Lanes 1-9 (LS129, 245, 248, 262, 263, 266, 276, 332, and 351, respectively) and 12-20 (LS353, 355, 356, 360, 365, 366, 367, 390, and 399, respectively) show the same fingerprint pattern. Lane 10 is the low mass DNA ladder. Bands are DNA fragments containing 100, 200, 400, 800, 1200, and 2000 ba se pairs. Lane 11 is the 100 bp DNA ladder .

Biochemical Analysis Lobster shell is composed of chitin, lipids, and proteins, which are the components being degraded by extracellular enzymes released from marine micro- organisms that cause shell disease. Special media was used to simulate the components of the lobster shell in order to test for extracellular enzyme activity. Three sets of agar plates were designed; each set contained one ingredient from the lobster shell that was the primary carbon source used for bacterial growth. As seen in figure 8, agar plates were spot inoculated, incubated for 48-72 hours, and then checked for enzyme activity.

27

A B

C D

E F

Figure 8: Biochemical agar plates were used to test for extracellular enzymes released by each bacterial isolate. Pictures A and B tested for lipase activity; pictures C and D tested for protease activity: and pictures E and F tested for chitinase activity. The results are as followed: A) positive lipase result for LS86, B) positive control for lipase test using Pseudomonas aeruginosa strain RR419 or ATCC 10145, C) positive protease result for LS350, D) positive control for protease test using Pseudomonas aeruginosa strain RR419 or ATCC 10145, E) negative chitinase result for LS381, and F) positive control for chitinase test using Vibrio harveyi strain RR571.

28 Pictures A and B represent the lipid medium, pictures C and D represent the protein medium, and pictures E and F represent the chitin medium. Positive controls for lipase, protease, and chitinase activity were used and are shown in pictures B, D, and F, respectively. The black arrow in each picture points to the zone of hydrolysis, where the primary component in the medium was broken down and utilized by the isolates. A zone of hydrolysis indicates a positive result and can present itself as either a clear zone/area or a zone/area where a precipitant has formed. After comparing the inoculated plates with the positive control plates, picture A indicates lipase activity, picture C indicates protease activity, and picture E indicates no chitinase activity. The zone of hydrolysis was measured for each isolate and recorded in Table 6. A “+” represents a strong positive result, a “wk/+” represents a weak positive result, and a “-“ represents a negative result. It is obvious that nearly all the isolates have an identical profile for these three extracellular enzymes (See Table 6).

29

Table 6: Biochemical tests were conducted to see if the bacterial isolates possessed extracellular enzyme abilities. Each isolate was tested for chitinase, protease, and lipase activity by inoculating three different types of solid media

LS # Chitinase Protease Lipase LS # Chitinase Protease Lipase 86 - + + 246 - + + 98 - + + 247 - + + 99 - + + 248 - + + 129 - + + 249 - + + 132 - + + 251 - + + 134 - + + 255 - + + 135 - + + 262A - + + 136 - + + 263 - + + 137 - + + 264B - + + 138 - + + 265 - + + 139 - + + 266 - + + 141 - + + 267 - + + 142 - + + 268 - + + 143 - + + 276 - + + 147A - + + 277 - + + 148 - + + 278 - + + 149 - + + 279 - + + 150 - + + 280 - + + 152 - + + 283A - + + 167 - + + 292 - + + 171 - + + 302 - + + 174 - + + 306 - + + 179 - + + 321 - + wk/+ 197 - + + 332 - + + 202 - + + 334 - + + 203 - + + 349 - + wk/+ 204 - + + 350 - + + 205 - + + 351 - + wk/+ 207 - + wk/+ 353 - + wk/+ 215 - + + 354 - + wk/+ 217 - + + 355 - + + 218 - + + 356 - + + 225 - + + 358 - + + 226 - + + 359A - + + 227 - + + 360A - + + 230 - + + 365 - + + 236 - + + 366 - + wk/+ 237 - + wk/+ 367 - + + 238 - + + 381 - + + 239 - + + 390 - + + 243A - + + 399 - + + 245 - + +

30 DNA Sequencing of Three Genes Three genes were PCR amplified and sequenced for further comparison of the bacterial isolates. The 16s rRNA gene and two protein-coding genes, recombinase A (recA) and recombination-dependent growth C (rdgC) genes, were used for sequence analysis. Crude DNA extracts from each isolate were used as template and a specific primer set was used to PCR amplify a fragment of the 16s rRNA gene. Each PCR product was checked on a 2% agarose gel as shown in figure 9. The DNA fragment generated for each isolate was approximately 1600bp in length. Each PCR product was sequenced using an internal primer (primer Ac) and the information was used to create a sequence alignment (See Appendix A).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 2000bp

1200bp

800bp

400bp

200bp

100bp

Figure 9: Lane s 1-8 and 10 -14 (LS132, 167, 197, 202, 225, 236, 251, 255, 276, 302, 321, 334, and an unknow n Erwinia strain, respectively) display the 16s rDNA fragment that is approximately 1600bp in size. Lane 9 represents a low mass DNA ladder that was used for comparison.

31 Because of the almost total identity of the 16s rRNA gene sequences, the recA and rdgC genes were amplified and sequenced in hopes of seeing more sequence variability. PCR products were also checked on 2% agarose gels. In figure 10 the bands for the recA gene were approximately 750bp in size whereas in figure 11 the bands for the rdgC gene were approximately 490bp in size. Both sets of PCR fragments were sequenced, and aligned in the PAUP* format (See Appendices B and C).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2000bp

1200bp

800bp

400bp

200bp

100bp

Figure 10: The bands shown in lanes 1-10 and 12-21 (LS171, 174, 179, 197, 202, 203, 204, 205, 207, 215, 217, 218, 225 , 226, 227, 230, 236, 237, 238, and 239, respectively) represent amplification of the recA gene. The LS isolates consistently yielded a fragment approximately 750 nucleotides in length. Lane 11 displays the low mass DNA ladder that was used for comparison.

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2000bp 1200bp 800bp

600bp →

400bp

200bp

100bp

Figure 11: Bands for the rdgC gene reveal a DNA fragment approximately 490bp in size. Lanes 1-10 and 13-22 represent LS86, 98, 99, 129, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 147, 148, 149, 150 , 152, and 167, respectively. A 100bp and low mass DNA ladder were used for comparison (lanes 11 and 12 respectively).

Phylogenetic Analysis Multiple sequence alignments for the 16s rRNA gene, recA gene, and rdgC gene are shown in appendices A, B and C, respectively. Within each alignment are the sequences for the lobster isolates, and bacterial sequences obtained from GenBank (GenBank accession numbers can be found in Tables 2, 3, and 4). Sequences for some of the γ-Proteobacteria group, in particular members of the genera Erwinia, Brenneria, Pectobacterium, and Pantoea; and a selection of other marine γ-Proteobacteria were added to the alignment. To be consistent, the same known sequences from GenBank were used in each alignment; however, many of the known sequences for the rdgC gene were not available. BLAST analysis from GenBank was also performed to quickly identify the bacterial isolates from their 16s rRNA gene sequences. The 16s rRNA sequences for 87 (out of 89) of the isolates were identical, and Blast analysis of this sequence indicated

33 that the Erwinia (Pectobacterium) cypripedii 16s rRNA gene sequence was the GenBank entry most closely related to sequence of the LS isolates. The alignments were analyzed using PAUP*. The heuristic search method was used for both Maximum Likelihood (ML) and Maximum Parsimony (MP) analyses, using all the default parameters. For ML, all trees were saved for each data set that were of equal overall branch length and were the most likely to have occurred given the observed data and the assumed model of evolution (Hillis et. al.). Figure 12 represents one of these trees, with indicated branch lengths. This tree is constructed from the 16s rDNA sequence alignment (The recA and rdgC trees are not shown.). Each sequence had 761 characters, and 87 out of 89 LS isolates were identical. Pectobacterium cypripedii was grouped with these LS isolates. LS302 had a few character differences in comparison with the other LS isolates, but still appears to be most closely related to the LS isolates and P. cypripedii. As for LS207, it falls into a different clade with other Erwinia and Pantoea species, and is most closely related to Pantoea agglomerans. Once the trees were saved, a 50% Majority Rule (MR) tree was created that shows the nodes that were in common ≥ 50% of the time (figures not shown). Next the data were bootstrapped to show the degree of support (based on a scale from 1-100) at each node in the tree. For each alignment, 1000 bootstrap replicates were performed and 500 trees were saved using the same parameters as mentioned before (figures not shown). For maximum parsimony analysis all trees with equal overall branch lengths were saved. One of these trees for each of the 16s rDNA, recA, and rdgC sequence alignments can be seen in figures 13, 14, and 15, respectively. The MP tree for the 16s rRNA gene shows that 88 (of 89) of the LS isolates fall into a clade with P. cypripedii, where 87 of the isolates are identical and LS302 has a couple of character differences. LS207 falls into a different clade with other Erwinia species, and most closely related to Pantoea agglomerans. The corresponding MP tree for the recA gene shows that once again 87 of the 89 isolates are identical (represented by LS204). LS302 has one different character from the other 87 isolates out of the 440 characters used for the analysis. A few species of Brenneria, Erwinia chrysanthemi, and P. cypripedii fall within the same clade as the 88 LS isolates, with P. cypripedii as the closest relative. Again LS207 is found in a different clade, this time with Erwinia mallotivora, which it is most closely related to,

34 1 0.009 Pec.car.sub.atrosepticum

Pec.car.sub.wasabiae

0.026 0.007 Brenneria.alni 0.004

0.025 0.010 Erwinia.chrysanthemi 0.008 0.015 Yersinia.enterocolitica 0.003 0.013

0.042 Proteus.vulgaris

0.004 0.003 Pectobacterium.carotovorum 0.003

0.008 Pec.car.sub.odoriferum

Pec.car.sub.betavasculorum

0.012 Citrobacter.freundii

0.007 Klebsiella.pneumoniae 0.009

0.012 Serratia.marcescens

0.007 0.015 Escherichia.coli 0.008

0.007 0.003 0.005 Hafnia.alvei

0.008 0.003 0.006 Shigella.dysenteriae

Escherichia.coliO157 H7

0.009 LS302

0.007 Pectobacterium.cypripedii ← LS204 ←

0.003 Pantoea.agglomerans 0.043 0.005 0.010 LS207

0.001 0.007 Erwinia.amylovora 0.006

0.004 0.012 Erwinia.pyrifoliae

0.025 Erwinia.mallotivora 0.006 0.003 Pantoea.stewartii

0.002 Pantoea.uredovora

0.012 Brenneria.salicis

0.049 Pseudoalt.luteoviolacea

0.123 Pseudomonas.aeruginosa 0.01 substitutions/site

Figure 12: Maximum Likelihood Tree, with branch lengths, of the 16s rRNA gene. The black arrow indicates that LS204 shares the same DNA sequence that the other 86 LS isolates contain for this gene. Pectobacterium cypripedii is most closely related to the LS isolates (indicated by the red arrow).

35 1 8 Pec.car.sub.atrosepticum

21 5 Brenneria.alni 3

16 Erwinia.chrysanthemi 8 9 Yersinia.enterocolitica 11 31 Proteus.vulgaris 12

7 Pec.car.sub.wasabiae

Pec.car.sub.betavasculorum

1 Pectobacterium.carotovorum 4

6 Pec.car.sub.odoriferum

3 Pantoea.agglomerans

10 LS207 3

4 Erwinia.amylovora 5

1 10 Erwinia.pyrifoliae

6 17 Erwinia.mallotivora

11 Citrobacter.freundii 8 18 Brenneria.salicis

5 Pantoea.stewartii 11 30 1 Pantoea.uredovora

4 Pectobacterium.cypripedii ← 9 2 LS302 1 2 LS204 ←

5 Klebsiella.pneumoniae 4

9 Serratia.marcescens

5 Escherichia.coli 35 5 2 5 Hafnia.alvei

6 7 Shigella.dysenteriae

Escherichia.coliO157 H7

41 Pseudoalt.luteoviolacea

78 Pseudomonas.aeruginosa 5 changes

Figure 13: Maximum Parsimony Tree, with branch lengths, of the 16s rRNA gene. The black arrow indicates that LS204 shares the same DNA sequence that the other 86 LS isolates contain for this gene. Pectobacterium cypripedii is most closely related to the LS isolates (indicated by the red arrow).

36 1 2 Escherichia.coli 27

4 14 Shigella.flexneri

31 20 Shigella.dysenteriae

12 24 Klebsiella.pneumoniae

53 12 Citrobacter.freundii

44 Erwinia.mallotivora 15 29 LS207

8 12 Erwinia.amylovora 28

12 Erwinia.pyrifoliae

37 Brenneria.salicis 26

22 42 32 Brenneria.alni

37 15 Erwinia.chrysanthemi

15 21 Pectobacterium.cypripedii 21 ← LS204 ← 19

LS302

7 Pantoea.ananatis.INE14 25

5 18 Pantoea.ananatis.19321

24 2 31 Pantoea.stewartii

21 Pantoea.agglomerans

Hafnia.alvei 18

Erwinia.americana

5 Proteus.vulgaris 17

4 Pec.car.sub.wasabiae 41 11

16 Pec.car.sub.carotovorum 12 19 8 Pec.car.sub.odoriferum

23 32 Pec.car.sub.betavasculorum

36 Yersinia.enterocolitica 28

63 Pectobacterium.carotovorum

24 Serratia.marcescens

90 Pseudomonas.aeruginosa 10 changes

Figure 14: Maximum Parsimony Tree, with branch lengths, of the recA gene. The black arrow indicates that LS204 shares the same DNA sequence that the other 86 LS isolates contain for this gene. Pectobacterium cypripedii is most closely related to the LS isolates (indicated by the red arrow).

37 1 4 rdgC204 ←

31

4 rdgC207 29

35 rdgC302

50

14 E.tasmaniensis ←

43

22 E.pyrifoliae 41

31 Yer.pestis

53

26 Yer.enterocolitica 68

3

76 Pro.vulgaris

39 Aeromonas

96 63 Psychromonas

63 64 Shewanella

54 61 V.fischeri

46

59 V.vulnificus

34 Pseu.aeruginosa

25 Pseu.stutzeri 50 changes

Figure 15: Maximum Parsimony Tree, with branch lengths, of the rdgC gene. The black arrow indicates that LS204 shares the same DNA sequence that the other 86 LS isolates contain for this gene. Pectobacterium cypripedii is most closely related to the LS isolates (indicated by the red arrow).

38 and other species of γ-Proteobacteria. Lastly, the first MP tree for the rdgC gene was created using a 365 nucleotide character set. All 89 LS isolates are found in the same clade. Eighty-eight of the isolates are identical, but are more similar to LS207 instead of LS302, even though there is only a difference of two characters between them. They are grouped with Erwinia tasmaniensis and Erwinia pyrifoliae. After the MP heuristic search, the trees of equal overall branch length were saved for each data set in order to generate a 50% majority rule tree (figures not shown). The data were bootstrapped by employing the heuristic search method for MP. In order to show the degree of support for each node in the tree, 1000 bootstrap replicates were performed and 500 trees were saved to achieve a Bootstrap Consensus tree. In figure 16, the Bootstrap Consensus tree for the 16s rDNA sequence data is shown (Figures for recA and rdgC are not shown.). There are five clades that can be seen in the tree, but since all of the taxa share a common node, there is not enough evidence to support the phylogeny of the MP trees. This lack of statistical support was also true for the recA and rdgC bootstrap trees.

39

Bootstrap

Pec.car.sub.atrosepticum

Pec.car.sub.wasabiae

Brenneria.alni

Erwinia.chrysanthemi

Pec.car.sub.betavasculorum

Yersinia.enterocolitica

Klebsiella.pneumoniae 70

Serratia.marcescens

Citrobacter.freundii

Pectobacterium.carotovorum 61

Pec.car.sub.odoriferum

Pectobacterium.cypripedii ←

LS302

LS204 ←

Brenneria.salicis

Pantoea.agglomerans

LS207

Pantoea.stewartii 60

Pantoea.uredovora

Erwinia.amylovora 96

53 Erwinia.pyrifoliae

Erwinia.mallotivora

Escherichia.coli 98

78 Hafnia.alvei

80 Shigella.dysenteriae

Escherichia.coliO157 H7

Proteus.vulgaris

Pseudomonas.aeruginosa

Figure 16: Maximum Parsimony, Bootstrap Consensus Tree of the 16s rRNA gene. The black arrow indicates that LS204 shares the same DNA sequence that the other 86 LS isolates contain for this gene. The red arrow indicates where Pectobacterium cypripedii is located in the tree.

40 CHAPTER 4

DISCUSSION

Colony Morphology and Fingerprinting Bacterial isolates were collected from healthy and diseased lobsters throughout the Florida Keys and Dry Tortugas. There were 487 bacterial isolates collected, but for this study 89 of the isolates (the Erwinia group) were the focus due to their similarities. Of the 89 isolates 36 were isolated from diseased lobsters. Of these 36 isolates, eight were from the upper Keys, nine were from the middle Keys, sixteen were from the lower Keys, and three were from the Dry Tortugas. Regardless of their harvest location, or whether the lobster was healthy or diseased, the isolates all had common characteristics. Since the isolates were plated out on solid media, colony morphology was the first characteristic observed. Eighty-seven (of 89) of the isolates had identical colony morphology where the other two (LS207 and LS302) isolates had similar qualities but were not completely identical. The colonies were smooth and shiny, circular, and convex in shape. They had a cream colored pigment where the center contained two darker shades of color that resembled a bull’s eye. LS207 was circular in appearance with a yellow pigmentation and a darker center. When looked at under a dissecting microscope, the surface of the colony was not smooth in comparison to the other 87 isolates. Instead, the surface was textured; it was wrinkled and umbonate shaped. As for LS306, it was smooth and shiny, circular, and convex shaped with a unique dark center as seen in the other isolates. Also, the colonies were pigmented yellow but the yellow coloring was a few shades brighter than that seen in LS207. Each isolate was fingerprinted using the 16s-23s rRNA intergene region. All of the isolates had the same fingerprint (See Figure 7), two sets of doublet bands that were approximately 575bp, 625bp, 775bp, and 850bp in size, a single faint band of approximately 1200bp, and another single band of approximately1600bp. The two sets

41 of doublet bands was the primary trademark of the isolates’ fingerprint, a property unique to this group.

Biochemical Analysis Protease, lipase, and chitinase activity were tested for in the LS isolates. All 89 isolates showed a strong positive result for protease activity; 81 isolates showed a strong positive result for lipase activity where 8 showed a weak positive result; and all 89 isolates tested negative for chitinase activity. Collectively, all 89 LS isolates have incredibly similar extracellular enzyme activity.

16s rRNA Gene A multiple sequence alignment was constructed for the 16s rRNA gene as previously described (See Appendix 1.). PAUP* was used to run a battery of phylogenetic analyses. The Maximum Likelihood (ML) setting was employed for the first analysis and a 50% MR consensus tree was created. The 50% MR consensus tree formed a clade with the LS, Erwinia, Pectobacterium, Pantoea, and Brenneria stains as well as a few of the γ-Proteobacteria organisms. Eighty-eight of the LS isolates were closely related to Pectobacterium cypripedii 100% of the time and LS207 was closely related to Pantoea agglomerans 100% of the time. Next, the Maximum Parsimony (MP) setting was used for the analyses and a 50% MR and bootstrap consensus tree was constructed. The 50% MR consensus tree that was constructed was similar to the ML, 50% MR consensus tree. The LS strains were grouped with Erwinia, Pectobacterium, Pantoea, and Brenneria stains as well as a few of the gamma γ-Proteobacteria organisms within a clade. Eighty-seven isolates were closely related to Pectobacterium cypripedii 75% of the time, which was then grouped with LS302 100% of the time; and LS207 was closely related to Pantoea agglomerans 100% of the time. However, the bootstrap support was not what one would expect. The bootstrap consensus tree formed one large clade with five small monophyletic groups within the clade. The LS isolates did not fall within any of the monophyletic groups, meaning there was not much support.

42

recA Gene A multiple sequence alignment was created and the same set of analyses mentioned previously was performed with the recA gene. The ML, 50% MR consensus tree formed a monophyletic group of 88 LS isolates with Pectobacterium cypripedii, most closely related to, and Erwinia chrysanthemi 100% of the time. A clade was formed that showed LS207 grouped with other Erwinia, Pectobacterium, Pantoea, and Brenneria strains as well as a few of the γ-Proteobacteria organisms. LS207 was closely related to Erwinia americana 100% of the time. Analyses were conducted under the MP setting and a 50% MR and bootstrap consensus tree was created. For The 50% MR tree, a monophyletic group was constructed with 88 of the LS isolates, which were 100% of the time closely related to Erwinia cypripedii. Another monophyletic group was constructed 100% of the time with LS207 and Erwinia mallotivora. Bootstrap consensus designed a clade with eight monophyletic groups within the clade. One of the monophyletic groups only consisted of the 88 LS isolates, with 100% degree of support, which was positioned next to Pectobacterium cypripedii with 87% degree of support. LS207 was not placed within a monophyletic grouped, but was positioned next to Pantoea agglomerans within the clade, with 87% degree of support.

rdgC Gene As a multiple sequence alignment was constructed for the rdgC gene, it was quickly discovered that GenBank did not contain the sequence information for the same known organisms that were used in the other two sequence alignments. With that being said, a multiple sequence alignment was created but with very few of the same organisms that were used in the other alignments, and fewer known organisms in general. ML was employed first and the 50% MR consensus tree formed a clade that grouped the 89 isolates in a monophyletic group 100% of the time. Within the clade the LS isolates were closely related to Erwinia tasmaniensis 100% of the time. Next, MP trees were constructed and the 50% MR consensus tree formed a clade that grouped the 89 isolates

43 in a monophyletic group 100% of the time. Another monophyletic group was formed next to the LS isolates that contained Erwinia tasmaniensis and Erwinia pyrifoliae, where Erwinia tasmaniensis was more closely related 100% of the time. The bootstrap consensus tree constructed a monophyletic group of the 89 LS isolates with 100 degrees of support where the two Erwinia species were placed in a neighboring monophyletic group with 71 degrees of support. With 51 degrees of support, the LS isolates are more related to Erwinia tasmaniensis. Aside from the problem with creating the multiple sequence alignment for this gene, the other problem that occurred was that the rdgC gene (Recombination-Dependent Growth C gene) was not the original target gene to be used for the study. Originally a cellulase gene was the third gene to be used for comparison since we are comparing Erwinia related isolates. But, the original primers that were used to amplify the cel8Y gene were not working as well as predicted so after a few isolates were amplified and sequenced, a set of internal primers were designed in hopes of amplifying the gene more successfully. The newly designed primers worked well however, it was not until after all of the sequence information was collected that it turned out to be the wrong area that was amplified. Therefore, instead of amplifying a cellulase gene, an exonuclease gene was amplified.

Conclusions After comparing the sequence data in the LS isolates within each gene, it is remarkable how homogenous they are. The sequence information is not the only feature about them that is identical. The colony morphology, fingerprint, and extracellular enzyme activity of the lobster isolates are almost completely identical. Another interesting fact, when the isolates were collected throughout the Florida Keys and Dry Tortugas, there was not any similar isolates collected from the sediment and water column. This particular group of isolates is definitely associated with the lobster shell. Their DNA sequence similarity with the 16S rRNA gene and the two protein coding genes indicates that they are not only the same species, but the same strain. This similarity also supports the idea that they have been recently introduced to this marine

44 environment. In contrast the number one fingerprint group, the vibrios, are extremely heterogeneous both in their fingerprint patterns and by sequence analysis [25]. The other obvious point for discussion is why these isolates are even present in this environment. Pectobacterium cypripedii is a plant pathogen (saprophyte) that causes soft rot of vegetable matter. It has not before been found associated with animals and certainly not in a marine environment. The recent entry of these bacteria into this habitat is very unusual. It would be extremely interesting to discover the source of these bacteria and how they became established on the carapace of the spiny lobster. Finally it is a shame that we could not determine the precise etiology of this newly emerging shell disease. One thing is clear. The Erwinia-Pectobactrerium group has so far only been found in environments where the shell disease has been observed. In the Bahamas and off the South American coast P. argus was free of shell disease and the Erwinia-Pectobactereium group was not isolated from lobsters in these locals. Had we more time (and funding) it would have been interesting to test this hypothesis and see if this bacterial group is indeed an indicator species for shell disesase in P. argus.

Future Plans The work that has been completed for this study has opened the door for further investigation of shell disease. To begin with, the 28 locations that were originally sampled in the Florida Keys and Dry Tortugas should be sampled again. It would be interesting to see if the “Erwinia” isolates still remain in their original sampling sites; the percentage of healthy versus diseased lobsters they are collected from; and a comparison of colony morphology, IGR fingerprint, and sequence information of the three genes to look at any differences that have occurred. Next, to further investigate the etiology of shell disease, the lesions would be examined using fluorescence microscopy with species- specific, dye-labeled, DNA probes designed to target the Erwinia isolates. This method would show where these isolates are located within the lesion, whether they are located at the leading edge of the lesion or within the center of the lesion. Once the location of these isolates is determined, it would be interesting to see if they are usually found homogenously or in a heterogeneous mixture. There are numerous ideas that can be

45 studied due to this work that has been done. Also, there is plenty of room for design and creativity of new methods that could help discover and maybe even prevent the cause of shell disease in P. argus.

46 APPENDIX A

16s rDNA SEQUENCE ALIGNMENT

The multiple sequence alignment is in the format that is required to phylogenetically analyze the data using the program PAUP*. The numbering corresponds to the entire 16s rRNA gene. The alignment begins at position 601 and ends at 1450, which is the sequenced portion for the LS isolates.

#NEXUS BEGIN DATA; dimensions ntax=114 nchar=1550; format missing=? symbols="ABCDEFGHIKLMNPQRSTUVWXYZ" interleave datatype=DNA gap= -; matrix

[601-650] Halomonas.frigidi TA-CTGGGCGTAAAGCGCGCGTAGGTGGCTTGATAAGCCGGTTGTGAAAG Psychrobacter.faeca TA-CTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAAG Pec.car.sub.atrosep GA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTTGGATGTGAAAT Pec.car.sub.wasabiae GA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTTGGATGTGAAAT Brenneria.alni GA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTTGGATGTGAAAT Erwinia.chrysanthemi GA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTTGGATGTGAAAT Pec.car.sub.betavas GA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTTGGATGTGAAAT Yers.enterocolitica TA-CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT Klebsiella.pneumoni TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAAT Serratia.marcescens TA-CTGCGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT Citrobacter.freundii TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAAT Pec.carotovorum GA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTTGGATGTGAAAT Pec.car.sub.odorife GA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTTGGATGTGAAAT Pec.cypripedii TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAAT Brenneria.salicis GA-CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT Pantoea.agglomerans TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT Pantoea.stewartii TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT Pantoea.uredovora TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT Erwinia.amylovora TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAAT Erwinia.pyrifoliae TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAAT Erwinia.mallotivora TA-CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT Escherichia.coli TA-CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT Hafnia.alvei TA-CTGGGCGTAAAGCGCACGCAGGCGGTTGATTAAGTCAGATGTGAAAT Shigella.dysenteriae TA-CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT E.coliO157_H7 TA-CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT Proteus.vulgaris TA-CTGGGCGTAAAGCGCACGCAGGCGGTCAATTAAGTCAGATGTGAAAG Pseudoalt.luteoviol TA-CTGGGCGTAAAGCGTACGCAGGCGGTTTGTTAAGCGAGATGTGAAAG Pseu.aeruginosa TA-CTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCAAGTTGGATGTGAAAT She.frigidimarina TA-CTGGGCGTAAAGCGTGCGCAGGCGGTTTGTTAAGCCAGATGTGAAAT

47 Vibrio.fischeri TA-CTGGGCGTAAAGCGCATGCAGGTGGTTTGTTAAGTCAGATGTGAAAG Vibrio.harveyi TA-CTGGGCGTAAAGCGCATGCAGGTGGTTTGTTAAGTCAGATGTGAAAG LS148 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS205 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS139 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS227 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS243 ------GTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS278 ------CGTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS381 ------GTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS279 ------GCGTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS280 ------GGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS355 ------GCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS247 ------GCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS249 ---GGGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS277 ------GCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS264 ------CGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS268 ------CGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS134 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS283 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS147 ----TGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS349 ----TGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS248 ------GTCTGTTAAGTCAGATGTGAAAT LS367 ------GTCTGTTAAGTCAGATGTGAAAT LS356 ------CGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS129 ----TGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS135 ----TGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS152 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS354 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS350 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS332 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS86 GATNNGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS306 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS351 -ATCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS171 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS217 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS225 ----TGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS167 --TCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS136 -ATCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS245 -ATCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS353 -ATCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS266 -ATCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS267 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS292 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS215 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS321 --TCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS262 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS98 ATNCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS399 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS137 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS138 ------CGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS141 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS237 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS202 -----GGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS302 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS143 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS251 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS149 ------CGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT

48 LS174 ATACTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS236 -----GGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS204 ATACTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS218 AT-CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS255 ----TGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS360 ------GTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS365 ------GCGGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS238 ------GCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS390 ------CACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS265 ------GTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS246 ------AA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS203 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS263 ------AA-GCGCACGCAGGCGGTCTGTTA-GTCAGATGTGAAAT LS197 ---TTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS276 ------GGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS239 ----TGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS366 ------GCGC-CGCAGGCGGTCTGTTA-GTCAGATGTGAAAT LS142 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS150 ATTCTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS359 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS230 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS179 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS132 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS358 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS99 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS334 ------GGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS226 ---CTGGGCGTAA-GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAAT LS207 ----TGGGCGTAA-GCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAAT

[651-700] Halomonas.frigidi CCCCGGGCTCAACCTGGGAACGGCATCCGGAACTGTCAGGCTAGAGTGCA Psychrobacter.faeca CCCCGGGCTTAACCTGGGAACGGCATCTGATACTGTTAGGCTAGAGTAGG Pec.car.sub.atrosep CCCCGGGCTTAACCTGGGAACTGCATTCAAAACTGACAGGCTAGAGTCTT Pec.car.sub.wasabiae CCCCGGGCTTAACCTGGGAACTGCATTCAAAACTGACAGGCTAGAGTCTT Brenneria.alni CCCCGGGCTTAACCTGGGAACTGCATTCAAAACTGACAGGCTAGAGTCTT Erwinia.chrysanthemi CCCCGGGCTTAACCTGGGAACTGCATTCAAAACTGACAGGCTAGAGTCTC Pec.car.sub.betavas CCCCGGGCTTAACCTGGGAACTGCATTCAAAACTGACAGGCTAGAGTCTT Yers.enterocolitica CCCCGCGCTTAACGTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTT Klebsiella.pneumoni CCCCGGGCTCAACCTGGSAACTGCATTCGAAACTGGCAGGCTAGAGTCTT Serratia.marcescens CCCCGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTC Citrobacter.freundii CCCCGGGCTCAACCTGGGAACTGCATCCGAAACTGGCAGGCTAGAGTCTT Pec.carotovorum CCCCGGGCTTAACCTGGGAACTGCATTCAAAACTGACAGGCTAGAGTCTT Pec.car.sub.odorife CCCCGGGCTTAACCTGGGAACTGCATTCAAAACTGACAGGCTAGAGTCTT Pec.cypripedii CCCCGGGCTTAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTC Brenneria.salicis CCCCGAGCTTAACTTGGGAACTGCATTTGAAACTGGCAGGCTAGAGTCTT Pantoea.agglomerans CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTT Pantoea.stewartii CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC Pantoea.uredovora CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC Erwinia.amylovora CCCCGGGCTTAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTC Erwinia.pyrifoliae CCCCGGGCTTAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTC Erwinia.mallotivora CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTT Escherichia.coli CCCCGGGCTCAACCTGGGAGCTGCATCTGATACTGGCAAGCTTGAGTCTC Hafnia.alvei CCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGTCAGCTTGAGTCTC Shigella.dysenteriae CCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTC E.coliO157_H7 CCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTC Proteus.vulgaris CCCCGAGCTTAACTTGGGAATTGCATCTGAAACTGGTTGGCTAGAGTCTT Pseudoalt.luteoviol CCCCGGGCTCAACCTGGGAACTGCATTTCGAACTGGCAAACTAGAGTGTG

49 Pseu.aeruginosa CCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTACG She.frigidimarina CCCCGGGCTCAACCTGGGAATTGCATTTGGAACTGGCGAACTAGAGTCTT Vibrio.fischeri CCCGGGGCTCAACCTCGGAATTGCATTTGAAACTGGCAGACTAGAGTACT Vibrio.harveyi CCCGGGGCTCAACCTCGGAATTGCATTTGAAACTGGCAGACTAGAGTACT LS148 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS205 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS139 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS227 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS243 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS278 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS381 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS279 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS280 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS355 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS247 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS249 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS277 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS264 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS268 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS134 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS283 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS147 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS349 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS248 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS367 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS356 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS129 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS135 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS152 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS354 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS350 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS332 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS86 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS306 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS351 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS171 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS217 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS225 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS167 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS136 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS245 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS353 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS266 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS267 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS292 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS215 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS321 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS262 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS98 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS399 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS137 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS138 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS141 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS237 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS202 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS302 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS143 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC

50 LS251 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS149 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS174 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS236 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS204 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS218 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS255 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS360 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS365 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS238 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS390 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS265 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS246 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS203 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS263 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS197 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS276 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS239 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS366 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS142 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS150 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS359 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS230 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS179 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS132 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS358 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS99 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS334 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS226 CCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCAGGCTTGAGTCTC LS207 CCCCGGGCTTAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTT

[701-750] Halomonas.frigidi GGAGAGGAAGGTAGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGATCGG Psychrobacter.faeca TGAGAGGAAGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pec.car.sub.atrosep GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pec.car.sub.wasabiae GTAGAGGGGGGTAGAATTCCAGGTGTARCGGTGAAATGCGTASAGATCTG Brenneria.alni GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Erwinia.chrysanthemi GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGAAGAGATCTG Pec.car.sub.betavas GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Yers.enterocolitica GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Klebsiella.pneumoni GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Serratia.marcescens GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Citrobacter.freundii GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pec.carotovorum GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pec.car.sub.odorife GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pec.cypripedii GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Brenneria.salicis GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pantoea.agglomerans GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pantoea.stewartii GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pantoea.uredovora GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Erwinia.amylovora GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Erwinia.pyrifoliae GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Erwinia.mallotivora GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Escherichia.coli GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Hafnia.alvei GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Shigella.dysenteriae GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG E.coliO157_H7 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG

51 Proteus.vulgaris GTAGAGGGGGGTAGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTG Pseudoalt.luteoviol ATAGAGGGTGGTAGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Pseu.aeruginosa GTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG She.frigidimarina GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGATATCTG Vibrio.fischeri GTAGAGGGGGGTAGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTG Vibrio.harveyi GTAGAGGGGGGTAGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS148 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS205 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS139 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS227 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS243 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS278 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS381 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS279 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS280 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS355 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS247 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS249 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS277 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS264 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS268 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS134 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS283 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS147 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS349 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS248 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS367 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS356 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS129 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS135 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS152 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS354 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS350 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS332 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS86 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS306 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS351 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS171 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS217 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS225 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS167 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS136 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS245 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS353 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS266 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS267 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS292 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS215 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS321 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS262 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS98 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS399 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS137 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS138 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS141 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS237 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS202 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG

52 LS302 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS143 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS251 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS149 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS174 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS236 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS204 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS218 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS255 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS360 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS365 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS238 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS390 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS265 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS246 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS203 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS263 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS197 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS276 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS239 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS366 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS142 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS150 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS359 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS230 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS179 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS132 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS358 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS99 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS334 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS226 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG LS207 GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG

[751-800] Halomonas.frigidi GAGGAATACCAGTGGCGAAGGCGGCCTTCTGGACTGACACTGACACTGAG Psychrobacter.faeca GAGGAATACCGATGGCGAAGGCAGCCTTCTGGCATCATACTGACACTGAG Pec.car.sub.atrosep GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Pec.car.sub.wasabiae GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Brenneria.alni GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Erwinia.chrysanthemi GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG Pec.car.sub.betavas GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Yers.enterocolitica GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Klebsiella.pneumoni GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Serratia.marcescens GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG Citrobacter.freundii GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Pec.carotovorum GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Pec.car.sub.odorife GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Pec.cypripedii GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG Brenneria.salicis GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Pantoea.agglomerans GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Pantoea.stewartii GAGGAATACCGGTGGCGAAGGCGGTCCCCTGGACGAAGACTGACGCTCAG Pantoea.uredovora GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG Erwinia.amylovora GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG Erwinia.pyrifoliae GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG Erwinia.mallotivora GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Escherichia.coli GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG

53 Hafnia.alvei GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG Shigella.dysenteriae GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAAACTGACGCTCAG E.coliO157_H7 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG Proteus.vulgaris GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG Pseudoalt.luteoviol AAGGAATACCGATGGCGAAGGCAGCCACCTGGGTCAACACTGACGCTCAT Pseu.aeruginosa AAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAG She.frigidimarina GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAT Vibrio.fischeri AAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAGATACTGACACTCAG Vibrio.harveyi AAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAGATACTGACACTCAG LS148 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS205 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS139 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS227 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS243 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS278 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS381 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS279 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS280 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS355 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS247 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS249 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS277 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS264 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS268 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS134 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS283 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS147 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS349 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS248 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS367 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS356 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS129 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS135 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS152 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS354 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS350 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS332 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS86 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS306 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS351 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS171 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS217 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS225 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS167 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS136 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS245 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS353 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS266 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS267 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS292 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS215 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS321 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS262 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS98 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS399 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS137 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS138 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG

54 LS141 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS237 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS202 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS302 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS143 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS251 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS149 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS174 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS236 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS204 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS218 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS255 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS360 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS365 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS238 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS390 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS265 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS246 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS203 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS263 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS197 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS276 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS239 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS366 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS142 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS150 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS359 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS230 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS179 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS132 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS358 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS99 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS334 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS226 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAG LS207 GAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG

[801-850] Halomonas.frigidi GTGCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Psychrobacter.faeca GTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pec.car.sub.atrosep GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pec.car.sub.wasabiae GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Brenneria.alni GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Erwinia.chrysanthemi GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pec.car.sub.betavas GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Yers.enterocolitica GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Klebsiella.pneumoni GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Serratia.marcescens GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Citrobacter.freundii GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pec.carotovorum GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pec.car.sub.odorife GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pec.cypripedii GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Brenneria.salicis GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pantoea.agglomerans GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pantoea.stewartii GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pantoea.uredovora GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Erwinia.amylovora GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC

55 Erwinia.pyrifoliae GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Erwinia.mallotivora GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Escherichia.coli GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACC-TGGTAGTCCACGC Hafnia.alvei GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Shigella.dysenteriae GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC E.coliO157_H7 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Proteus.vulgaris GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pseudoalt.luteoviol GTACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Pseu.aeruginosa GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC She.frigidimarina GCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Vibrio.fischeri ATGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC Vibrio.harveyi ATGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS148 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS205 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS139 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS227 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS243 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS278 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS381 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS279 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS280 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS355 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS247 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS249 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS277 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS264 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS268 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS134 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS283 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS147 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS349 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS248 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS367 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS356 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS129 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS135 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS152 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS354 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS350 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS332 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS86 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS306 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS351 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS171 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS217 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS225 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS167 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS136 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS245 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS353 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS266 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS267 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS292 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS215 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS321 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS262 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS98 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC

56 LS399 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS137 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS138 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS141 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS237 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS202 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS302 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS143 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS251 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS149 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS174 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS236 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS204 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS218 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS255 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS360 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS365 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS238 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS390 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS265 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS246 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS203 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS263 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS197 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS276 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS239 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS366 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS142 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS150 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS359 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS230 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS179 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS132 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS358 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS99 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS334 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS226 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC LS207 GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC

[851-900] Halomonas.frigidi CGTAAACGATGTCGACCAGCCGTTGGGTGCCTAGAGCACTTTGTGGCGAA Psychrobacter.faeca CGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCA Pec.car.sub.atrosep TGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Pec.car.sub.wasabiae TGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Brenneria.alni TGTAAACGATGTCGACTTGAAGGTTGTGGCCTTGAGCCGTGGCTTTCGGA Erwinia.chrysanthemi TGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Pec.car.sub.betavas TGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Yers.enterocolitica TGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Klebsiella.pneumoni CGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Serratia.marcescens TGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Citrobacter.freundii CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Pec.carotovorum TGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Pec.car.sub.odorife TGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Pec.cypripedii CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Brenneria.salicis TGTAAACGATGTCGACTTGGAGGTTGCGGTCTTGAACTGTGGCTTCCGGA Pantoea.agglomerans CGTAAACGATGTCGACTTGGAGGTTGTTCCCTTGAGGAGTGGCTTCCGGA Pantoea.stewartii CGTAAACGATGTCGACTTGGAGGTTGTTCCCTTGAGGAGTGGCTTCCGGA

57 Pantoea.uredovora CGTAAACGATGTCGACTTGGAGGTTGTTCCCTTGAGGAGTGGCTTCCGGA Erwinia.amylovora CGTAAACGATGTCGACTTGGAGGCTGTTCCCCTGAGGAGTGGCTTCCGGA Erwinia.pyrifoliae CGTAAACGATGTCGACTTGGAGGCTGTTCCCCTGAGGAGTGGCTTCCGGA Erwinia.mallotivora CGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGTA Escherichia.coli CGTAAACGATGTCGACCTGGAGGTTGTGCCCT-GAGGCGAGGCTTCCGGA Hafnia.alvei CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Shigella.dysenteriae CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA E.coliO157_H7 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA Proteus.vulgaris TGTAAACGATGTCGATTTAGAGGTTGTGGTCTTGAACTGTGGCTTCTGGA Pseudoalt.luteoviol CGTAAACGATGTCTACTAGGAG-CTGGGGTCTTCGGACAACTTTTCCAAA Pseu.aeruginosa CGTAAACGATGTCGACTAGCCGTTGGGATCCTTGAGATCTTAGTGGCGCA She.frigidimarina CGTAAACGATGTCTACTCGGAGTTTGGTGACTTAGTCACTGGGCTCCCAA Vibrio.fischeri CGTAAACGATGTCTACTTGGAGGTTGTGGCCTTGAGCCGTGGCTTTCGGA Vibrio.harveyi CGTAAACGATGTCTACTTGGAGGTTGTGGCCTTGAGCCGTGGCTTTCGGA LS148 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS205 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS139 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS227 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS243 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS278 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS381 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS279 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS280 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS355 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS247 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS249 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS277 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS264 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS268 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS134 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS283 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS147 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS349 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS248 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS367 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS356 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS129 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS135 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS152 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS354 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS350 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS332 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS86 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS306 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS351 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS171 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS217 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS225 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS167 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS136 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS245 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS353 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS266 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS267 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS292 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS215 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS321 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA

58 LS262 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS98 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS399 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS137 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS138 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS141 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS237 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS202 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS302 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS143 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS251 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS149 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS174 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS236 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS204 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS218 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS255 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS360 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS365 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS238 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS390 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS265 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS246 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS203 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS263 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS197 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS276 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS239 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS366 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS142 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS150 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS359 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS230 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS179 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS132 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS358 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS99 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS334 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS226 CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGA LS207 CGTAAACGATGTCGACTTGGAGGCTGTTCCCCTGAGGAGTGGCTTCCGGA

[901-950] Halomonas.frigidi GTTAACGCGATAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Psychrobacter.faeca GCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pec.car.sub.atrosep GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pec.car.sub.wasabiae GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Brenneria.alni GCAAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Erwinia.chrysanthemi GCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pec.car.sub.betavas GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Yers.enterocolitica GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Klebsiella.pneumoni GCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Serratia.marcescens GCTAACGCGTTAAATCGGCCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Citrobacter.freundii GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pec.carotovorum GCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pec.car.sub.odorife GCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pec.cypripedii GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Brenneria.salicis GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC

59 Pantoea.agglomerans GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pantoea.stewartii GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pantoea.uredovora GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Erwinia.amylovora GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Erwinia.pyrifoliae GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Erwinia.mallotivora GCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Escherichia.coli GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Hafnia.alvei GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Shigella.dysenteriae GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC E.coliO157_H7 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Proteus.vulgaris GCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pseudoalt.luteoviol GCTAACGCATTAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Pseu.aeruginosa GCTAACGCGATAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC She.frigidimarina GCTAACGCATTAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC Vibrio.fischeri GCTAACGCGTTAAGTAGACCGCCTGGGGAGTACGGTCGCAAGATTAAAAC Vibrio.harveyi GCTAACGCGTTAAGTAGACCGCCTGGGGAGTACGGTCGCAAGATTAAAAC LS148 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS205 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS139 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS227 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS243 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS278 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS381 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS279 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS280 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS355 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS247 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS249 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS277 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS264 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS268 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS134 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS283 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS147 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS349 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS248 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS367 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS356 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS129 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS135 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS152 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS354 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS350 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS332 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS86 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS306 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS351 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS171 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS217 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS225 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS167 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS136 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS245 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS353 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS266 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS267 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS292 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC

60 LS215 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS321 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS262 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS98 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS399 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS137 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS138 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS141 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS237 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS202 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS302 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS143 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS251 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS149 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS174 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS236 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS204 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS218 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS255 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS360 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS365 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS238 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS390 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS265 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS246 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS203 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS263 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS197 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS276 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS239 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS366 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS142 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS150 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS359 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS230 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS179 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS132 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS358 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS99 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS334 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS226 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC LS207 GCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAAC

[951-1000] Halomonas.frigidi TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Psychrobacter.faeca TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pec.car.sub.atrosep TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pec.car.sub.wasabiae TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Brenneria.alni TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Erwinia.chrysanthemi TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pec.car.sub.betavas TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Yers.enterocolitica TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Klebsiella.pneumoni TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Serratia.marcescens TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Citrobacter.freundii TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pec.carotovorum TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pec.car.sub.odorife TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT

61 Pec.cypripedii TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Brenneria.salicis TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pantoea.agglomerans TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pantoea.stewartii TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pantoea.uredovora TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATATGGTTTAAT Erwinia.amylovora TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Erwinia.pyrifoliae TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Erwinia.mallotivora TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Escherichia.coli TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Hafnia.alvei TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Shigella.dysenteriae TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT E.coliO157_H7 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Proteus.vulgaris TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pseudoalt.luteoviol TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Pseu.aeruginosa TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT She.frigidimarina TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Vibrio.fischeri TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT Vibrio.harveyi TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS148 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS205 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS139 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS227 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS243 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS278 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS381 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS279 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS280 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS355 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS247 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS249 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS277 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS264 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS268 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS134 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS283 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS147 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS349 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS248 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS367 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS356 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS129 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS135 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS152 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS354 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS350 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS332 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS86 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS306 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS351 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS171 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS217 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS225 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS167 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS136 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS245 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS353 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS266 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT

62 LS267 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS292 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS215 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS321 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS262 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS98 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS399 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS137 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS138 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS141 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS237 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS202 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS302 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS143 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS251 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS149 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS174 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS236 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS204 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS218 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS255 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS360 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS365 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS238 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS390 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS265 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS246 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS203 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS263 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS197 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS276 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS239 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS366 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS142 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS150 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS359 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS230 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS179 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS132 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS358 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS99 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS334 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS226 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT LS207 TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT

[1001-1050] Halomonas.frigidi TCGATGCAACGCGAAGAACCTTACCTACCCTTGACATCTACAGAAGCCGG Psychrobacter.faeca TCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTG Pec.car.sub.atrosep TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAATTTGG Pec.car.sub.wasabiae TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACAGAATTCGG Brenneria.alni TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCTCAGAAGAGAC Erwinia.chrysanthemi TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAAGCCTG Pec.car.sub.betavas TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACAGAATTTGG Yers.enterocolitica TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACGGAATTTAG Klebsiella.pneumoni TCGATGCAWCGCGAAGAACCTTACCTGGTCTTGACATCCACAGAACTTTC Serratia.marcescens TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTTC Citrobacter.freundii TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTGG

63 Pec.carotovorum TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACAGAATTTGG Pec.car.sub.odorife TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAATTAGC Pec.cypripedii TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG Brenneria.salicis TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTGG Pantoea.agglomerans TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACGGAATTTGG Pantoea.stewartii TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGCGAACTTGG Pantoea.uredovora TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTAG Erwinia.amylovora TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCACGGAATTCTG Erwinia.pyrifoliae TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCACGGAATTTTG Erwinia.mallotivora TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCACGGAAGACCT Escherichia.coli TCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTT Hafnia.alvei TCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTT Shigella.dysenteriae TCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACAGAACCTTG E.coliO157_H7 TCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACAGAACTTTC Proteus.vulgaris TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGCGAATCCTT Pseudoalt.luteoviol TCGATGCAACGCGAAGAACCTTACCTACACTTGACATACAGAGAACTTAC Pseu.aeruginosa TCGAAGCAACGCGAAGAACCTTACCTGGCCTTGACATGTCGAGAACTTTC She.frigidimarina TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACAGAAGAGAC Vibrio.fischeri TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTTC Vibrio.harveyi TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTTC LS148 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS205 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS139 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS227 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS243 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS278 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS381 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS279 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS280 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS355 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS247 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS249 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS277 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS264 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS268 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS134 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS283 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS147 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS349 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS248 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS367 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS356 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS129 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS135 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS152 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS354 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS350 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS332 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS86 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS306 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS351 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS171 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS217 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS225 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS167 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS136 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS245 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG

64 LS353 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS266 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS267 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS292 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS215 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS321 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS262 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS98 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS399 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS137 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS138 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS141 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS237 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS202 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS302 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS143 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS251 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS149 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS174 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS236 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS204 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS218 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS255 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS360 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS365 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS238 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS390 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS265 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS246 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS203 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS263 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS197 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS276 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS239 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS366 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS142 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS150 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS359 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS230 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS179 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS132 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS358 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS99 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS334 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS226 TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAG LS207 TCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACNGAATTTGG

[1051-1100] Halomonas.frigidi AAGAGATTCTGGTGTGCCTTCGGGAACTGTAAGACAGGTGCTGCATGGCT Psychrobacter.faeca CAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAAGTGCTGCATGGCT Pec.car.sub.atrosep CAGAGATGCCTTAGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT Pec.car.sub.wasabiae TAGAGATACCTTAGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCT Brenneria.alni TGGAGATAGTTTTGTGCCTTCGGGAACTGAGAGACAGGTGCTGCATGGCT Erwinia.chrysanthemi CAGAGATGCGGGTGTGCCTTCGGGAGCTCTGAGACAGGTGCTGCATGGCT Pec.car.sub.betavas CAGAGATGCCTTAGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCT Yers.enterocolitica CAGAGATGCTTTAGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCT Klebsiella.pneumoni CAGAGATGGATTGGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCT

65 Serratia.marcescens CAGAGATGGATTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT Citrobacter.freundii CAGAGATGCCTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT Pec.carotovorum TAGAGATACCTTAGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCT Pec.car.sub.odorife TAGAGATAGCTGAGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT Pec.cypripedii CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT Brenneria.salicis CAGAGATGCTTTGGTGCCTTCGGGAGCTCTGAGACAGGTGCTGCATGGCT Pantoea.agglomerans CAGAGATGCCTTAGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCT Pantoea.stewartii CAGAGATGCCTTGGTGCCTTCGGGAACGCTGAGACAGGTGCTGCATGGCT Pantoea.uredovora CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT Erwinia.amylovora CAGAGATGCGGAAGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCT Erwinia.pyrifoliae CAGAGATGCGGAAGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCT Erwinia.mallotivora CAGAGATGGGGTTGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCT Escherichia.coli CAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCT Hafnia.alvei CAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCT Shigella.dysenteriae TAGAGATACGAGGGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCT E.coliO157_H7 CAGAGATGGATTGGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCT Proteus.vulgaris TAGAGATAGAGGAGTGCCTTCGGGAACGCTGAGACAGGTGCTGCATGGCT Pseudoalt.luteoviol CAGAGATGGTTTGGTGCCTTCGGGAACTCTGATACAGGTGCTGCATGGCT Pseu.aeruginosa CAGAGATGGATTGGTGCCTTCGGGAACTCAGACACAGGTGCTGCATGGCT She.frigidimarina CAGAGATGGACTTGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCT Vibrio.fischeri CAGAGATGGATTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT Vibrio.harveyi CAGAGATGGATTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS148 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS205 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS139 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS227 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS243 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS278 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS381 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS279 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS280 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS355 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS247 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS249 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS277 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS264 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS268 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS134 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS283 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS147 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS349 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS248 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS367 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS356 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS129 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS135 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS152 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS354 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS350 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS332 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS86 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS306 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS351 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS171 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS217 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS225 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS167 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT

66 LS136 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS245 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS353 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS266 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS267 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS292 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS215 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS321 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS262 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS98 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS399 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS137 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS138 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS141 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS237 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS202 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS302 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS143 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS251 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS149 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS174 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS236 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS204 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS218 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS255 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS360 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS365 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS238 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS390 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS265 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS246 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS203 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS263 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS197 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS276 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS239 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS366 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS142 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS150 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS359 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS230 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS179 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS132 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS358 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS99 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS334 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS226 CAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCT LS207 CAGAGATGCCTTAGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCT

[1101-1150] Halomonas.frigidi GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGTAACGAGCGCA Psychrobacter.faeca GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA Pec.car.sub.atrosep GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pec.car.sub.wasabiae GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Brenneria.alni GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Erwinia.chrysanthemi GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pec.car.sub.betavas GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA

67 Yers.enterocolitica GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Klebsiella.pneumoni GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Serratia.marcescens GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Citrobacter.freundii GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pec.carotovorum GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pec.car.sub.odorife GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pec.cypripedii GTCGCCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Brenneria.salicis GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pantoea.agglomerans GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pantoea.stewartii GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pantoea.uredovora GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Erwinia.amylovora GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Erwinia.pyrifoliae GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Erwinia.mallotivora GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Escherichia.coli GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Hafnia.alvei GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Shigella.dysenteriae GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA E.coliO157_H7 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Proteus.vulgaris GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Pseudoalt.luteoviol GTCGTCAGCTCGTGTTGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA Pseu.aeruginosa GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGTAACGAGCGCA She.frigidimarina GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Vibrio.fischeri GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA Vibrio.harveyi GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS148 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS205 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS139 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS227 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS243 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS278 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS381 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS279 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS280 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS355 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS247 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS249 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS277 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS264 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS268 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS134 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS283 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS147 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS349 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS248 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS367 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS356 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS129 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS135 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS152 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS354 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS350 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS332 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS86 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS306 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS351 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS171 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS217 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA

68 LS225 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS167 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS136 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS245 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS353 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS266 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS267 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS292 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS215 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS321 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS262 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS98 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS399 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS137 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS138 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS141 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS237 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS202 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS302 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS143 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS251 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS149 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS174 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS236 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS204 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS218 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS255 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS360 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS365 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS238 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS390 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS265 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS246 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS203 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS263 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS197 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS276 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS239 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS366 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS142 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS150 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS359 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS230 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS179 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS132 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS358 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS99 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS334 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS226 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA LS207 GTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA

[1151-1200] Halomonas.frigidi ACCCTTGTCCTTATTTGCCAGCACGTAATGGTGGGAACTCTAAGGAGACT Psychrobacter.faeca ACCCTTGTCCTTAGTTACCAGCG-GTTTGGCCGGGAACTCTAAGGATACT Pec.car.sub.atrosep ACCCTTATCCTTTGTTGCCAGCGCGTAATGGCGGGAACTCAAAGGAGACT Pec.car.sub.wasabiae ACCCTTATCCTTTGTTGCCAGCAAGTAATGTCGGGAACTCAAAGGAGACT Brenneria.alni ACCCTTATCCTTTGTTGCCAGCACGTAATGGTGGGAACTCAAAGGAGACT

69 Erwinia.chrysanthemi ACCCTTATCCTCTGTTGCCAGCACGTTATGGTGGGAACTCAGGGGAGACT Pec.car.sub.betavas ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Yers.enterocolitica ACCCTTATCCTTTGTTGCCAGCACGTGATGGTGGGAACTCAAAGGAGACT Klebsiella.pneumoni ACCCTTATCCTTTGTTGCCAGCGGTYCG-GCCGGGAACTCAAAGGAGACT Serratia.marcescens ACCCTTATCCTTTGTTGCCAGCGGTTCG-GCCGGGAACTCAAAGGAGACT Citrobacter.freundii ACCCTTATCCTTTGTTGCCAGCGGTCCG-GCCGGGAACTCAAAGGAGACT Pec.carotovorum ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Pec.car.sub.odorife ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Pec.cypripedii ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Brenneria.salicis ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Pantoea.agglomerans ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Pantoea.stewartii ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Pantoea.uredovora ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Erwinia.amylovora ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Erwinia.pyrifoliae ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT Erwinia.mallotivora ACCCTTATCCTTTGTTGCCATCGATTCG-GTCGGGAACTCAAAGGAGACT Escherichia.coli ACCCTTATCCTTTGTTGCCAGCGGTCCG-GCCGGGAACTCAAAGGAGACT Hafnia.alvei ACCCTTATCCTTTGTTGCCAGCGGTCCG-GCCGGGAACTCAAAGGAGACT Shigella.dysenteriae ACCCTTATCCTTTGTTGCCAGCGGTCCG-GCCGGGAACTCAAAGGAGACT E.coliO157_H7 ACCCTTATCCTTTGTTGCCAGCGGTCCG-GCCGGGAACTCAAAGGAGACT Proteus.vulgaris ACCCTTATCCTTTGTTGCCAGCGCGTAATGGCGGGAACTCAAAGGAGACT Pseudoalt.luteoviol ACCCCTATCCTTAGTTGCCAGCGATTCG-GTCGGGAACTCTAAGGAGACT Pseu.aeruginosa ACCCTTGTCCTTAGTTACCAGCACCTCG-GGTGGGCACTCTAAGGAGACT She.frigidimarina ACCCCTATCCTTATTTGCCAGCACGTAATGGTGGGAACTCTAGGGAGACT Vibrio.fischeri ACCCTTATCCTTGTTTGCCAGCGAGTAATGTCGGGAACTCCAGGGAGACT Vibrio.harveyi ACCCTTATCCTTGTTTGCCAGCGAGTAATGTCGGGAACTCCAGGGAGACT LS148 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS205 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS139 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS227 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS243 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS278 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS381 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS279 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS280 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS355 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS247 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS249 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS277 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS264 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS268 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS134 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS283 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS147 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS349 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS248 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS367 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS356 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS129 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS135 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS152 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS354 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS350 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS332 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS86 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS306 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS351 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT

70 LS171 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS217 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS225 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS167 ACCCTTATCCTTTGTTGCCAGCGATTCG-GYCGGGAACTCAAAGGAGACT LS136 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS245 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS353 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS266 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS267 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS292 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS215 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS321 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS262 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS98 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS399 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS137 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS138 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS141 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS237 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS202 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS302 ACCCTTATCCTTTGTTGCCAGCGGTTCG-GCCGGGAACTCAAAGGAGACT LS143 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS251 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS149 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS174 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS236 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS204 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS218 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS255 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS360 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS365 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS238 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS390 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS265 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS246 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS203 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS263 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS197 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS276 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS239 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS366 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS142 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS150 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS359 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS230 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS179 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS132 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS358 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS99 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS334 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS226 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT LS207 ACCCTTATCCTTTGTTGCCAGCGATTCG-GTCGGGAACTCAAAGGAGACT

[1201-1250] Halomonas.frigidi GCCGGTGACAAACCGGAGGAAGGTGGGGACGACGTCAAGTCATCATGGCC Psychrobacter.faeca GCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCC Pec.car.sub.atrosep GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC

71 Pec.car.sub.wasabiae GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Brenneria.alni GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Erwinia.chrysanthemi GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Pec.car.sub.betavas GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Yers.enterocolitica GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Klebsiella.pneumoni GCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Serratia.marcescens GCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Citrobacter.freundii GCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Pec.carotovorum GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Pec.car.sub.odorife GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Pec.cypripedii GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Brenneria.salicis GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Pantoea.agglomerans GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Pantoea.stewartii GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Pantoea.uredovora GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Erwinia.amylovora GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Erwinia.pyrifoliae GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Erwinia.mallotivora GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Escherichia.coli GCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Hafnia.alvei GCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Shigella.dysenteriae GCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC E.coliO157_H7 GCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Proteus.vulgaris GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC Pseudoalt.luteoviol GCCGGTGATAAACCGGAGGAAGGTGGGGACGACGTCAAGTCATCATGGCC Pseu.aeruginosa GCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC She.frigidimarina GCCGGTGATAAACCGGAGGAAGGTGGGGACGACGTCAAGTCATCATGGCC Vibrio.fischeri GCCGGTGATAAACCGGAGGAAGGTGGGGACGACGTCAAGTCATCATGGCC Vibrio.harveyi GCCGGTGATAAACCGGAGGAAGGTGGGGACGACGTCAAGTCATCATGGCC LS148 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS205 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS139 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS227 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS243 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS278 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS381 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS279 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS280 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS355 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS247 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS249 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS277 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS264 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS268 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS134 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS283 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS147 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS349 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS248 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS367 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS356 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS129 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS135 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS152 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS354 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS350 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS332 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS86 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC

72 LS306 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS351 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS171 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS217 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS225 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS167 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS136 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS245 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS353 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS266 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS267 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS292 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS215 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS321 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS262 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS98 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS399 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS137 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS138 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS141 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS237 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS202 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS302 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS143 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS251 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS149 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS174 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS236 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS204 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS218 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS255 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS360 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS365 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS238 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS390 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS265 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS246 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS203 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS263 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS197 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS276 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS239 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS366 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS142 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS150 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS359 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS230 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS179 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS132 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS358 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS99 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS334 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS226 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC LS207 GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC

[1251-1300] Halomonas.frigidi CTTACGGGTAGGGCTACACACGTGCTACAATGGCCGGTACAAAGGGCTGC

73 Psychrobacter.faeca CTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGC Pec.car.sub.atrosep CTTACGAGTAGGGCTACACACGTGCTACAATGGCGTATACAAAGAGAAGC Pec.car.sub.wasabiae CTTACGAGTAGGGCTACACACGTGCTACAATGGCGTATACAAAGAGAAGC Brenneria.alni CTTACGAGTAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Erwinia.chrysanthemi CTTACGAGTAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Pec.car.sub.betavas CTTACGAGTAGGGCTACACACGTGCTACAATGGCGTATACAAAGAGAAGC Yers.enterocolitica CTTACGAGTAGGGCTACACACGTGCTACAATGGCAGATACAAAGTGAAGC Klebsiella.pneumoni CTTACGACCAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGC Serratia.marcescens CTTACGAGTAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGC Citrobacter.freundii CTTACGAGTAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Pec.carotovorum CTTACGAGTAGGGCTACACACGTGCTACAATGGCGTATACAAAGAGAAGC Pec.car.sub.odorife CTTACGAGTAGGGCTACACACGTGCTACAATGGCGTATACAAAGAGAAGC Pec.cypripedii CTTACGGCCAGGGCTACACACGTGCTACGATGGCGCATACAAAGAGAAGC Brenneria.salicis CTTACGAGTAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Pantoea.agglomerans CTTACGAGTAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGGAGC Pantoea.stewartii CTTACGAGTAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Pantoea.uredovora CTTACGAGTAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Erwinia.amylovora CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Erwinia.pyrifoliae CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Erwinia.mallotivora CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Escherichia.coli CTTACGACCAGGGCTACACACGTGCTACAATGGCGCACACAAAGAGAAGC Hafnia.alvei CTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Shigella.dysenteriae CTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC E.coliO157_H7 CTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC Proteus.vulgaris CTTACGAGTAGGGCTACACACGTGCTACAATGGCAGATACAAAGAGAAGC Pseudoalt.luteoviol CTTACGTGTAGGGCTACACACGTGCTACAATGGCAGATACAGAGTGCTGC Pseu.aeruginosa CTTACGGCCAGGGCTACACACGTGCTACAATGGTCGGTACAAAGGGTTGC She.frigidimarina CTTACGAGTAGGGCTACACACGTGCTACAATGGCGTATACAGAGGGTTGC Vibrio.fischeri CTT------Vibrio.harveyi CTT------LS148 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS205 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS139 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS227 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS243 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS278 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS381 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS279 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS280 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS355 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS247 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS249 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS277 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS264 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS268 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS134 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS283 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS147 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS349 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS248 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS367 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS356 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS129 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS135 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS152 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS354 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS350 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC

74 LS332 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS86 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS306 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS351 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS171 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS217 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS225 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS167 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS136 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS245 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS353 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS266 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS267 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS292 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS215 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS321 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS262 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS98 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS399 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS137 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS138 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS141 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS237 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS202 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS302 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS143 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS251 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS149 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS174 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS236 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS204 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS218 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS255 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS360 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS365 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS238 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS390 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS265 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS246 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS203 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS263 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS197 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS276 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS239 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS366 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS142 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS150 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS359 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS230 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS179 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS132 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS358 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS99 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS334 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS226 CTTACGGCCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC LS207 CTTACGAGTAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGC

75 [1301-1350] Halomonas.frigidi GAGCTCGCGAGAGTCAGCGAATCCCTTAAAGCCGGTCTCAGTCCGGATCG Psychrobacter.faeca TACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTG Pec.car.sub.atrosep GAACTCGCGAGAGCCAGCGGACCTCATAAAGTACGTCGTAGTCCGGATTG Pec.car.sub.wasabiae GACCTCGCGAGAGCAAGCGGACCTCATAAAGTACGTCGTAGTCCGGATTG Brenneria.alni GAGCCTGCGAGGGTGAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG Erwinia.chrysanthemi GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG Pec.car.sub.betavas GACCTCGCGAGAGCAAGCGGACCTCATAAAGTACGTCGTAGTCCGGATTG Yers.enterocolitica GAACTCGCGAGAGCAAGCGGACCACATAAAGTCTGTCGTAGTCCGGATTG Klebsiella.pneumoni GACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTG Serratia.marcescens GACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGGTTG Citrobacter.freundii GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGGGTCGTAGTCCGGATTG Pec.carotovorum GACCTCGCGAGAGCAAGCGGACCTCATAAAGTACGTCGTAGTCCGGATTG Pec.car.sub.odorife GACCTCGCGAGAGCAAGCGGACCTCATAAAGTACGTCGTAGTCCGGATTG Pec.cypripedii GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG Brenneria.salicis GAACTTGCGAGAGTGAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG Pantoea.agglomerans GACCTCGCGAGAGCAAGCGGACCTCACAAAGTGCGTCGTAGTCCGGATCG Pantoea.stewartii GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATCG Pantoea.uredovora GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATCG Erwinia.amylovora GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATCG Erwinia.pyrifoliae GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATCG Erwinia.mallotivora GACCTCGCGAGAGCAAGCGGATCTCATAAAGTGCGTCGTAGTCCGGATCG Escherichia.coli GATCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG Hafnia.alvei GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG Shigella.dysenteriae GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG E.coliO157_H7 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG Proteus.vulgaris GACCTCGCGAGAGCAAGCGGAACTCATAAAGTCTGTCGTAGTCCGGATTG Pseudoalt.luteoviol GAACTTGCGAGAGTAAGCGAATCACTTAAAGTCTGTCGTAGTCCGGATTG Pseu.aeruginosa CAAGCCGCGAGGTGGAGCTAATCCCATAAAACCGATCGTAGTCCGGATCG She.frigidimarina AAAGCCGCGAGGTGGAGCTAATCTCACAAAGTACGTCGTAGTCCGGATCG Vibrio.fischeri ------Vibrio.harveyi ------LS148 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS205 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS139 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS227 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS243 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS278 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS381 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS279 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS280 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS355 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS247 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS249 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS277 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS264 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS268 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS134 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS283 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS147 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS349 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS248 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS367 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS356 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS129 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS135 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS152 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG

76 LS354 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS350 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS332 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS86 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS306 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS351 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS171 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS217 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS225 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS167 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS136 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS245 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS353 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS266 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS267 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS292 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS215 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS321 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS262 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS98 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS399 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS137 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS138 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTANTCCGGATTG LS141 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS237 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS202 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS302 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS143 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS251 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS149 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS174 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS236 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS204 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS218 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS255 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS360 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS365 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS238 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS390 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS265 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS246 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS203 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS263 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS197 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS276 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS239 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS366 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS142 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS150 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS359 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS230 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS179 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS132 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS358 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS99 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS334 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG LS226 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTG

77 LS207 GACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATCG

[1351-1400] Halomonas.frigidi GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTGAATC Psychrobacter.faeca GAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATC Pec.car.sub.atrosep GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Pec.car.sub.wasabiae GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Brenneria.alni GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATC Erwinia.chrysanthemi GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Pec.car.sub.betavas GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Yers.enterocolitica GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Klebsiella.pneumoni GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Serratia.marcescens GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Citrobacter.freundii GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATC Pec.carotovorum GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Pec.car.sub.odorife GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Pec.cypripedii GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Brenneria.salicis GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Pantoea.agglomerans GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTGGATC Pantoea.stewartii GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTGGATC Pantoea.uredovora GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTGGATC Erwinia.amylovora GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTAGATC Erwinia.pyrifoliae GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTAGATC Erwinia.mallotivora GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTGGATC Escherichia.coli GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATC Hafnia.alvei GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATC Shigella.dysenteriae GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATC E.coliO157_H7 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATC Proteus.vulgaris GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC Pseudoalt.luteoviol GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGCGGATC Pseu.aeruginosa CAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGTGAATC She.frigidimarina GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTGGATC Vibrio.fischeri ------Vibrio.harveyi ------LS148 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS205 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS139 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS227 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS243 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS278 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS381 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS279 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS280 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS355 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS247 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS249 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS277 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS264 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS268 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS134 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS283 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS147 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS349 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS248 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS367 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS356 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS129 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC

78 LS135 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS152 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS354 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS350 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS332 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS86 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS306 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS351 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS171 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS217 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS225 GAGTCTGCAACTCGACTCCATGAAGTCGGA-TCGCTAGTAATCGTAGATC LS167 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS136 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS245 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS353 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS266 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS267 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS292 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS215 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS321 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS262 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS98 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS399 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS137 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS138 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS141 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS237 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS202 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS302 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS143 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS251 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS149 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS174 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS236 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS204 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS218 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS255 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS360 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS365 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS238 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS390 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS265 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS246 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS203 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS263 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS197 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS276 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS239 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS366 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS142 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS150 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS359 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS230 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS179 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS132 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS358 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS99 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC

79 LS334 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS226 GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATC LS207 GAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGTGGATC

[1401-1450] Halomonas.frigidi AGAATGTCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Psychrobacter.faeca AGAATGCCGCGGTGAATACGTTCACCGGGCCCTTGTACACACCGCCCGTC Pec.car.sub.atrosep AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pec.car.sub.wasabiae AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Brenneria.alni AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Erwinia.chrysanthemi AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pec.car.sub.betavas AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Yers.enterocolitica AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Klebsiella.pneumoni AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Serratia.marcescens AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Citrobacter.freundii AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pec.carotovorum AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pec.car.sub.odorife AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pec.cypripedii AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Brenneria.salicis AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pantoea.agglomerans AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pantoea.stewartii AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pantoea.uredovora AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Erwinia.amylovora AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Erwinia.pyrifoliae AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Erwinia.mallotivora AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Escherichia.coli AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Hafnia.alvei AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Shigella.dysenteriae AGAATGTCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC E.coliO157_H7 AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Proteus.vulgaris AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pseudoalt.luteoviol AGAATGCCGCGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Pseu.aeruginosa AGAATGTCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC She.frigidimarina AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCCGTC Vibrio.fischeri ------Vibrio.harveyi ------LS148 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTC------LS205 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTC------LS139 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTC------LS227 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTC------LS243 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS278 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS381 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGA------LS279 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS280 AGAATGCTACGGTGAATACGTTC-CCGGGCT-T------LS355 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS247 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS249 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS277 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS264 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS268 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS134 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS283 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS147 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS349 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS248 AGAATGCTACGGTGAATACGTTC-CCGG------LS367 AGAATGCTACGGTGAATACGTTC-CCG------

80 LS356 AGAATGCTACGGTGAATACGTTC-CCGGGC------LS129 AGAATGCTACGGTGAATACGTTC-CCGGGC------LS135 AGAATGCTACGGTGAATACGTTC-CCGGGC------LS152 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TT------LS354 AGAATGCTACGGTGAATACGTTC-CCGGGCC-T------LS350 AGAATGCTACGGTGAATACGTTC-CCGGGCC-T------LS332 AGAATGCTACGGTGAATACGTTC-CCGGGCC-T------LS86 AGAATGCTACGGTGAATACGTTC-CCGGC------LS306 AGAATGCTACGGTGAATACGTTC-CCGGCTN-CNNCCCNNNNNNNNNNNN LS351 AGAATGCTACGGTGAATACGT------LS171 AGAATGCTACGGTGAATACGT------LS217 ANAN-GCTACGGTGAATACGTTC-CCGGNTN-NNNNCNNNCNNNNCNNNN LS225 AGAT-GCTA------LS167 AGAATGCTACGGTGAATAC------LS136 AGAATGCTACGGTGAATACGTTC------LS245 AGAATGCTACGGTGAATACGTTC-CCG------LS353 AGAATGCTACGGTGAATACGTTC-CCG------LS266 AGAATGCTACGGTGAATACGTTC-CCGG------LS267 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS292 AGAATGCTACGGTGAATACGTTC-CCGGGCT------LS215 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TGAA------LS321 AGAATGCTACGGTGAATACGTTC-CCGGGC------LS262 AGAATGCTACGGTGAATACGTTC-CCGG------LS98 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TNCNCNCCNNNNNCNNNN LS399 AGAATGCTACGGTGAATACGTTC-CCG------LS137 AGAATGCTACGGTGAATACGTTC-CCGG------LS138 AGAATGCTACGGTGAATACGTTC-C------LS141 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TT------LS237 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGA------LS202 AGAATGCTACGGTGAATACGTTC-CCGG------LS302 AGAATGCTACGGTGAATACGTTC-CCGGGCC------LS143 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGT------LS251 AGAATGCTACGGTGAATACGTTC-CCGGGCC-T------LS149 AGAATGCTACGGTGAATACGTTC-CCGG------LS174 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTG------LS236 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TT------LS204 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTA------LS218 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGT------LS255 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTG------LS360 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTC------LS365 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGT------LS238 AGAATGCTACGGTGAATACGTTC-CCGGGCC-T------LS390 AGAATGCTACGGTGAATACGT------LS265 AGAATGCTACGGTGAATACGTTC-CCGGGCT-T------LS246 AGAATGCTACGGTGAATACGTTC-CCGGGC------LS203 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGA------LS263 AGAATGCTACGGTGAATACGTTC-CCG------LS197 AGAATGCTACGGTGAATACGTTC-CCGGGCC-T------LS276 AGAATGCTACGGTGAATACGTTC-CCGGGCC-T------LS239 AGAATGCTACGGTGAATACGTTC-CCGGGCC-T------LS366 AGAATGCTACGGTGAATACGTTC-CCG------LS142 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACAC------LS150 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCCGCCCGT LS359 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTA------LS230 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTA------LS179 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTA------LS132 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTA------

81 LS358 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTAC------LS99 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACAC------LS334 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGT------LS226 AGAATGCTACGGTGAATACGTTC-CCGGGCC-TTGTACACACCGCCC--- LS207 AGAATGCCACGGTGAATACGTTC-CCGGGCC-TTGTACA------; end;

82 APPENDIX B

recA SEQUENCE ALIGNMENT

The multiple sequence alignment is in the format that is required to phylogenetically analyze the data using the program PAUP*. The numbering corresponds to the entire recA gene. The alignment begins at position 101 and ends at 800, which is the sequenced portion for the LS isolates.

#NEXUS BEGIN DATA; dimensions ntax=112 nchar=831; format missing=? symbols="ABCDEFGHIKLMNPQRSTUVWXYZ" interleave datatype=DNA gap= -; matrix

[101-150] Pec.cypripedii ------Pantoea.ananatis.INE14 CTCAATGGATGTGGAAACCATTTCAACGGGTTCTCTGTCGCTGGATATCG Pantoea.ananatis.19321 CTCAATGGATGTGGAAACCATTTCAACGGGTTCTCTGTCACTGGATATCG Pantoea.stewartii CTCAATGGATGTGGAAACCATTTCAACAGGCTCCCTGTCACTGGATATCG Pantoea.agglomerans CTCAATGGATGTGGAAACCATCTCTACCGGCTCGCTCTCGCTGGATATCG Serratia.marcescens ------Pseu.aeruginosa GCGCCAGGCGATCCCGGCCATCTCCACCGGCTCCCTGGGTCTGGACATCG Escherichia.coliO157_H7 ------Escherichia.coli TTCCATGGATGTGGAAACCATCTCTACCGGTTCGCTTTCACTGGATATCG Shigella.dysenteriae ------Shigella.flexneri TTCCATGGATGTGGAAACCATCTCTACCGGTTCGCTTTCACTGGATATCG Klebsiella.pneumoniae ------Citrobacter.freundii ------Hafnia.alvei ------Erwinia.americana ------Erwinia.mallotivora ------Erwinia.amylovora ------Erwinia.pyrifoliae ------Proteus.vulgaris CTCGATGGATGTTGAAACCATTTCTACGGGCTCTTTGTCCCTTGATATTG Pec.car.sub.wasabiae CTCAATGGATGTTGAAACCATTTCTACAGGTTCTTTGTCCCTTGATATTG Pec.car.sub.atrosepticum ------TCTCTGGGTTCTTTGTCCCTTGATATTG Pec.car.sub.carotovorum CTCAATGGATGTTGAAACCATTTCTACAGGCTCTTTGTCCCTGGATATCG Pec.car.sub.odoriferum CTCAATGGATGTTGAAACCATTTCTACAGGCTCTTTGTCCCTTGATATCG Pec.car.sub.betavasculorum CTCAATGGATGTTGAAACCATTTCTACAGGCTCTTTGTCCCTTGATATTG Yersinia.enterocolitica ------Pec.carotovorum TTCCATGAACGTTGAAACCATCTCTACGGGTTCTTTATCATTAGACGTTG Brenneria.salicis ACCAAAGGATGTTGAAATAATTTCCACCGGTTCTCTGTCTCTGGACATCG Brenneria.alni ------Erwinia.chrysanthemi ------LS207 ------ATTTCTACCGGTTCGCTTTCACTGGATATCG LS350 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS390 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS280 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG

83 LS238 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS179 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS129 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS237 ------TGAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS203 ------TGAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS137 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS99 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS217 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS359 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS227 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS134 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS204 ------TGACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS360 ------GACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS135 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS147 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS150 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS365 ------AACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS142 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS225 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS355 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS276 ------TGACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS358 ------GACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS98 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS136 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS141 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS139 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS283 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS236 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS306 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS86 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS218 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS230 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS292 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS245 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS215 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS205 ------GTTGAAACATCTCTACCGGCTCCCTGTCGCTGGACATCG LS381 ------ACATCTCTACCGGCTCCCTGTCGCTGGACATCG LS143 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS251 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS268 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS262 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS321 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS174 ------TCTCTACCGGCTCCCTGTCGCTGGACATCG LS263 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS171 ------AACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS249 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS255 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS264 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS267 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS248 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS334 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS246 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS266 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS351 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS149 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS148 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS277 ------TCTCTACCGGCTCCCTGTCGCTGGACATCG LS152 ------ACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS356 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS366 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS202 ------GAACCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS197 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS132 ------TCTCTACCGGCTCCCTGTCGCTGGACATCG

84 LS239 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS138 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS167 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS353 ------CATCTCTACCGGCTCCCTGTCGCTGGACATCG LS265 ------ACATCTCTACCGGCTCCCTGTCGCTGGACATCG LS243 ------CCATCTCTACCGGCTCCCTGTCGCTGGACATCG LS367 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS349 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS302 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS278 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS354 ------ATCTCTACCGGCTCCCTGTCGCTGGACATCG LS247 ------GGCTCCCTGTCGCTGGACATCG LS399 ------TCTCTACCGGCTCCCTGTCGCTGGACATCG LS279 ------TCTCTACCGGCTCCCTGTCGCTGGACATCG LS226 ------TCTCTACCGGCTCCCTGTCGCTGGACATCG LS332 ------TCTACCGGCTCCCTGTCGCTGGACATCG

[151-200] Pec.cypripedii ------Pantoea.ananatis.INE14 CATTAGGTGCGGGCGGTTTACCGATGGGACGTATCGTTGAGATCTACGGC Pantoea.ananatis.19321 CATTAGGTGCGGGTGGTTTACCGATGGGACGTATCGTTGAGATCTACGGC Pantoea.stewartii CATTAGGTGCGGGTGGATTGCCGATGGGCCGTATCGTCGAGATTTACGGT Pantoea.agglomerans CATTAGGCGCAGGCGGTCTGCCAATGGGACGTATCGTTGAGATCTACGGA Serratia.marcescens ------Pseu.aeruginosa CCCTCGGCATCGGCGGCCTGCCCAAGGGCCGGATCGTCGAGATCTACGGT Escherichia.coliO157_H7 ------Escherichia.coli CGCTTGGGGCAGGTGGTCTGCCGATGGGCCGTATCGTCGAAATCTACGGA Shigella.dysenteriae ------Shigella.flexneri CGCTTGGGGCAGGTGGTCTGCCGATGGGCCGTATCGTCGAAATCTACGGA Klebsiella.pneumoniae ------Citrobacter.freundii ------Hafnia.alvei ------Erwinia.americana ------Erwinia.mallotivora ------Erwinia.amylovora ------Erwinia.pyrifoliae ------Proteus.vulgaris CTCTGGGGGCCGGCGGTTTACCTATGGGGCGCATCGTTGAGATTTATGGC Pec.car.sub.wasabiae CTCTGGGAGCCGGTGGTTTACCGATGGGGCGTATCGTTGAGATTTATGGC Pec.car.sub.atrosepticum CTTTAGGTGCCGGCGGTTTACCTATGGGCCGCATCGTTGAGATTTATGGC Pec.car.sub.carotovorum CTTTGGGGGCTGGTGGTTTACCGATGGGGCGTATCGTTGAGATTTATGGC Pec.car.sub.odoriferum CTCTGGGCGCCGGTGGTTTACCGATGGGGCGTATCGTTGAGATTTATGGC Pec.car.sub.betavasculorum CTTTGGGGGCTGGCGGTTTACCTATGGGGCGCATCGTTGAGATTTATGGC Yersinia.enterocolitica ------Pec.carotovorum CTTTAGGTGCTGGTGGTTTACCACGCGGGCGTATTGTTGAAATCTATGGC Brenneria.salicis CATTGGGGGCAGGTGGCTTGCCGATGGGCCGTATCGTCGAAATTTACGGC Brenneria.alni ------Erwinia.chrysanthemi ------LS207 CGCTGGGCGCCGGCGGTTTGCCGATGGGCCGTATCGTCGAAATTTATGGT LS350 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS390 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS280 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS238 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS179 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS129 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS237 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS203 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS137 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS99 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS217 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS359 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS227 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS134 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS204 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA

85 LS360 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS135 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS147 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS150 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS365 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS142 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS225 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS355 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS276 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS358 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS98 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS136 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS141 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS139 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS283 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS236 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS306 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS86 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS218 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS230 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS292 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS245 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS215 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS205 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS381 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS143 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS251 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS268 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS262 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS321 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS174 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS263 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS171 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS249 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS255 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS264 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS267 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS248 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS334 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS246 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS266 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS351 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS149 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS148 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS277 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS152 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS356 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS366 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS202 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS197 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS132 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS239 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS138 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS167 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS353 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS265 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS243 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS367 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS349 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS302 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS278 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS354 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS247 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA

86 LS399 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS279 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS226 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA LS332 CGCTGGGCGCGGGTGGCCTGCCAATGGGCCGTATCGTTGAGATCTACGGA

[201-250] Pec.cypripedii ------AAACCACGCTGACCTTGCAGGTCATTGCTGCTGC Pantoea.ananatis.INE14 CCAGAGGCCTCAGGTAAAACGACACTGACACTTCAGGTTATTGCCGCCGC Pantoea.ananatis.19321 CCAGAGGCCTCAGGTAAAACGACACTGACACTTCAGGTTATTGCCGCCGC Pantoea.stewartii CCTGAAGCCTCGGGTAAAACCACGCTGACGCTGCAGGTGATTGCCGCCGC Pantoea.agglomerans CCAGAGTCTTCCGGTAAAACCACGCTGACCCTGCAGGTTATCGCATCTGC Serratia.marcescens ------CTGACGCTGCAGGTGATCGCCGCCGC Pseu.aeruginosa CCGGAATCCTCGGGCAAGACCACCCTGACCCTCTCGGTGATCGCCGAGGC Escherichia.coliO157_H7 ------Escherichia.coli CCGGAATCTTCCGGTAAAACCACGCTGACGCTGCAGGTGATCGCCGCAGC Shigella.dysenteriae ------AAACCACGCTGACGTTGCAGGTGATCGCCGCAGC Shigella.flexneri CCGGAATCTTCCGGTAAAACCACGCTGACGCTGCAGGTGATCGCCGCAGC Klebsiella.pneumoniae ------AAACCACCCTGACGCTGCAGGTTATCGCCGCAGC Citrobacter.freundii ------AAACAACGCTGACCCTGCAGGTTATTGCCGCTGC Hafnia.alvei ------AAACCACSSKGACTCTGCAAGTTATCGCAGCAGC Erwinia.americana ------AAACCACCCTGACTCTGCAAGTTATCGCAGCAGC Erwinia.mallotivora ------AAACCACGCTGACCCTACAGGTTATCGCGGCTGC Erwinia.amylovora ------AAACCACCCTGACTTTGCAGGTTATTGCCGCCGC Erwinia.pyrifoliae ------AAACCACCCTGACTTTGCAGGTGATTGCCGCCGC Proteus.vulgaris CCAGAATCTTCTGGTAAAACCACGCTGACCTTACAGGTGATTGCCGCTGC Pec.car.sub.wasabiae CCAGAATCTTCCGGTAAAACCACGCTGACCTTACAGGTGATTGCCGCTGC Pec.car.sub.atrosepticum CCAGAATCCTCTGGTAAAACCACGCTGACCTTACAGGTGATTGCTGCTGC Pec.car.sub.carotovorum CCAGAATCTTCCGGTAAAACAACGCTGACCTTACAGGTTATTGCTGCCGC Pec.car.sub.odoriferum CCAGAATCTTCCGGTAAAACAACGCTGACCTTACAGGTTATTGCTGCCGC Pec.car.sub.betavasculorum CCTGAATCTTCTGGTAAAACTACGCTGACTTTACAGGTGATTGCTGCCGC Yersinia.enterocolitica ------AAACCACACTGACCTTACAGGTTATTGCTGCCGC Pec.carotovorum CCAGAATCTTATGGTAAAACAACATTAACACTACAAGTTATCGCTGCTGC Brenneria.salicis CCGGAATCATCAGGTAAAACGACACTGACTTTGCAGGTTATTGCTGCGGC Brenneria.alni ------AAACCACGCTGACTTTACAGGTTATTGCTTCTGC Erwinia.chrysanthemi ------AAACCACGCTGACACTGCAGGTTATTGCCGCAGC LS207 CCGGAATCATCCGGTAAAACCACGCTGACGCTGCAGGTTATCGCTGCGGC LS350 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS390 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS280 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS238 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS179 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS129 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS237 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS203 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS137 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS99 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS217 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS359 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS227 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS134 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS204 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS360 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS135 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS147 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS150 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS365 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS142 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS225 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS355 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS276 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS358 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS98 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS136 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC

87 LS141 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS139 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS283 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS236 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS306 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS86 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS218 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS230 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS292 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS245 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS215 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS205 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS381 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS143 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS251 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS268 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS262 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS321 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS174 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS263 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS171 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS249 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS255 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS264 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS267 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS248 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS334 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS246 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS266 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS351 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS149 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS148 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS277 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS152 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS356 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS366 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS202 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS197 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS132 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS239 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS138 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS167 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS353 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS265 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS243 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS367 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS349 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS302 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS278 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS354 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS247 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS399 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS279 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS226 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC LS332 CCTGAGTCCTCCGGTAAAACCACGCTGACCCTGCAGGTCATTGCTGCTGC

[251-300] Pec.cypripedii ACAGCGTAAAGGTAAAACCTGTGCCTTTATTGATGCCGAGCATGCGCTTG Pantoea.ananatis.INE14 GCAGCGTAAGGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCACTGG Pantoea.ananatis.19321 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCACTGG Pantoea.stewartii ACAGCGTAAAGGTAAAACCTGTGCCTTTATCGATGCTGAACACGCACTGG Pantoea.agglomerans ACAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCTGAGCATGCGCTTG Serratia.marcescens GCAGCGCGAAGGCAAGACCTGTGCGTTCATCGATGCCGAGCACGCGCTGG

88 Pseu.aeruginosa CCAGAAACAGGGCGCCACCTGTGCCTTCGTCGACGCCGAGCACGCGCTCG Escherichia.coliO157_H7 ------Escherichia.coli GCAGCGTGAAGGTAAAACCTGTGCGTTTATCGATGCTGAACACGCGCTGG Shigella.dysenteriae GCAGCGTGAAGGTAAAACCTGTGCGTTTATCGATGCTGAACACGCGCTGG Shigella.flexneri GCAGCGTGAAGGTAAAACCTGTGCGTTTATCGATGCTGAACACGCGCTGG Klebsiella.pneumoniae GCAGCGTGAAGGTAAAACCTGTGCGTTCATCGATGCTGAACATGCGCTGG Citrobacter.freundii GCAGCGTGAAGGTAAAACCTGTGCATTTATCGATGCAGAACACGCACTGG Hafnia.alvei ACAGCGCGAAGGTAAAACCTGTGCGTTTATCGATGCCGAGCACGCGCTGG Erwinia.americana ACAGCGCGAAGGTAAAACCTGTGCGTTTATCGATGCCGAGCACGCGCTGG Erwinia.mallotivora CCAGCGTAAAGGTAAAACCTGTGCGTTTATCGATGCGGAGCATGCGCTGG Erwinia.amylovora ACAGCGTAAAGGTAAGACCTGTGCGTTTATCGATGCCGAGCACGCGCTGG Erwinia.pyrifoliae GCAGCGTAAAGGTAAGACCTGTGCGTTTATCGATGCCGAGCACGCGCTGG Proteus.vulgaris TCAACGCGAAGGAAAAACCTGTGCGTTCATCGATGCTGAACATGCGTTGG Pec.car.sub.wasabiae TCAGCGCGAAGGCAAAACCTGTGCGTTCATCGATGCTGAACATGCGTTGG Pec.car.sub.atrosepticum TCAGCGCGAAGGCAAAACCTGTGCGTTTATCGATGCTGAACATGCGTTGG Pec.car.sub.carotovorum TCAGCGCGAAGGCAAAACGTGTGCGTTTATCGATGCTGAGCATGCGCTGG Pec.car.sub.odoriferum TCAGCGCGAAGGTAAAACGTGTGCGTTTATCGATGCTGAGCATGCGCTGG Pec.car.sub.betavasculorum CCAGCGCGAAGGCAAAACCTGTGCGTTTATCGATGCTGAACATGCACTGG Yersinia.enterocolitica ACAACGCGAAGGTAAAACCTGCGCCTTTATCGATGCAGAGCATGCTCTTG Pec.carotovorum TCAACGTGAAGGCAAAATTTGTGCATTCATTGATGCTGAGCACGCTTTAG Brenneria.salicis ACAGCGCGAAGGTAAAACGTGTGCGTTTATTGATGCCGAGCATGCGCTCG Brenneria.alni GCAGCGTGAAGGTAAGACCTGTGCCTTTATTGACGCAGAACATGCGCTGG Erwinia.chrysanthemi GCAGCGTGAAGGCAAAACCTGTGCATTCATTGATGCGGAACATGCTCTGG LS207 GCAGCGCAAAGGCAAAACCTGCGCCTTTATCGATGCTGAACACGCGCTGG LS350 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS390 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS280 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS238 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS179 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS129 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS237 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS203 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS137 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS99 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS217 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS359 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS227 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS134 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS204 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS360 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS135 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS147 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS150 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS365 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS142 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS225 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS355 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS276 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS358 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS98 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS136 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS141 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS139 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS283 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS236 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS306 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS86 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS218 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS230 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS292 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS245 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS215 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS205 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG

89 LS381 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS143 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS251 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS268 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS262 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS321 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS174 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS263 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS171 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS249 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS255 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS264 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS267 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS248 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS334 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS246 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS266 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS351 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS149 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS148 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS277 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS152 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS356 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS366 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS202 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS197 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS132 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS239 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS138 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS167 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS353 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS265 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS243 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS367 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS349 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS302 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS278 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS354 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS247 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS399 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS279 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS226 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG LS332 GCAGCGTAAAGGCAAAACCTGTGCCTTTATCGATGCCGAGCACGCGCTGG

[301-350] Pec.cypripedii ACCCGGTCTACGCGAAGAAGCTGGGCGTCGATATTGATAACCTGCTGTGT Pantoea.ananatis.INE14 ATCCCATCTATGCTAAGAAACTGGGCGTAGATATCGACAATCTGCTGTGT Pantoea.ananatis.19321 ATCCCATCTATGCTAAGAAACTGGGCGTAGATATCGACAATCTGCTGTGT Pantoea.stewartii ATCCGGTCTACGCCAAGAAACTGGGCGTTGATATCGATAACCTGCTGTGT Pantoea.agglomerans ATCCGGTTTACGCCAAAAAACTGGGCGTAGATATCGAAAACCTGCTCTGT Serratia.marcescens ATCCTATCTATGCGAAAAAGCTGGGCGTCGATATCGACAACCTGCTGTGC Pseu.aeruginosa ATCCCGACTATGCCGGCAAGCTGGGCGTCAACGTCGACGACCTGCTGGTC Escherichia.coliO157_H7 ------CGCACGTAAACTGGGCGTCGATATCGACAACCTGCTGTGC Escherichia.coli ACCCAATCTACGCACGTAAACTGGGCGTCGATATCGATAACCTGCTGTGC Shigella.dysenteriae ACCCAATCTATGCACGTAAACTGGGCGTCGATATCGACAACCTGCTGTGC Shigella.flexneri ACCCAATCTACGCACGTAAACTGGGCGTCGATATCGATAACCTGCTGTGC Klebsiella.pneumoniae ATCCGGTCTATGCACGCAAACTGGGCGTCGATATCGACAACCTGCTGTGT Citrobacter.freundii ACCCGGTCTATGCCCGTAAGCTTGGCGTTGATATCGATAACCTGCTGTGT Hafnia.alvei ACCCGATTTACGCTAAGAAACTTGGCGTTGATATCGACAACCTGCTGTGT Erwinia.americana ACCCGATTTACGCTAAGAAACTTGGCGTTGATATCGACAACCTGCTGTGT Erwinia.mallotivora ATCCGGTTTACGCTAAAAAGCTTGGCGTGGATATTGATAACCTGCTGTGT Erwinia.amylovora ACCCGGTTTATGCCAAAAAACTGGGCGTGGACATCGATAATTTACTGTGC Erwinia.pyrifoliae ATCCGGTGTATGCCAAAAAACTGGGCGTGGACATTGATAATTTACTTTGC

90 Proteus.vulgaris ACCCGATTTATGCGAAAAAACTTGGCGTAGATATTGATAACCTGCTGTGT Pec.car.sub.wasabiae ACCCGATTTATGCGAAAAAACTTGGCGTAGATATTGATAACCTGCTGTGT Pec.car.sub.atrosepticum ACCCCATTTATGCGAAAAAACTTGGTGTAGATATTGATAATCTGCTGTGT Pec.car.sub.carotovorum ACCCGATTTATGCGAAAAAGCTTGGCGTAGATATCGATAACCTGCTGTGT Pec.car.sub.odoriferum ACCCGATTTATGCGAAAAAACTTGGCGTAGATATCGATAATCTGCTGTGT Pec.car.sub.betavasculorum ATCCAATTTATGCGAAAAAGCTTGGCGTAGATATTGATAATCTGCTGTGT Yersinia.enterocolitica ACCCTATTTACGCTAAAAAACTAGGCGTAGATATTGATAACCTGCTGTGT Pec.carotovorum ACCCTATCTATGCTCAAAAACTAGGCGTAGATATTGATAACCTGCTCTGT Brenneria.salicis ACCCGATTTACGCCAAAAAGCTTGGCGTGGATATCGATAACCTGCTGTGT Brenneria.alni ATCCGATTTATGCCAAAAAACTTGGTGTCGATATTGATAATTTACTGTGT Erwinia.chrysanthemi ATCCTATCTACGCCAAGAAACTGGGCGTTGATATCGATAATCTGCTGTGT LS207 ATCCGGTTTACGCCAAAAAGCTTGGCGTCGACATCGACAATCTGCTTTGT LS350 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS390 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS280 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS238 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS179 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS129 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS237 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS203 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS137 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS99 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS217 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS359 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS227 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS134 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS204 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS360 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS135 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS147 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS150 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS365 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS142 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS225 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS355 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS276 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS358 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS98 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS136 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS141 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS139 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS283 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS236 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS306 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS86 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS218 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS230 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS292 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS245 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS215 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS205 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS381 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS143 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS251 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS268 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS262 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS321 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS174 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS263 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS171 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS249 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS255 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS264 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT

91 LS267 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS248 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS334 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS246 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS266 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS351 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS149 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS148 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS277 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS152 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS356 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS366 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS202 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS197 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS132 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS239 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS138 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS167 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS353 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS265 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS243 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS367 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS349 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS302 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS278 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS354 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS247 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS399 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS279 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS226 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT LS332 ATCCGGTATACGCCAAGAAACTGGGCGTCGACATTGATAACCTGCTGTGT

[351-400] Pec.cypripedii TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAAATTTGTGATGCACTGGC Pantoea.ananatis.INE14 TCACAGCCGGATACCGGTGAGCAGGCCCTGGAAATTTGTGATGCGCTGGC Pantoea.ananatis.19321 TCACAGCCGGATACCGGTGAGCAGGCCCTGGAAATTTGTGATGCGCTGGC Pantoea.stewartii TCACAGCCCGATACGGGTGAACAGGCGCTGGAAATCTGTGACGCGCTGGC Pantoea.agglomerans TCTCAGCCCGACACCGGTGAGCAGGCGCTGGAAATCTGTGATGCGCTGGC Serratia.marcescens TCCCAGCCGGACACCGGCGAGCAGGCGCTGGAAATCTGTGATGCGCTGAC Pseu.aeruginosa TCCCAGCCGGACACCGGCGAGCAGGCCCTGGAAATCACCGACATGCTGGT Escherichia.coliO157_H7 TCCCAGCCGGACACCGGCGAGCAGGCACTGGAAATCTGTGACGCCCTGGC Escherichia.coli TCCCAGCCGGACACCGGCGAGCAGGCACTGGAAATCTGTGACGCCCTGGC Shigella.dysenteriae TCCCAGCCGGACACTGGCGAGCAGGCACTGGAAATCTGTGACGCCCTGGC Shigella.flexneri TCCCAGCCGGATACCGGCGAGCAGGCACTGGAAATCTGTGACGCCCTGGC Klebsiella.pneumoniae TCTCAGCCGGACACCGGCGAGCAGGCGCTGGAGATCTGTGACGCGCTGGC Citrobacter.freundii TCTCAGCCGGATACCGGTGAACAAGCGCTGGAAATCTGTGATGCACTGGC Hafnia.alvei TCACAGCCAGACACCGGTGAGCAAGCGTTGGAGATCTGTGATGCGCTGAC Erwinia.americana TCACAGCCAGACACCGGTGAGCAAGCGTTGGAGATCTGTGATGCGCTGAC Erwinia.mallotivora TCGCAGCCGGACACTGGTGAGCAGGCGCTGGAAATCTGTGATGCGTTGGC Erwinia.amylovora TCTCAGCCAGATACCGGCGAGCAAGCGCTGGAGATCTGTGATGCGCTGGC Erwinia.pyrifoliae TCTCAGCCAGATACCGGTGAGCAAGCGTTGGAGATCTGTGATGCGCTGGC Proteus.vulgaris TCTCAGCCGGATACCGGTGAGCAAGCACTGGAGATCTGTGATGCACTCAC Pec.car.sub.wasabiae TCTCAGCCGGATACCGGTGAACAAGCACTGGAGATCTGTGATGCACTCAC Pec.car.sub.atrosepticum TCGCAGCCGGATACCGGCGAGCAGGCGTTGGAGATTTGTGATGCACTAAC Pec.car.sub.carotovorum TCTCAGCCGGATACCGGCGAGCAAGCGTTGGAGATCTGTGATGCACTAAC Pec.car.sub.odoriferum TCTCAGCCGGATACCGGCGAGCAAGCGCTGGAGATCTGTGATGCATTAAC Pec.car.sub.betavasculorum TCTCAGCCAGATACAGGTGAACAAGCACTGGAGATCTGTGATGCGTTAAC Yersinia.enterocolitica TCTCAGCCAGATACCGGCGAGCAAGCACTGGAAATCTGTGATGCGCTGAC Pec.carotovorum TCTCAGCCTGATACTGGTGAACAAGCCCTAGAAATTTGTGATGCATTATC Brenneria.salicis TCTCAGCCGGATACCGGTGAGCAGGCATTGGAAATTTGTGACGCGCTGAC Brenneria.alni TCCCAGCCGGATACCGGTGAGCAGGCACTGGAAATCTGTGATGCCCTGAC Erwinia.chrysanthemi TCTCAGCCTGATACCGGCGAACAGGCGTTGGAAATTTGTGATGCGCTGGC LS207 TCGCAGCCGGACACCGGTGAGCAGGCACTGGAAATCTGTGACGCGCTGGC

92 LS350 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS390 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS280 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS238 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS179 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS129 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS237 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS203 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS137 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS99 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS217 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS359 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS227 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS134 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS204 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS360 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS135 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS147 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS150 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS365 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS142 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS225 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS355 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS276 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS358 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS98 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS136 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS141 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS139 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS283 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS236 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS306 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS86 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS218 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS230 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS292 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS245 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS215 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS205 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS381 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS143 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS251 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS268 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS262 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS321 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS174 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS263 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS171 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS249 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS255 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS264 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS267 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS248 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS334 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS246 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS266 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS351 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS149 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS148 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS277 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS152 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS356 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS366 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC

93 LS202 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS197 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS132 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS239 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS138 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS167 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS353 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS265 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS243 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS367 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS349 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS302 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS278 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS354 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS247 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS399 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS279 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS226 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC LS332 TCGCAGCCGGATACCGGTGAGCAGGCGCTGGAGATCTGTGATGCGCTGGC

[401-450] Pec.cypripedii GCGTTCCGGTGCTGTTGACGTCATCATCGTTGACTCCGTCGCCGCACTGA Pantoea.ananatis.INE14 CCGCTCTGGTGCCGTTGACGTCATTATCGTTGACTCCGTAGCCGCGCTGA Pantoea.ananatis.19321 CCGCTCTGGTGCCGTTGACGTCATTATCGTTGACTCCGTAGCTGCACTGA Pantoea.stewartii GCGCTCCGGTGCCGTTGACGTGATTATCGTCGACTCCGTTGCTGCCCTGA Pantoea.agglomerans GCGTTCTGGTGCTGTTGATGTCATCATCGTCGACTCCGTTGCGGCGCTGA Serratia.marcescens CCGCTCCGGCGCGGTTGACGTCATCATCGTCGACTCCGTGGCGGCGCTGA Pseu.aeruginosa GCGCTCCAACGCGGTCGACGTGATCATCGTCGACTCCGTGGCCGCGCTGG Escherichia.coliO157_H7 GCGTTCTGGCGCAGTAGACGTTATCGTCGTTGACTCCGTGGCGGCACTGA Escherichia.coli GCGTTCTGGCGCAGTAGACGTTATCGTCGTTGACTCCGTGGCGGCACTGA Shigella.dysenteriae GCGTTCTGGCGCAGTAGACGTTATCGTCGTTGACTCCGTGGCGGCACTGA Shigella.flexneri GCGTTCTGGCGCAGTAGACGTTATCGTCGTTGACTCCGTGGCGGCACTGA Klebsiella.pneumoniae GCGCTCTGGTGCGGTTGACGTTATCGTCGTCGACTCCGTCGCGGCGTTGA Citrobacter.freundii GCGCTCCGGTGCGGTTGACGTTATCGTTGTCGACTCCGTTGCCGCATTGA Hafnia.alvei TCGCTCTGGCGCAGTTGACGTGATCATCGTCGACTCCGTAGCAGCACTGA Erwinia.americana TCGCTCTGGCGCAGTTGACGTGATCATCGTCGACTCCGTAGCAGCACTGA Erwinia.mallotivora CCGCTCCGGAGCGGTGGACGTGATTATTGTCGACTCCGTGGCTGCTCTGA Erwinia.amylovora GCGTTCTGGCGCTGTTGATGTGATCATTGTTGACTCCGTTGCGGCGTTGA Erwinia.pyrifoliae GCGTTCAGGGGCAGTAGATGTCATCATCGTTGACTCCGTCGCGGCGCTGA Proteus.vulgaris GCGCTCTGGCGCTGTTGACGTTATCATTGTCGACTCTGTTGCAGCCTTGA Pec.car.sub.wasabiae GCGCTCTGGCGCTGTTGACGTTATCATTGTCGACTCTGTTGCAGCCTTGA Pec.car.sub.atrosepticum GCGCTCTGGTGCTGTTGACGTTATTATCGTCGACTCCGTTGCAGCGCTGA Pec.car.sub.carotovorum GCGCTCCGGTGCTGTTGACGTTATCATCGTTGACTCCGTTGCGGCACTGA Pec.car.sub.odoriferum GCGCTCTGGCGCTGTTGACGTTATCATCGTCGATTCCGTTGCAGCACTGA Pec.car.sub.betavasculorum ACGCTCTGGTGCGGTTGACGTTATCATCGTTGACTCCGTTGCAGCCCTGA Yersinia.enterocolitica TCGTTCGGGCGCAGTTGATGTCATCATCGTTGACTCCGTCGCTGCATTAA Pec.carotovorum TCGTTCTGGTGCAGTTGATGTTATCGTTGTTGACTCCGTTGCAGCTTTAA Brenneria.salicis GCGTTCTGGCGCGGTAGATGTCATTATTGTCGACTCCGTGGCCGCATTGA Brenneria.alni GCGCTCTGGCGCGGTGGATGTCATCATCGTTGACTCCGTGGCGGCGCTGA Erwinia.chrysanthemi TCGTTCCGGTGCAGTGGATGTGATTATCGTCGACTCTGTCGCTGCGTTGA LS207 GCGTTCAGGCGCAGTGGACGTTATTATCGTCGACTCCGTCGCGGCGCTGA LS350 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS390 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS280 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS238 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS179 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS129 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS237 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS203 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS137 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS99 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS217 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS359 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA

94 LS227 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS134 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS204 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS360 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS135 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS147 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS150 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS365 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS142 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS225 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS355 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS276 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS358 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS98 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS136 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS141 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS139 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS283 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS236 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS306 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS86 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS218 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS230 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS292 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS245 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS215 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS205 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS381 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS143 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS251 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS268 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS262 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS321 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS174 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS263 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS171 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS249 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS255 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS264 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS267 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS248 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS334 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS246 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS266 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS351 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS149 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS148 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS277 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS152 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS356 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS366 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS202 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS197 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS132 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS239 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS138 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS167 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS353 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS265 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS243 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS367 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS349 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS302 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA

95 LS278 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS354 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS247 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS399 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS279 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS226 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA LS332 CCGTTCGGGTGCGGTAGACGTGATCATCGTTGACTCCGTGGCGGCGCTGA

[451-500] Pec.cypripedii CGCCGAAAGCGGAAATTGAAGGCGAGATCGGTGATTCCCACATGGGGCTG Pantoea.ananatis.INE14 CGCCAAAAGCCGAAATCGAAGGTGAAATCGGTGACTCACATATGGGCCTG Pantoea.ananatis.19321 CGCCAAAAGCCGAAATCGAAGGTGAAATCGGTGACTCACATATGGGCCTG Pantoea.stewartii CACCAAAAGCCGAAATTGAAGGCGAAATCGGTGACTCACATATGGGCCTG Pantoea.agglomerans CGCCGAAAGCGGAAATTGAAGGTGAAATCGGTGACTCACATATGGGCCTC Serratia.marcescens CGCCGAAGGCGGAAATCGAAGGTGAAATCGGCGATTCGCACATGGGGTTG Pseu.aeruginosa TACCCAAGGCCGAGATCGAAGGCGAGATGGGCGACGCCCACGTCGGCCTG Escherichia.coliO157_H7 CGCCGAAAGCGGAAATCGAAGGCGAAATCGGCGACTCTCACATGGGCCTT Escherichia.coli CGCCGAAAGCGGAAATCGAAGGCGAAATCGGCGACTCTCACATGGGCCTT Shigella.dysenteriae CGCCGAAAGCGGAAATCGAAGGCGAAATCGGCGACTCTCACATGGGCCTT Shigella.flexneri CGCCGAAAGCGGAAATCGAAGGCGAAATCGGCGACTCTCACATGGGCCTT Klebsiella.pneumoniae CGCCGAAAGCGGAAATCGAAGGCGAAATCGGCGACTCTCACATGGGCCTT Citrobacter.freundii CGCCGAAGGCAGAAATCGAAGGCGAGATTGGCGACTCTCACATGGGCCTT Hafnia.alvei CGCCGAAAGCTGAAATCGAAGGCGAAATCGGTGACTCTCACATGGGCCTT Erwinia.americana CGCCGAAAGCTGAAATCGAAGGCGAAATCGGTGACTCTCACATGGGCCTT Erwinia.mallotivora CGCCAAAAGCGGAAATCGAAGGGGAGATCGGTGACTCGCATATGGGCCTT Erwinia.amylovora CGCCAAAAGCAGAAATCGAGGGGGAAATCGGCGACTCTCACATGGGCCTT Erwinia.pyrifoliae CGCCAAAAGCAGAAATCGAAGGGGAAATCGGCGACTCTCACATGGGCCTT Proteus.vulgaris CACCAAAAGCTGAAATTGAAGGCGAAATCGGTGACTCTCACATGGGCCTT Pec.car.sub.wasabiae CACCAAAAGCTGAAATTGAAGGCGAAATCGGTGACTCTCACATGGGCCTT Pec.car.sub.atrosepticum CGCCAAAAGCTGAAATTGAAGGCGAAATTGGTGACTCTCACATGGGGCTG Pec.car.sub.carotovorum CGCCGAAAGCCGAAATTGAAGGTGAAATCGGCGACTCCCACATGGGGCTG Pec.car.sub.odoriferum CGCCGAAAGCCGAAATTGAAGGCGAAATCGGCGACTCCCACATGGGGCTG Pec.car.sub.betavasculorum CGCCGAAAGCCGAAATTGAAGGCGAGATCGGCGACTCCCACATGGGACTG Yersinia.enterocolitica CACCAAAAGCTGAAATTGAAGGTGAAATTGGTGACTCTCACATGGGCCTG Pec.carotovorum CACCAAAAGCAGAAATTGAAGGTGAGATTGGTGATTCACACGTTGGTTTA Brenneria.salicis CGCCTAAAGCGGAAATCGAAGGTGAAATCGGTGACTCACACATGGGCCTT Brenneria.alni CGCCTAAAGCCGAAATCGAAGGCGAGATCGGTGATTCACATATGGGACTG Erwinia.chrysanthemi CACCAAAAGCAGAGATCGAAGGGGAGATCGGTGATTCACACATGGGGCTG LS207 CGCCGAAAGCAGAAATCGAAGGCGAAATCGGTGACTCTCACATGGGCCTC LS350 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS390 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS280 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS238 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS179 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS129 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS237 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS203 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS137 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS99 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS217 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS359 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS227 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS134 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS204 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS360 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS135 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS147 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS150 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS365 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS142 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS225 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS355 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS276 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG

96 LS358 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS98 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS136 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS141 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS139 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS283 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS236 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS306 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS86 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS218 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS230 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS292 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS245 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS215 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS205 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS381 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS143 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS251 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS268 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS262 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS321 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS174 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS263 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS171 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS249 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS255 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS264 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS267 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS248 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS334 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS246 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS266 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS351 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS149 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS148 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS277 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS152 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS356 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS366 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS202 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS197 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS132 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS239 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS138 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS167 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS353 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS265 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS243 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS367 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS349 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS302 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS278 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS354 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS247 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS399 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS279 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS226 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG LS332 CGCCGAAAGCGGAAATCGAAGGTGAAATCGGTGATTCGCACATGGGTCTG

[501-550] Pec.cypripedii GCCGCTCGTATGATGAGCCAGGCGATGCGTAAGTTGGCCGGTAACCTGAA Pantoea.ananatis.INE14 GCGGCACGTATGATGAGCCAGGCAATGCGTAAGCTGGCGGGTAACCTGAA Pantoea.ananatis.19321 GCGGCACGTATGATGAGCCAGGCAATGCGTAAGCTGGCGGGTAACCTGAA

97 Pantoea.stewartii GCGGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCCGGTAACCTGAA Pantoea.agglomerans GCGGCACGTATGATGAGCCAGGCGATGCGTAAACTGGCTGGTAACCTGAA Serratia.marcescens GCGGCGCGCATGATGAGCCAGGCGATGCGTAAGCTGGCCGGCAACCTGAA Pseu.aeruginosa CAGGCACGCCTGATGTCCCAGGCGCTGCGCAAGATCACCGGCAATATCAA Escherichia.coliO157_H7 GCGGCACGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTGAA Escherichia.coli GCGGCACGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTGAA Shigella.dysenteriae GCGGCACGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTGAA Shigella.flexneri GCGGCACGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTGAA Klebsiella.pneumoniae GCGGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTGAA Citrobacter.freundii GCGGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCCGGTAACCTGAA Hafnia.alvei GCGGCACGTATGATGAGCCAGGCGATGCGTAAACTCGCGGGTAACCTGAA Erwinia.americana GCGGCACGTATGATGAGCCAGGCGATGCGTAAACTCGCGGGTAACCTGAA Erwinia.mallotivora GCGGCACGTATGATGAGCCAGGCAATGCGTAAGCTGGCAGGTAACCTGAA Erwinia.amylovora GCGGCGCGTATGATGAGCCAGGCAATGCGTAAGCTGGCCGGTAACCTGAA Erwinia.pyrifoliae GCGGCGCGTATGATGAGCCAGGCAATGCGTAAGCTGGCCGGTAACCTGAA Proteus.vulgaris GCGGCACGTATGATGAGCCAGGCTATGCGTAAACTGGCAGGTAACCTGAA Pec.car.sub.wasabiae GCGGCACGTATGATGAGCCAGGCTATGCGCAAATTGGCGGGTAACCTGAA Pec.car.sub.atrosepticum GCTGCACGTATGATGAGCCAGGCTATGCGTAAATTGGCGGGTAACCTGAA Pec.car.sub.carotovorum GCTGCTCGTATGATGAGCCAGGCTATGCGTAAACTGGCGGGTAACCTGAA Pec.car.sub.odoriferum GCTGCACGTATGATGAGCCAGGCTATGCGTAAACTGGCGGGTAACCTGAA Pec.car.sub.betavasculorum GCTGCACGTATGATGAGCCAGGCTATGCGTAAACTGGCGGGTAACCTTAA Yersinia.enterocolitica GCAGCTCGTATGATGAGCCAGGCCATGCGTAAACTGGCGGGTAACCTGAA Pec.carotovorum GCTGCTCGTATGATGAGTCAAGCTATGCGTAAGTTAGCGGGTAACTTGAA Brenneria.salicis GCCGCTCGAATGATGAGTCAGGCAATGCGTAAACTCGCGGGTAACCTGAA Brenneria.alni GCGGCTCGCATGATGAGTCAGGCGATGCGTAAATTGGCGGGCAATCTGAA Erwinia.chrysanthemi GCTGCGCGCATGATGAGCCAGGCGATGCGTAAATTGGCCGGTAACCTGAA LS207 GCGGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCAGGTAACCTGAA LS350 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS390 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS280 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS238 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS179 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS129 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS237 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS203 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS137 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS99 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS217 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS359 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS227 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS134 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS204 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS360 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS135 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS147 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS150 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS365 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS142 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS225 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS355 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS276 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS358 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS98 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS136 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS141 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS139 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS283 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS236 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS306 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS86 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS218 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS230 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS292 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA

98 LS245 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS215 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS205 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS381 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS143 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS251 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS268 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS262 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS321 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS174 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS263 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS171 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS249 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS255 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS264 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS267 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS248 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS334 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS246 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS266 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS351 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS149 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS148 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS277 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS152 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS356 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS366 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS202 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS197 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS132 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS239 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS138 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS167 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS353 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS265 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS243 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS367 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS349 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS302 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS278 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS354 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS247 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS399 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS279 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS226 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA LS332 GCTGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCGGGTAACCTTAA

[551-600] Pec.cypripedii GCAATCCAATACGCTGCTGATTTTCATCAACCAGATTCGTATGAAGATTG Pantoea.ananatis.INE14 GCAGTCTAATACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG Pantoea.ananatis.19321 GCAGTCTAATACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG Pantoea.stewartii ACAGTCGAATACGCTGCTGATCTTCATCAACCAGATTCGTATGAAAATTG Pantoea.agglomerans GCAGTCCAATACGCTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Serratia.marcescens AAATGCCAATACCCTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Pseu.aeruginosa GAACGCCAACTGCCTGGTCATCTTCATCAACCAGATCCGCATGAAGATCG Escherichia.coliO157_H7 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Escherichia.coli GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Shigella.dysenteriae GCAGTCCAATACGCTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Shigella.flexneri GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Klebsiella.pneumoniae GCAGTCCAACACGCTGCTGATCTTTATCAACCAGATCCGTATGAAAATTG Citrobacter.freundii GCAGTCCAACACGCTGCTGATTTTCATCAACCAGATCCGTATGAAGATTG Hafnia.alvei AAACGCCAACACCTTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Erwinia.americana AAACGCCAACACCTTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG

99 Erwinia.mallotivora GCAGTCGAATACCCTGCTGATCTTTATTAACCAGATCCGTATGAAGATTG Erwinia.amylovora AAACTCCGGGACGCTGCTGATCTTTATCAACCAGATCCGTATGAAAATTG Erwinia.pyrifoliae AAACTCCGGGACTTTGCTGATCTTTATCAACCAGATCCGTATGAAAATTG Proteus.vulgaris ACAAGCCAATACGCTGCTAATCTTCATTAACCAGATCCGTATGAAAATTG Pec.car.sub.wasabiae GCAAGCCAATACGCTGCTGATCTTCATTAACCAGATCCGTATGAAAATTG Pec.car.sub.atrosepticum GCAAGCTAATACGCTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Pec.car.sub.carotovorum GCAAGCCAATACGCTGCTGATCTTCATTAACCAGATTCGTATGAAAATCG Pec.car.sub.odoriferum ACAAGCCAATACGCTGCTGATCTTCATTAACCAGATTCGTATGAAAATTG Pec.car.sub.betavasculorum GCAGGCCAATACGCTGCTGATCTTCATCAACCAGATCCGTATGAAAATTG Yersinia.enterocolitica AAATGCTAATACCCTGTTAATCTTCATCAACCAGATCCGTATGAAAATCG Pec.carotovorum AAACTCCAACACTCTGCTTATTTTCATCAACCAAATTCGAATGAAAATCG Brenneria.salicis ACAAGCTAATACGCTATTGATTTTCATTAACCAGATTCGCATGAAAATTG Brenneria.alni ACAGGCTAATACGTTGCTGATTTTCATTAACCAGATTCGTATGAAAATTG Erwinia.chrysanthemi GCAATCTAATACTCTGTTGATTTTCATCAACCAGATCCGCATGAAAATTG LS207 GCAGTCCAACACGCTGCTGATCTTTATCAACCAGATCCGTATGAAAATCG LS350 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS390 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS280 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS238 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS179 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS129 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS237 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS203 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS137 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS99 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS217 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS359 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS227 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS134 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS204 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS360 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS135 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS147 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS150 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS365 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS142 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS225 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS355 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS276 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS358 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS98 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS136 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS141 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS139 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS283 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS236 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS306 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS86 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS218 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS230 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS292 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS245 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS215 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS205 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS381 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS143 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS251 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS268 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS262 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS321 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS174 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS263 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS171 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG

100 LS249 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS255 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS264 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS267 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS248 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS334 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS246 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS266 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS351 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS149 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS148 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS277 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS152 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS356 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS366 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS202 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS197 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS132 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS239 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS138 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS167 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS353 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS265 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS243 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS367 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS349 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS302 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS278 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS354 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS247 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS399 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS279 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS226 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG LS332 GCAGTCCAACACGCTGCTGATCTTCATCAACCAGATTCGTATGAAGATTG

[601-650] Pec.cypripedii GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCACTGAAA Pantoea.ananatis.INE14 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAATGCGCTGAAG Pantoea.ananatis.19321 GTGTGATGTTCGGTAACCCGGAAACCACTACCGGTGGTAACGCGCTGAAG Pantoea.stewartii GTGTGATGTTCGGTAACCCGGAAACCACTACCGGCGGTAACGCACTGAAG Pantoea.agglomerans GTGTGATGTTTGGTAACCCGGAAACCACTACCGGTGGTAACGCGCTGAAG Serratia.marcescens GTGTGATGTTCGGCAACCCGGAAACCACGACCGGCGGTAACGCCCTGAAG Pseu.aeruginosa GCGTCATGTTCGGCAACCCGGAAACCACCACCGGCGGTAACGCACTGAAG Escherichia.coliO157_H7 GTGTGATGTTCGGTAACCCGGAAACCACTACCGGTGGTAACGCGCTGAAA Escherichia.coli GTGTGATGTTCGGTAACCCGGAAACCACTACCGGTGGTAACGCGCTGAAA Shigella.dysenteriae GTGTGATGTTCGGTAACCCGGAAACCACTACCGGTGGTAACGCGCTGAAA Shigella.flexneri GTGTGATGTTCGGTAACCCGGAAACCACTACCGGTGGTAACGCGCTGAAA Klebsiella.pneumoniae GCGTGATGTTCGGTAACCCGGAAACCACTACCGGTGGTAACGCGCTGAAG Citrobacter.freundii GCGTTATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA Hafnia.alvei GTGTGATGTTCGGTAACCCAGAAACCACTACCGGTGGTAACGCGCTGAAG Erwinia.americana GTGTGATGTTCGGTAACCCAGAAACCACTACCGGTGGTAACGCGCTGAAG Erwinia.mallotivora GTGTTATGTTCGGTAATCCGGAAACCACCACCGGTGGTAACGCTCTGAAG Erwinia.amylovora GTGTGATGTTCGGTAACCCGGAAACCACCACCGGCGGTAATGCGCTGAAG Erwinia.pyrifoliae GTGTGATGTTCGGTAACCCGGAAACCACCACCGGCGGTAATGCGCTGAAG Proteus.vulgaris GTGTGATGTTTGGTAACCCTGAAACCACTACCGGTGGTAACGCACTGAAA Pec.car.sub.wasabiae GTGTGATGTTTGGTAACCCTGAAACCACTACCGGTGGTAACGCACTGAAA Pec.car.sub.atrosepticum GTGTGATGTTTGGTAACCCTGAAACCACTACCGGCGGTAACGCACTGAAG Pec.car.sub.carotovorum GTGTGATGTTCGGTAACCCTGAAACGACTACCGGTGGTAACGCACTGAAG Pec.car.sub.odoriferum GTGTGATGTTTGGTAACCCTGAAACCACTACTGGTGGTAACGCTCTGAAG Pec.car.sub.betavasculorum GTGTGATGTTTGGTAACCCTGAAACCACTACTGGTGGTAACGCCCTGAAA Yersinia.enterocolitica GCGTTATGTTTGGTAACCCTGAAACTACGACGGGTGGTAATGCCCTGAAA Pec.carotovorum GTGTTATGTTTGGTAATCCAGAAACCACAACAGGTGGTAATGCACTTAAA Brenneria.salicis GTGTTATGTTCGGCAATCCGGAAACCACCACCGGCGGTAATGCGTTGAAG

101 Brenneria.alni GTGTGATGTTCGGTAACCCTGAAACGACGACGGGCGGTAATGCACTGAAA Erwinia.chrysanthemi GCGTGATGTTCGGTAATCCGGAAACCACAACCGGTGGTAATGCCCTGAAA LS207 GCGTGATGTTCGGTAACCCGGAAACTACCACCGGTGGTAACGCGCTGAAG LS350 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS390 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS280 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS238 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS179 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS129 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS237 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS203 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS137 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS99 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS217 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS359 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS227 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS134 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS204 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS360 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS135 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS147 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS150 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS365 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS142 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS225 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS355 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS276 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS358 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS98 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS136 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS141 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS139 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS283 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS236 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS306 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS86 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS218 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS230 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS292 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS245 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS215 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS205 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS381 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS143 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS251 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS268 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS262 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS321 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS174 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS263 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS171 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS249 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS255 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS264 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS267 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS248 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS334 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS246 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS266 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS351 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS149 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS148 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS277 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA

102 LS152 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS356 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS366 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS202 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS197 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS132 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS239 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS138 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS167 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS353 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS265 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS243 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS367 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS349 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS302 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS278 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS354 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS247 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS399 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS279 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS226 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA LS332 GTGTGATGTTCGGTAACCCGGAAACCACCACCGGTGGTAACGCCCTGAAA

[651-700] Pec.cypripedii TTCTACGCTTCCGTACGTCTCGATATTCGCCGCATCGGTGCCATTAAAGA Pantoea.ananatis.INE14 TTCTACGCTTCTGTTCGCCTTGATATTCGCCGTATTGGTGCGATTAAAGA Pantoea.ananatis.19321 TTCTACGCTTCTGTTCGCCTTGATATTCGCCGTATCGGTGCCATTAAAGA Pantoea.stewartii TTCTACGCGTCAGTTCGCCTTGATATCCGCCGTATTGGCGCCATCAAAGA Pantoea.agglomerans TTCTATGCGTCTGTCCGTCTTGATATCCGTCGTATCGGTGCCATCAAAGA Serratia.marcescens TTCTACGCTTCGGTGCGTCTGGATATCCGTCGTATCGGCGCCATCAAAGA Pseu.aeruginosa TTCTACGCCTCGGTCCGCCTGGACATCCGTCGTACCGGCGCGGTGAAGGA Escherichia.coliO157_H7 TTCTACGCCTCTGTTCGTCTCGACATCCGTCGTATCGGCGCGGTGAAAGA Escherichia.coli TTCTACGCCTCTGTTCGTCTCGACATCCGTCGTATCGGCGCGGTGAAAGA Shigella.dysenteriae TTCTACGCCTCTGTTCGTCTCGACATCCGTCGTATCGGCGCGGTGAAAGA Shigella.flexneri TTCTACGCCTCTGTTCGTCTCGACATCCGTCGTATCGGCGCGGTGAAAGA Klebsiella.pneumoniae TTCTACGCCTCTGTGCGTCTGGACATTCGCCGCATCGGCGCGGTGAAAGA Citrobacter.freundii TTCTATGCGTCTGTTCGTCTGGATATCCGTCGTATTGGTGCGGTGAAAGA Hafnia.alvei TTCTACGCTTCTGTTCGTCTTGATATCCGTCGTATCGGCGCTATCAAAGA Erwinia.americana TTCTACGCTTCTGTTCGTCTTGATATCCGTCGTATCGGCGCTATCAAAGA Erwinia.mallotivora TTTTACGCTTCTGTTCGTCTGGATATCCGTCGTATTGGCGCGATAAAAGA Erwinia.amylovora TTTTACGCCTCTGTCCGTCTGGATATTCGCCGTATCGGCGCCATTAAAGA Erwinia.pyrifoliae TTTTACGCATCTGTCCGTCTGGATATTCGCCGTATCGGCGCCATTAAAGA Proteus.vulgaris TTTTATGCCTCTGTTCGTCTGGATATTCGTCGTACTGGCGCTATCAAGGA Pec.car.sub.wasabiae TTTTATGCCTCTGTTCGTCTGGATATCCGTCGTACTGGCGCTATCAAGGA Pec.car.sub.atrosepticum TTTTATGCCTCTGTTCGTTTGGATATTCGTCGTACTGGCGCTATCAAGGA Pec.car.sub.carotovorum TTTTACGCCTCTGTTCGTCTGGATATTCGTCGTACTGGCGCTATCAAGGA Pec.car.sub.odoriferum TTTTATGCCTCTGTTCGCCTGGATATTCGTCGTACTGGCGCTATCAAGGA Pec.car.sub.betavasculorum TTTTACGCCTCTGTTCGTCTGGATATTCGCCGTACCGGTGCAATTAAGGA Yersinia.enterocolitica TTTTATGCATCCGTACGTTTGGATATCCGCCGTATTGGTGCAGTAAAAGA Pec.carotovorum TTCTACGCATCTGTTCGTTTAGATATTCGTCGTATCGGCTCTGTTAAAAA Brenneria.salicis TTTTATGCTTCAGTCCGTCTGGATATTCGCCGTATTGGTTCGATCAAAGA Brenneria.alni TTTTATGCTTCTGTTCGTCTGGACATTCGCCGTATAGGTTCTATCAAAGA Erwinia.chrysanthemi TTCTACGCTTCCGTCCGTCTCGATATTCGTCGTATCGGTTCAATCAAGGA LS207 TTCTACGCCTCTGTCCGTCTTGATATTCGTCGTATCGGCGCAATCAAAGA LS350 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS390 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS280 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS238 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS179 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS129 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS237 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS203 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS137 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA

103 LS99 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS217 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS359 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS227 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS134 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS204 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS360 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS135 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS147 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS150 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS365 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS142 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS225 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS355 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS276 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS358 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS98 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS136 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS141 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS139 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS283 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS236 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS306 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS86 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS218 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS230 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS292 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS245 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS215 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS205 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS381 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS143 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS251 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS268 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS262 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS321 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS174 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS263 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS171 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS249 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS255 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS264 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS267 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS248 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS334 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS246 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS266 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS351 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS149 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS148 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS277 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCG------LS152 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS356 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS366 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS202 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS197 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS132 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS239 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS138 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS167 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS353 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS265 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS243 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA

104 LS367 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS349 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS302 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS278 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS354 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS247 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS399 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS279 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS226 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA LS332 TTCTACGCCTCCGTGCGTCTGGATATCCGCCGTATCGGCGCCATTAAAGA

[701-750] Pec.cypripedii GGGTGACGAAGTGGTGGGCAGCGAAACCCGCGTGAAAGTGGTGAAGAACA Pantoea.ananatis.INE14 GGGCGACAACGTGGTGGGTAGTGAAACGCGTGTTAAAGTCGTTAAAAACA Pantoea.ananatis.19321 AGGTGACAACGTGGTGGGTAGTGAAACGCGCGTTAAAGTCGTAAAAAACA Pantoea.stewartii GGGTGATAACGTCGTCGGTAGTGAAACCCGCGTTAAAGTGGTTAAGAACA Pantoea.agglomerans GGGCGATAACGTGGTGGGTAGTGAGACCCGCGTTAAGGTAGTGAAAAACA Serratia.marcescens ACGCGACAAAGTGGTGGGCAGCGAAACCCGCGTGAAAGTGGTGAAGAACA Pseu.aeruginosa AGGCGACGAGGTGGTGGGTAGCGAAACCCGCGTCAAGGTGGTGAAGAACA Escherichia.coliO157_H7 GGGCGAAAACGTGGTGGGTAGCGAAACCCGCGTGAAAGTGGTGAAGAACA Escherichia.coli GGGCGAAAACGTGGTGGGTAGCGAAACCCGCGTGAAAGTGGTGAAGAACA Shigella.dysenteriae GGGCGAAAACGTGGTGGGTAGCGAAACCCGTGTGAAAGTGGTGAAGAACA Shigella.flexneri GGGCGAAAACGTGGTGGGTAGCGAAACCCGCGTGAAAGTGGTGAAGAACA Klebsiella.pneumoniae GGGCGACAACGTCGTCGGCAGCGAAACCCGCGTCAAAGTGGTGAAAAACA Citrobacter.freundii AGGTGACAACGTGGTTGGCAGCGAAACCCGCGTTAAGGTTGTGAAAAATA Hafnia.alvei AGGCGACGTGGTGGTAGGTAGCGAAACTCGCGTTAAAGTGGTGAAGAACA Erwinia.americana AGGCGACGTGGTGGTAGGTAGCGAAACTCGCGTTAAAGTGGTGAAGAACA Erwinia.mallotivora AGGTGACGAAGTCGTCGGTAGCGAAACGCGGGTTAAAGTGGTCAAAAACA Erwinia.amylovora GGGCGACGAAGTGGTGGGCAGCGAAACTCGCGTTAAAGTGGTGAAAAACA Erwinia.pyrifoliae GGGCGACGAAGTGGTGGGCAGCGAAACCCGCGTTAAAGTGGTAAAAAACA Proteus.vulgaris CGGTGAAGAAGTTGTCGGTAGCGAAACTCGCGTTAAAGTCGTGAAGAATA Pec.car.sub.wasabiae CGGTGAAGAAGTTGTCGGTAGCGAAACTCGCGTTAAAGTCGTGAAGAATA Pec.car.sub.atrosepticum AGGCGA------Pec.car.sub.carotovorum AGGCGAAGAAGTGGTCGGCAGCGAAACCCGCGTGAAAGTCGTTAAGAATA Pec.car.sub.odoriferum AGGTGAAGAAGTTGTCGGCAGCGAAACCCGCGTGAAAGTCGTGAAGAATA Pec.car.sub.betavasculorum AGGCGAAGAAGTCGTTGGTAGCGAAACCCGTGTTAAAGTCGTGAAGAATA Yersinia.enterocolitica AGGTGATGTGGTTGTTGGTAGCGAGACACGCGTTAAAGTGGTGAAAAACA Pec.carotovorum CGGTGATGAAGTTGTTGGTAGTGAAACACGCGTTAAAGTGGTGAAAAACA Brenneria.salicis GGGCGATGAAGTGGTGGGTAGTGAAACCCGTGTCAAAGTGGTGAAAAACA Brenneria.alni GGGTGAAGAAGTCGTCGGCAGCGAAACCCGCGTAAAAGTAGTGAAAAATA Erwinia.chrysanthemi AGGCGAAGAAGTCGTCGGGAGTGAAACCCGGGTTAAGGTTGTGAAGAACA LS207 GGGCGACGAAGTCGTCGGCAGCGAGACCCGCGTAAAAGTGGTGAAAAACA LS350 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS390 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS280 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS238 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS179 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS129 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS237 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS203 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS137 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS99 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS217 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS359 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS227 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS134 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS204 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS360 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS135 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS147 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS150 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS365 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS142 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA

105 LS225 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS355 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS276 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS358 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS98 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS136 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS141 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS139 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS283 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS236 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS306 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS86 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS218 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS230 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS292 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS245 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS215 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS205 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS381 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS143 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS251 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS268 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS262 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS321 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS174 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS263 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS171 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS249 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS255 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS264 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS267 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS248 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS334 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS246 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS266 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS351 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS149 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS148 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS277 ------LS152 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS356 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS366 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS202 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS197 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS132 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS239 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS138 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS167 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS353 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS265 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS243 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS367 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS349 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS302 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS278 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS354 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS247 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS399 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS279 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS226 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA LS332 GGGCGACGAAGTGGTGGGGAGCGAAACCCGCGTTAAAGTGGTGAAGAACA

[751-800]

106 Pec.cypripedii AAATTGCTGCACCGTTCAAACAGGCTGAATTCCAGATTATGTACGGCGAA Pantoea.ananatis.INE14 AAATTGCGGCGCCATTTAAGCAGGCTGAGTTCCAAATTATGTATGGGAAN Pantoea.ananatis.19321 AAATTGCCGCGCCATTTAAACAGGCTGAGTTCCAATTTTTTTTTGGAAAN Pantoea.stewartii AAATTGCGGCGCCCTTTAAGCAGGCTGAGTTCCAGATCATGTATGGTGAA Pantoea.agglomerans AAATCGCCGCGCCATTTAAACAGGCTGAATTCCAAATTATGTATGGGAAA Serratia.marcescens AAATCGCTGCGCCGTTCAAACAGGCTGAGTTCCAAATCATGTACGGCGAA Pseu.aeruginosa AGGTTTCCCCGCCGTTCCGCCAGGCCGAGTTCCAGATCCTCTACGGTAAG Escherichia.coliO157_H7 AAATCGCTGCGCCGTTTAAACAGGCTGAATTCCAGATCCTCTACGGCGAA Escherichia.coli AAATCGCTGCGCCGTTTAAACAGGCTGAATTCCAGATCCTCTACGGCGAA Shigella.dysenteriae AAATCGCTGCGCCGTTTAAACAGGCTGAATTCCAGATCCTCTACGGCGAA Shigella.flexneri AAATCGCTGCACCGTTTAAACAGGCTGAATTTCAGATCCTCTACGGCGAA Klebsiella.pneumoniae AGATTGCCGCGCCGTTTAAACAGGCCGAATTCCAGATCCTGTACGGGGAA Citrobacter.freundii AAATTGCAGCGCCGTTCAAACAGGCTGAATTCCAGATCCTGTACGGCGAA Hafnia.alvei AGATTGCTGCACCATTCAAGCAAGCTGAATTCCAAATCATGTATGCGAAG Erwinia.americana AGATTGCTGCACCATTCAAGCAAGCTGAATTCCAAATCATGTACGGCGAA Erwinia.mallotivora AAGTTGCCGCGCCATTCAAACAGGCTGAATTCCAGATTATGTACGGTGAA Erwinia.amylovora AGGTTGCAGCGCCGTTCAAGCAGGCTGAATTCCAGATTCTGTACGGCGAA Erwinia.pyrifoliae AAGTTGCCGCGCCGTTTAAGCAGGCTGAATTCCAGATTATGTACGGCGAA Proteus.vulgaris AAGTGGCAGCACCGTTCAAACAGGCTGAATTCCAAATTTTGTATGGTGAA Pec.car.sub.wasabiae AAGTGGCAGCACCGTTCAAACAGGCTGAATTCCAAATTATGTTTGG-GAG Pec.car.sub.atrosepticum ------Pec.car.sub.carotovorum AAGTAGCAGCACCGTTCAAACAGGCTGAATTCCAAATATTATTGTGGA-- Pec.car.sub.odoriferum AAGTGGCAGCACCGTTCAAACAGGCTGAATTCCAAATTATGTTTGGGAAG Pec.car.sub.betavasculorum AAGTCGCAGCACCGTTCAAACAGGCTGAATTCCAAATTATGTATGGGGGA Yersinia.enterocolitica AAATCGCAGCGCCATTTAAACAAGCCGAATTCCAGATCCTGTATGGTGAA Pec.carotovorum AAATTGCAGCACCATTTAAACAAGCTGAATTCCAAATTATGTATGGTGAA Brenneria.salicis AAGTGGCTGCGCCTTGT------Brenneria.alni AAGTGGCGGCGCCTTTCAAACAGGCTGAATTTCAGATTTTATACGGTGAG Erwinia.chrysanthemi AAGTGGCTGCTCCGTTCAAACAGGCCGAGTTCCAGATTCTGTATGGCGAA LS207 AAATCGCTGCGCCGTTTAAGCAGGCGGAGTTCCAAATTATGTATGGGTGA LS350 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS390 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS280 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS238 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS179 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS129 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAAT------LS237 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTA------LS203 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTAT------LS137 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS99 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATG------LS217 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATG------LS359 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATG------LS227 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTAT------LS134 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAA------LS204 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATG------LS360 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATG------LS135 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAA------LS147 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTA------LS150 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTA------LS365 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTA------LS142 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS225 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS355 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS276 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS358 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS98 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAAT------LS136 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATT------LS141 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS139 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS283 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS236 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS306 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS86 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATT------

107 LS218 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS230 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS292 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS245 AAGTGGCAGCACCGTTTAA------LS215 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS205 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS381 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS143 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATT------LS251 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTAT------LS268 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTAT------LS262 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS321 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGA- LS174 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGG---- LS263 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS171 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS249 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS255 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS264 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS267 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS248 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS334 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS246 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS266 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS351 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS149 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATG------LS148 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATG------LS277 ------LS152 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGATGGGGTGA LS356 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGATGGG-TGA LS366 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGA------LS202 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGATGGG-TGA LS197 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGA------LS132 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTA------LS239 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATG------LS138 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS167 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTAT------LS353 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS265 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS243 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATTGGTGA LS367 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTAT-GGTGA LS349 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS302 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS278 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS354 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS247 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTAT------LS399 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS279 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGTGAA LS226 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA LS332 AAGTGGCAGCACCGTTTAAGCAGGCTGAGTTCCAAATTATGTATGGGTGA ; end;

108 APPENDIX C

rdgC SEQUENCE ALIGNMENT

The multiple sequence alignment is in the format that is required to phylogenetically analyze the data using the program PAUP*. The numbering corresponds to the entire rdgC gene. The alignment begins at position 351 and ends at 800, which is the sequenced portion for the LS isolates.

#NEXUS BEGIN DATA; dimensions ntax=93 nchar=1040; format missing=? symbols="ABCDEFGHIKLMNPQRSTUVWXYZ" interleave datatype=DNA gap= -; matrix

[351-400] E.tasmaniensis CTCGCTTAAAGACGAAGTGTTACACAGCCTGCTGCCGCGTGCTTTTAGTC E.pyrifoliae CTCGTTAAAAGACGAAGTGCTGCACAGCCTGCTGCCGCGTGCTTTCAGCC Yer.pestis TTCATTGAAAGATGAAGTACTGCACAGTTTGTTGCCGCGTGCATTCAGCC Yer.enterocolitica CTCATTAAAAGATGAGGTTTTGCACAGTTTATTACCACGTGCATTTAGCC Proteus.vulgaris AGCGCTTAACGATCTGGTGCTGGGGGAGTTGCTGCCCAAAGCCCTGAGTA Pseu.aeruginosa CCAGTTGAAGGACGAGATCGTCCAGACCCTGCTGCCGCGCGCCTTCATCC Pseu.stutzeri CCAGATCAAGGACGAGATCATCCAGGCCTTCCTTCCGCGTGCCTTCATCC Aeromonas AGCGCTGAAGGAGGAGATACTACACACCCTGCTGCCCCGCGCCTTCAGCC Psychromonas CAGTCTAAAAGAAGAGATTGTCATGCAGTTGTTACCACGGGCATTTAGTC She.frigidimarina CACCATTAAAGACGAAATCACCACAACATTATTACCTCGTGCATTTTCTC Vibrio.fischeri CGCAATTAAAGACGATATCGTGGTTGATTTGCTTCCTCGCGCATTCAGCA Vibrio.vulnificus AACACTTAAAGAAGAGATCATCATTGATCTTCTACCACGAGCTTTCAGCC rdgC86 ------A-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC226 ---GCNG-ANGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC205 NTCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC390 NTCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC98 -TCGCTG-AAGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC248 -TCNCTG-ANGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC255 -TCNCTG-ATGATGAANTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC134 ATCGCTG-ANGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC149 -TCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC171 TTCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC225 -TCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC202 -TCGCTG-AAGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC350 TTCGCTG-AAGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC215 --CGCTG-AAGATGATGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC230 TNCGCTG-AAGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC236 TNCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC365 --CGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC

109 rdgC381 --CGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC217 TNCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC247 --CGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC179 -TCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC239 -TCGCTG-AAGATNAAGTACTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC251 ----CTG-AAGANNAANTTNTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC277 ------GTACTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC246 --CGCTG-AAGN-GAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC249 --CGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC263 -TCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC152 --CGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC279 --CGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC245 -TCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC264 ---GCTG-AANATRANGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC204 ------CGCGCCTTCAGCC rdgC207 -GTNTCC-TGGAACGCCGGTGCTGGTGATCGCCGATGTACGCCTTCAGCC rdgC276 ------CGCGCCTTC-GCC rdgC356 ------AATNNCNGCATNNCCTGNTGCCGCGCGCCTTCAGCC rdgC266 ------CGCGCCTTCAGCC rdgC292 ------NCGCGCCTTCAGCC rdgC367 -TCGCTG-ANGANNAATNGCTGCNTRNCCTGCTGCCGCGCGCCTTCAGCC rdgC238 ------GCNGNATNNCCTGCTGCCGCGCGCCTTCAGCC rdgC237 ANCGCTG-AANNTNAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC359 ----CTG-AANNTNAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC150 ----CTG-AANNTNAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC135 --CGCTG-AANATNA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC306 ------AGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC139 -TCGCTG-AAGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC334 ------GCATAACCTGNTGCCGCGCGCCTTCAGCC rdgC354 --CGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC174 --CGCTG-AAGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC137 ------GCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC142 -TCGNNG-AANATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC358 ------ATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC99 ------GTGCTGCATAGCCTACTGCCGCGCGCCTTCAGCC rdgC332 ------TGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC132 ------TGCATAGCCNGCTGCCGCGCGCCTTCAGCC rdgC227 CGTCNCN-GAAGATNAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC280 ---GCTG-AAGATGATGTACTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC321 ------GATGTACTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC147 ------GATGTNCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC243 ------G-AANATNATGTNCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC268 ------ATGTNCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC203 ----CTG-AAGATNATGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC278 ------TGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC262 NTCGCTG-AAGATNAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC360 ------ATNAATTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC136 -TCGCTG-ACGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC353 ------CTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC143 -TCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC349 GTCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC197 NTCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC283 NTCGCTG-AAGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC167 -TCGCTG-AAGATGA-GTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC129 ------G-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC148 --CNCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC138 -TCNCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC

110 rdgC355 NTCNCTGCAAGATGAANTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC141 -TCNCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC218 -AGNTCNCTGAAGTGAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC351 -TCNCTTGAAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC265 -TCNCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC267 GTCNCTG-ATGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC rdgC302 -TCGCTG-AAGATGAAGTGCTGCATAGCCTGCTGCCGCGCGCCTTCAGCC

[401-450] E.tasmaniensis GTTTCAGCCAGACCTGTGTCTGGATCGATACCGT-GAATAACCTGATTAT E.pyrifoliae GTTTTAGCCAGACGTATGTCTGGATCGATACGGT-TAATAACCTGATTAT Yer.pestis GTTTTAATCAAACTTTTTTGTGGATTGATACTGT-CAATGACCTGATTAT Yer.enterocolitica GTTTTAACCAAACTTTCTTATGGATTGATACCGT-CAATGACCTGATTAT Proteus.vulgaris AGTACGCCAACATGAACATGTGGATTGACCCAAA-ATCCCGTCTGATCAT Pseu.aeruginosa GCCGCTCCAGCACCTTCGCCGCGATCG-CGCCGAGCCTCGGCCTGATCCT Pseu.stutzeri GCAAGTCCGGCACCTTCGCCGCGATCGATGCCGAGCG-CGGTCTGATCCT Aeromonas GCACCAGCCAGACCTTCGCCTGGATCAACCCGGC-CGACAATCTGATGGT Psychromonas GTACTTCACAAACCTTTGCCTGGATCGATTCAGA-ATCAGATATGTTATA She.frigidimarina GTCGTAGCCAAACTCATGCTCTTATCATGCCTGA-GCTAGAGATGATTTT Vibrio.fischeri AACACCAACAAACGTATGCGTTAATCCTCCCTGA-ATCTGGCTTTATCAT Vibrio.vulnificus GCAGTAATCACACCTATGTGCTCATCTTGCCAAA-AGAAGGGTTTATTTT rdgC86 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC226 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC205 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC390 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC98 GTTTCAGT-AGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC248 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC255 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC134 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC149 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC171 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC225 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC202 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC350 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC215 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC230 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC236 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC365 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC381 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC217 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC247 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC179 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC239 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC251 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC277 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC246 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC249 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC263 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC152 GTTTCAGTNN-ACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC279 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC245 GTTTCAGTCANACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC264 GTTTCAGTCANACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC204 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC207 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC276 GTNTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC356 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC266 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT

111 rdgC292 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC367 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC238 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC237 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC359 GTTTCAGTCANACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC150 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC135 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC306 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC139 GTTTCAGTAANACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC334 GTTTCAGTAANACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC354 GTTTCAGTNANACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC174 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC137 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC142 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC358 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC99 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC332 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC132 GTTTCAGTCANACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC227 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC280 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC321 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC147 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC243 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC268 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC203 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC278 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC262 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC360 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC136 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC353 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC143 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC349 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC197 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC283 GTTTCAGTCANACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC167 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC129 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC148 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC138 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC355 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC141 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC218 GTTTCANN-ANANNNNNATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC351 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC265 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC267 GTTTCAGTCAGACCTTTATGTGGATCGACACCGT-CAACAATCTGATCAT rdgC302 GTTTCAGTCAGACCTTTATGTGGATCGACACGGT-CAATAATTTGATCAT

[451-500] E.tasmaniensis GGTCGACTGCGCCAGCGCGAAAAAAGCGGAGGATACCCTTGCCCTGCTGC E.pyrifoliae GGTTGACTGCGCCAGCGCAAAAAAAGCCGAAGATACCCTTGCCCTGCTGC Yer.pestis GGTCGATGCCGCAAGTGCTAAACGGGCTGAAGATACATTGGCTTTGCTGC Yer.enterocolitica GGTCGATGCGGCCAGTGCCAAGCGTGCTGAAGATACCCTGGCATTACTGC Proteus.vulgaris TGTGGATACCACCAGCTTTAAACGCGCTGAAGACGCCGCTGCGCTCCTAC Pseu.aeruginosa GGTCGACTCGGCCAGCGCGAAGAAGGCCGAAGACCTGCTCTCGACGCTGC Pseu.stutzeri GGTCAACTCGGCCAGTCCGAAGAAGGCCGAAGACCTGCTGTCCACCCTGC Aeromonas GGTGGATGCAGGCTCCGCCAAGAAGGCGGACGATCTGCTGGCACTGCTGC Psychromonas TGTTGACGCATCCAGTACCCGTAAGGCCGAGGAGCTTATTTCATTACTGC She.frigidimarina AGTCGATAGTTCTAGTGCAACTAAAGCAGAAGAACTATTAGCGTTATTGC

112 Vibrio.fischeri TGTCGATGCTGGCAGTTACAAAAAAGCAGAAGACGTTTTAGCACTACTTC Vibrio.vulnificus GGTCGATGCCAGCAGCTACAAAAAAGCAGAAGACGTGCTCGCACTGCTGC rdgC86 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC226 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC205 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC390 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC98 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC248 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC255 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC134 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC149 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC171 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC225 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC202 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC350 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC215 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC230 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC236 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC365 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC381 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC217 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC247 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC179 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC239 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC251 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC277 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC246 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC249 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC263 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC152 CGTCNACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC279 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC245 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC264 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC204 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC207 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC276 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC356 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC266 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC292 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC367 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC238 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC237 CSTCNACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC359 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC150 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC135 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC306 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC139 CGTNGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC334 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC354 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC174 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC137 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC142 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC358 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC99 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC332 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC132 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC227 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC

113 rdgC280 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC321 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC147 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC243 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC268 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC203 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC278 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC262 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC360 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC136 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC353 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC143 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC349 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC197 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC283 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC167 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC129 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC148 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC138 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC355 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC141 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC218 ANTCGACTGNGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC351 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC265 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC267 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGTTACTGC rdgC302 CGTCGACTGCGCCAGCGCGAAGAAAGCGGAAGATACGCTGGCGCTGCTGC

[501-550] E.tasmaniensis GTAAGAGCCTCGGTTCACTGCCGGTGGTGCCGCTGACGCTGGAAAGCCCG E.pyrifoliae GTAAGAGCCTTGGCTCGCTACCGGTGGTGCCGCTGACGCTGGAAAGCCCG Yer.pestis GTAAAAGCCTGGGGTCGTTACCTGTCGTCCCGCTAACGTTAGAAAATCCG Yer.enterocolitica GTAAAAGCCTGGGCTCTTTACCGGTCGTTCCGCTGACGTTAGAAAATCCG Proteus.vulgaris GTAAAACGCTGGGCTCTCTGCCTATCATTCCGTTCACGCTGGAAACTCCG Pseu.aeruginosa GCGAAGCGCTCGGCTCCCTGCCGGTACGCCCGCTGAGCGTGAAGGTCGCG Pseu.stutzeri GTGAAGCGATCGGCTCGCTGCCGGTGCGCCCGCTGACGGTGAAGATCGCG Aeromonas GCAAAAGCATAGGCACCCTGCCGGTGGTGCCGGTGGCCCTCAAGAACCCG Psychromonas GTAAAACATTAGGCAGTTTGCCCATTGTCCCTATCCAGCTTAAAAACCAG She.frigidimarina GCAAAGCCTTAGGCAGCTTACCGGTTATCCCGCTAAGTTATGCCACACCA Vibrio.fischeri GTAAATCTATTGGTAGTCTACCTGTTGTTCCTCTAACATCGACTCAACCA Vibrio.vulnificus GCAAAACCATGGGTAGCCTACCTGTTGTACCTGCGATTCCAGAAAAAGCG rdgC86 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC226 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC205 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC390 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC98 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC248 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC255 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC134 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC149 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC171 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC225 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC202 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC350 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC215 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC230 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC236 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC365 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG

114 rdgC381 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC217 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC247 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC179 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC239 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC251 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC277 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC246 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC249 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC263 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC152 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC279 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC245 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC264 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC204 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC207 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC276 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC356 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC266 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC292 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC367 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC238 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC237 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC359 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC150 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC135 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC306 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC139 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC334 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC354 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC174 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC137 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC142 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC358 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC99 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC332 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC132 GTAAGAGCCTCGGCTCGCTGCCGGNGGTGCCGCTGACGCTGGAAAATCCG rdgC227 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC280 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC321 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC147 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC243 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC268 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC203 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC278 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC262 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC360 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC136 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC353 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC143 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC349 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC197 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC283 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC167 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC129 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC148 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC138 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG

115 rdgC355 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC141 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC218 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC351 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC265 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC267 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG rdgC302 GTAAGAGCCTCGGCTCGCTGCCGGTGGTGCCGCTGACGCTGGAAAATCCG

[551-600] E.tasmaniensis ATAGAGCTGACGCTGACCGAATGGGTGCGCTCCGGGGAGCTACCGGCCGG E.pyrifoliae ATAGAGCTGACGTTGACCGAATGGGTACGTTCCGGCGAGCTACCGGCCGG Yer.pestis ATTGAACTGACTTTGACTGAGTGGGTTCGATCCAAAACATTGCCTGCAGG Yer.enterocolitica ATTGAACTGACTTTAACTGAGTGGGTTCGTAGCAAAGAATTACCGTCTGG Proteus.vulgaris GTGGAGCTCAAACTAACGGAGTGGGTTCGCTCTTCCGAGCTGCCTCCTGG Pseu.aeruginosa CCGACCGCGACCCTCACCGACTGGGTCAAGACCCAGGAAGCCGCCGGCGA Pseu.stutzeri CCCAGCGCCACGCTTACCGACTGGGTGAAGACTCAGAAGGCGGCGGACGA Aeromonas CCCGAAATCACCATGACAGAGTGGCTGAGCGAGGGTAACCTGCCCGCCAC Psychromonas GCAGATGTGATTATGACCGATTGGTTAACCGAGGGTAATATCCCCGCTAA She.frigidimarina ATCGAGTCAACGCTAACGCAATGGTTACAAGCAGGTGAAGCGCCTGCACC Vibrio.fischeri ATTGAGAATGCATTAACGGAATGGGTGAAAACAGGCACTTGCCCTCAAGG Vibrio.vulnificus GTTGAGACCACGTTGACTGAATGGGTAAAAACAGGCCAAACACCACAAGG rdgC86 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC226 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC205 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC390 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC98 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC248 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC255 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC134 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC149 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC171 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC225 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC202 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC350 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC215 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC230 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC236 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC365 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC381 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC217 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC247 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC179 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC239 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC251 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC277 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC246 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC249 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC263 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC152 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC279 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC245 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC264 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC204 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC207 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC276 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC356 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC266 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG

116 rdgC292 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC367 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC238 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC237 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC359 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC150 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC135 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC306 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC139 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC334 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC354 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC174 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC137 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC142 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC358 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC99 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC332 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC132 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC227 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC280 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC321 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC147 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC243 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC268 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC203 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC278 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC262 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC360 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC136 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC353 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC143 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC349 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC197 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC283 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC167 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC129 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC148 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC138 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC355 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC141 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC218 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC351 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC265 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC267 ATCGAACTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG rdgC302 ATCGAGCTGACGCTGACCGAATGGGTGCGCTCCGGTGAATTGCCGGCGGG

[601-650] E.tasmaniensis TTTCGCTCTGATGGATGAAGCCGAACTGAAGGCAATTCTGGAAGATGGTG E.pyrifoliae TTTCGCCCTGATGGATGAAGCCGAGCTGGAAGCCATTCTGGAAGATGGCG Yer.pestis CTTTGCCCTGATGGACGAAGCTGAACTCAAAGCAATCTTGGAAGATGGCG Yer.enterocolitica CTTTGCACTGATGGATGAAGCTGAATTGAAAGCTATTCTGGAAGATGGTG Proteus.vulgaris GTTGGCGTTGTGCGATGAGGCGACCCTTGAAGCCATCCTGGAAGACGGTG Pseu.aeruginosa CTTCCACGTGCTCGACGAATGCGAGCTGCGCGACACCCACGAGGACGGCG Pseu.stutzeri CTTCTTCGTGCTGGACGAATGCGAACTGCGTGACACCCACGAAGACGGCG Aeromonas CTTCGCACTGGAAGATGAAGCCGAGCTGCGCAGTGCCATGGAGCACGGCG Psychromonas CTTTGCATTAGAAGATGAGGCCGAATTATGTTCGGCATTAGAAGGTGGCG She.frigidimarina TTTTGAAATGCAGGATGAAGCTGAACTTAAATCAGACTCTGATGAAGGCG

117 Vibrio.fischeri CTTTGAAATGGGTGAAGAAGCCGAACTAAAAGCAATTTTAGAAGATGGCG Vibrio.vulnificus TTTCCATTTACTCGATGAAGCCGAACTTAAATCGGTTCTGGAAGATGGCG rdgC86 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC226 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC205 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC390 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC98 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC248 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC255 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC134 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC149 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC171 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC225 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC202 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC350 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC215 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC230 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC236 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC365 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC381 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC217 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC247 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC179 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC239 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC251 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC277 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC246 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC249 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC263 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC152 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC279 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC245 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC264 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC204 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC207 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC276 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC356 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC266 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC292 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC367 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC238 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC237 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC359 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC150 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC135 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC306 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC139 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC334 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC354 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC174 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC137 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC142 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC358 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC99 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC332 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC132 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC227 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG

118 rdgC280 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC321 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC147 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC243 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC268 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC203 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC278 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC262 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC360 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC136 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC353 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC143 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC349 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC197 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC283 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC167 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC129 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC148 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC138 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC355 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC141 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC218 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC351 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC265 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC267 TTTCACCCTGATGGATGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG rdgC302 TTTCACCCTGATGGACGAGGCTGAGCTGAAGGCGATACTGGAAGATGGCG

[651-700] E.tasmaniensis GCGTGATCCGCTGTAAAAAGCAGGACCTGGTGTGCGACGAGATAGCGAAC E.pyrifoliae GGGTGATCCGCTGTAAAAAGCAGGATCTGGTGTGCGATGAGATAGCGAAC Yer.pestis GTGTTATTCGCTGTAAAAAACAGGATTTATTCAGTGATGAGATCGCCGTA Yer.enterocolitica GCGTGATCCGCTGTAAGAAACAGGATCTGTTCAGTGATGAAATCGCGGTG Proteus.vulgaris GCGTGGTGACGACGAAACGCCAAGATCTGGTTTGCGATGAGATTGCCAAT Pseu.aeruginosa GCGTGGTCCGTTGCAAGCGCCAGGACCTGACCAGCGAGGAAATCCAGCTG Pseu.stutzeri GTGTGGTGCGCTGCAAGCGTCAGGACCTGACCAGCGACGAGATCCAGCAG Aeromonas GCATCATCCGCTGCAAGCAGCAGGATCTGATGACCGACGAGATAAAGAAC Psychromonas GTATTATTCGCTGTAAACAGCAGGACTTATTATCCGATGAAATAAAAAAC She.frigidimarina GTATTGTTCGCTTCAAACAACAAGTGCTGCAAGAAGATGAAGTACTTGCC Vibrio.fischeri GCGTGATCCGTTGTAAACAACAAGAACTTGTATGTGATGAGATCCATGCT Vibrio.vulnificus GCATTATTCGCTGTAAGAAGCAAGAGCTAACCAGCGACGAAATTCTCAGT rdgC86 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC226 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC205 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC390 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC98 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC248 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC255 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC134 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC149 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC171 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC225 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC202 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC350 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC215 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC230 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC236 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC365 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC

119 rdgC381 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC217 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC247 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC179 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC239 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC251 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC277 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC246 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC249 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC263 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC152 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC279 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC245 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC264 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC204 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC207 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC276 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC356 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC266 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC292 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC367 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC238 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC237 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC359 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC150 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC135 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC306 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC139 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC334 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC354 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC174 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC137 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC142 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC358 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC99 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC332 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC132 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC227 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC280 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC321 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC147 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC243 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC268 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC203 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC278 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC262 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC360 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC136 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC353 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC143 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC349 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC197 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC283 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC167 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC129 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC148 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC138 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC

120 rdgC355 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC141 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC218 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC351 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC265 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC267 GCGTGATCCGCTGTAAAAAGCAGGATCTGGTTTCCGACGAGATCGCCACC rdgC302 GCGTGATCCGCTGTAAAAAACAGGATCTGGTTTCCGACGAGATCGCCACC

[701-750] E.tasmaniensis CATATTGAGGCCGGCAAACTGGTGACCAAGCTGGCGCTTGACTGGCAGGA E.pyrifoliae CATATCGAAGCCGGCAAGCTGGTGACCAAACTGGCTCTCGACTGGCAGGA Yer.pestis CATATCGAAGCAGGCAAACTGGTCACTAAATTAGCGTTGGATTGGCAAGA Yer.enterocolitica CATATAGAAGCGGGTAAACTGGTAACTAAGCTGGCGCTGGATTGGCAAGA Proteus.vulgaris CACATCGAGGCGGGCAAGTTAGTTACTAAGCTGTCGATGAGCTGGATGGA Pseu.aeruginosa CATCTCACCGCCGGCAAGCTGGTCACCCAGTTGTCCCTGGCCTGGTCGGA Pseu.stutzeri CATATGGAAGCCGGCAAGCAGGTCACCCAGCTGTCCCTGGCATGGCAGGA Aeromonas CACCTGGCCAACGACAAGCTGGTGACCAAGCTGGCTCTGAACTGGGGCGA Psychromonas CATTTATCAGCTGATAAATTTGTGACTAAATTAGCCCTGTGCTGGGCTGA She.frigidimarina CATATTGCAACGGGTAAGCAAGTGCACAAATTGGCATTACATTTTGGCCA Vibrio.fischeri CACATTGATGCGAACAAAGTAGTTACAAAATTAGCGCTAACTTGGCAAGA Vibrio.vulnificus CATATCGCTGCAGATAAAGTTGTGACAAAACTGGCCCTCAATTGGCAAGA rdgC86 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC226 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC205 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC390 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC98 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC248 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC255 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC134 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC149 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC171 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC225 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC202 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC350 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC215 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC230 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC236 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC365 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC381 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC217 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC247 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC179 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC239 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC251 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC277 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC246 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC249 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC263 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC152 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC279 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC245 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC264 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC204 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC207 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC276 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC356 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC266 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA

121 rdgC292 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC367 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC238 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC237 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC359 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC150 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC135 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC306 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC139 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC334 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC354 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC174 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC137 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC142 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC358 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC99 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC332 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC132 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGNGCTCGACTGGCANGA rdgC227 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC280 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC321 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC147 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC243 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC268 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC203 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC278 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC262 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC360 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC136 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC353 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC143 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC349 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC197 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC283 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC167 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC129 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC148 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC138 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC355 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC141 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC218 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC351 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC265 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC267 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCGCTCGACTGGCAGGA rdgC302 CACATCGAAGCCGGTAAAGTGGTCACCAAACTGGCACTCGACTGGCAGGA

[751-800] E.tasmaniensis GCGTATCCAGATGATCCTGTC-TGACGATGGCTCAATTAAACGCCTGAAA E.pyrifoliae ACGTGTCCAGCTGATCCTGTC-TGACGATGGCTCGATCAAGCGCCTGAAA Yer.pestis ACGGATACAGTTGGTGCTGTC-TGACGATGGCTCATTAAAGCGTTTAAAA Yer.enterocolitica GCGTGTTCAGCTCGTTCTGTC-CGATGACGGTTCGCTAAAACGCCTGAAA Proteus.vulgaris GCAACTCAACTTCGTCATCAA-CGACAGCTTTGTCATTTCCCGGTTGAAC Pseu.aeruginosa CAAGCTGTCCTTCGTCCTCGA-CGACAAGCTGGCGGTCAAGCGCCTGCGC Pseu.stutzeri CAAGCTGTCCTTCGTACTGGA-CGACAAGCTGATCATCAAGCGCCTGCGC Aeromonas GACCCTGAGCTTCGTGCTGGG-GGACGACCTCTCCATCAAGCGTCTCAAG Psychromonas CAGTATCTCATTTATTATTGG-CGAAGAATTTGCGCTTAAACGCATTAAG She.frigidimarina GTCAATTGCCTTTTTGATGCA-GTCTGATGCCAGTATTAAACGACTTAAG

122 Vibrio.fischeri ACGTTTAGAGTTTATCCTTGC-CGATGACCTGTCTCTAAAACGTTTAAAA Vibrio.vulnificus GCGATTGGAGTTTGTTCTGGC-CGATGATGCAAGCATCAAACGTTTGAAG rdgC86 GCGTATTCAGCTGGTGA-CGC-CGATGTA------rdgC226 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC205 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC390 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC98 GCGTATTCAGCTGGTGACGCC--GATGTA------rdgC248 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC255 GCGTATTCAGCTGGTGACNNCC-GATGTA------rdgC134 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC149 GCGTATTCAGCTGGTGACNNC-CGATNT------rdgC171 GCGTATTCAGCTGGTGACNNC-CGATGTA------rdgC225 GCGTATTCAGCTGGTGACNNC-CGATGTA------rdgC202 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC350 GCGTATTCAGCTGGTGACNNC-CGATGTA------rdgC215 GCGTATTCAGCTGGTGACNTC-CGATGTA------rdgC230 GCGTATTCAGCTGGTGACNNC-CGATGTA------rdgC236 GCGTATTCAGCTGGTGACNNCCCGATGTA------rdgC365 GCGTATTCAGCTGGTGNCNN--CGATGTAA------rdgC381 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC217 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC247 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC179 GCGTATTCAGCTGGTGACNGC-CGATGTA------rdgC239 GCGTATTCAGCTGGTGACNGCCCGATGTA------rdgC251 GCGTATTCAGCTGGTGACNGCCCGATGTA------rdgC277 GCGTATTCAGCTGGTGACNNCC-GATGTA------rdgC246 GCGTATTCAGCTGGTGANG-CCCGATNTA------rdgC249 GCGTATTCAGCTGGTGACNGCCCGATGTA------rdgC263 GCGTATTCAGCTGGTGACNGCCCGATGTA------rdgC152 GCGTATTCAGCTGGTGACCNCC-GATGTA------rdgC279 GCGTATTCAGCTGGTGACCNCCCGATGTA------rdgC245 GCGTATTCAGCTGGTGACNACCCGATGTA------rdgC264 GCGTATTCAGCTGGTGAC--NCCGATGTA------rdgC204 GCGTATTCAGCTGGTGATCGC-CGATGTAA------rdgC207 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC276 GCGTATTCAGCTGGTG-TCGC-CGATGTA------rdgC356 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC266 GCGTATTCAGCTGGTG-TCGC-CGATGTA------rdgC292 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC367 GCGTATTCAGCTGGTGACNNC-CGATGTA------rdgC238 GCGTATTCAGCTGGTGACNCC--GATGTA------rdgC237 GCGTATTCAGCTGGTGACNAC-CGATGTA------rdgC359 GCGTATTCAGCTGGTGACG-C-CGATGTA------rdgC150 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC135 GCGTATTCAGCTGGTGACG-C-CGATGT------rdgC306 GCGTATTCAGCTGGTGACG-C-CGATGTA------rdgC139 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC334 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC354 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC174 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC137 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC142 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC358 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC99 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC332 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC132 GCGTATTCAGCTGGTGATCGC-CGATGTT------rdgC227 GCGTATTCAGCTGGTGATCGC-CGATGTTA------

123 rdgC280 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC321 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC147 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC243 GCGTATTCAGCTGGTGA-CNC-CGATGTA------rdgC268 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC203 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC278 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC262 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC360 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC136 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC353 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC143 GCGTATTCAGCTGGTGATCGC-CGATGT------rdgC349 GCGTATTCAGCTGGTG-CGAC-CGATGT------rdgC197 GCGTATTCAGCTGGTGATCGC-CGATGT------rdgC283 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC167 GCGTATTCAGCTGGTGATCGC-CGATGT------rdgC129 GCGTATTCAGCTGGTGATCGC-CGATGT------rdgC148 GCGTATTCAGCTGGTGATCGC-CGATGT------rdgC138 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC355 GCGTATTCAGCTGGTGATCGC-CGATGTA------rdgC141 GCGTATTCAGCTGGTGACGCC--GATGTA------rdgC218 GCGTATTCAGCTGGTGATCGC-CGATNTAA------rdgC351 GCGTATTCAGCTGGTGATCGC-CGATG------rdgC265 GCGTATTCAGCTGGTGNC------rdgC267 GCGTATTCAGCTGGTGCC------rdgC302 GCGTATTCAG------; end;

124 REFERENCES

[1] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and D. J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology. 215:403-410.

[2] Bogdanova, E. A. 1957. Concerning Brandt’s spotted disease in pontocaspian amphipoda and mysidae. Bull. All-Union Sci. Res. Inst. Fresh-Water Fish., 42:311-333. (Transl. by Israel Program for Scientific Translation. O.S.T. 60-51169, Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.)

[3] Cipriani, G. R., Wheeler, R. S., and R. K. Sizemore. 1980. Characterization of brown spot disease of Gulf Coast shrimp. Journal of Invertebrate Pathology. 36:255-263.

[4] Cook, D. W., and S. R. Lofton. 1973. Chitinoclastic bacteria associated with shell disease in Penaeus shrimp and the blue crab (Callinectes sapidus). Journal of Wildlife Diseases. 9:154-159.

[5] Dennell, R. 1960. Integument and exoskeleton. In: T. H. Waterman (Editor), The Physiology of Crustacea. Academic Press, New York, N. Y. and London. 1:449-472.

[6] Dogel, V. A., and G. K. Petrusheuskii. 1957. A survey of works of the laboratory of fish diseases of the All-Union Research Institute of Lake and River-Fisheries (Vnlorkh) during 25 years. Bull. All-Union Sci. Res. Inst. Fresh-Water Fish., 42:18. (Transl. by Israel Program for Scientific Translation. O.S.T. 60-51169, Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.)

[7] Dye, D. W., 1968. A taxonomic study of the genus Erwinia. I. The amylovora group. N. Z. J. Sci. 11:590-607

[8] Dye, D. W., 1969. A taxonomic study of the genus Erwinia. II. The carotovora group. N. Z. J. Sci. 12:81-97

[9] Dye, D. W., 1969. A taxonomic study of the genus Erwinia. III. The herbicola group. N. Z. J. Sci. 12:223-236

[10] Dye, D. W., 1969. A taxonomic study of the genus Erwinia. IV. “Atypical” erwinias. N. Z. J. Sci. 12:833-839

[11] Factor, J. R., ed. Chapter 10 Control of Growth and Reproduction in, Biology of the lobster, Homarus americanus. 1995, Academic Press, Inc.

125 [12] Fisher, W. S., Rosemark, T. R., and E. H. Nilson. 1976. The susceptibility of cultured American lobsters to a chitinolytic bacterium. Proceedings of the 7th annual meeting of the world mariculture society: 511-520

[13] Fisher, W. S., Nilson, E. H., Steenbergen, J. F., and D. V. Lightner. 1978. Microbial diseases of cultured lobsters: a review. Aquaculture. 14:115-140.

[14] Giovannoni, S. and M. Rappe. Evolution, diversity, and molecular ecology of marine prokaryotes, in Microbial ecology of the oceans, D. L. Kirchman, Editor. 2000, Wiley-Liss: New York. P. 47-84.

[15] Glenn, R. C., Wheeler, R. S., and R. K. Sizemore. 1980. Characterization of Brown Spot Disease of Gulf Coast Shrimp. Journal of Invertebrate Pathology. 36:255- 263.

[16] Hall, B. G., Phylogenetic Trees Made Easy: A How-To Manual, Second Edition. 2004. Sinauer Associates, Inc.

[17] Hess, E. 1937. A shell disease in lobsters (Homarus americanus) caused by chitinovorous bacteria. J. Biol. Board Can. 3:358-362.

[18] Hillis, D. M., Moritz, C., and B. K. Mable. 1996. Molecular Systematics, Second Edition.

[19] Kwon, S. W., Go, S. J., Kang, H. W., Ryu, J. C., and J. K. Jo. 1997. Phylogenetic Analysis of Erwinia Species Based on 16S rRNA Gene Sequences. International Journal of Systematic Bacteriology. 47:1061-1067.

[20] Lelliott, R. A., and R. S. Dickey. 1984. Genus VII. Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920. In Bergey’s Manual of Systematic Bacteriology. 1:469-476. Edited by N. R. Krieg and J. G. Holt. Baltimore: Williams and Wilkins.

[21] Madden, T. L., Tatusov, R. L., and J. Zhang. 1996. Applications of network blast server. Methods in Enzymology. 266:131-141.

[22] McKenna, S., Jansen, M., and M. Pully. 1988. Shell disease of blue crabs, Callinectes sapidus, in the Pamlico River, North Carolina. North Carolina Division of Marine Fisheries Special Scientific Report No. 51, Division of Marine Fisheries, Washington, NC, USA.

[23] McLeese, D. W., 1965. Lesions on the abdominal membrane of lobsters. J. Fish. Res. Board Can. 22(2):639-641.

126 [24] Porter, L., Butler, M., and R. H. Reeves. 2001. Normal bacterial flora of the spiny lobster Panulirus argus and its possible role in shell disease. Mar. Freshwater Res. 52:1401-1405.

[25] Porter, L., 2004. The Microbiology and Pathology of shell disease in the Florida spiny lobster, Panulirus argus with a comparison to shell disease in the American lobster, Homarus americanus. Florida State University.

[26] Reeves, R. H., Reeves, J. Y., and D. L. Balkwill. 1995. Strategies for phylogenetic characterization of surface bacteria. Journal of Microbiological Methods. 21:235-251.

[27] Rosen, B., 1967. Shell disease of the blue crab C. sapidus. J. Invertebr. Pathology. 9:348-353.

[28] Rosen, B., 1970. Shell disease of aquatic crustaceans. In: S.F. Snieszko (Editor), A Symposium on Diseases of Fishes and Shellfishes. Spec. Publ. No. 5, Am. Fish. Soc., Washington, D.C., pp. 409-415.

[29] Sawyer, W. H., Jr. and C. C. Taylor. 1949. The effect of shell disease on the gills and chitin of the lobster (Homarus americanus). Maine Dept. Sea Shore Fish. Res. Bull. 1, 10pp.

[30] Sindermann, C. J., and A. Rosenfield. 1967 Principal diseases of commercially important marine bivalve Mollusca and Crustacea. Rish. Bull., 66:335-385.

[31] Smolowitz, R., Hsu, A., Summers, E., and A. Chistoserdov. 2002. Lesions associated with recent epizootic shell disease in Homarus americanus on the northeast coast. Journal of Shellfish Research. 21:412.

[32] Smolowitz, R., Chistoserdov, A., and A. Hsu. 2005. A Description of the Pathology of Epizootic Shell Disease in the American Lobster, Homarus americanus, H. Milne Edwards 1837. Journal of Shellfish Research. 24(3):749-756.

[33] Stewart, J. E., 1984. Lobster Diseases. Helgoländer Meeresunters. 37:243-254.

[34] Verdonck, L., Mergaert, J., Rijckaert, C., Swings, J., Kersters, K., and J. DeLey. 1987. The genus Erwinia: a numerical analysis of phenotypic features. International Journal of Systemic Bacteriology. 37:4-18.

[35] Vincent, J. F. V., 2002. Arthropod cuticle: a natural composite shell system. Composites: Part A 33. 1311-1315.

[36] Waleron, M., Waleron, K., Podhajska, A. J., and E. Lojkowska. 2002. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology. 148:583-595.

127

[37] Woese, C. R. 1987., Bacterial Evolution. Microbiology Review. 51:221-271.

[38] Ziskowski, J., Spallone, R., Kapareiko, D., Robohm, R., Calabrease, A., and J. Pereira. 1996. Shell disease in American lobster in the offshore Northwest-Atlantic region around the 106-mile sewage-sludge disposal site. Journal of Marine Environmental Engineering. 3:247-271.

128 BIOGRAPHICAL SKETCH

EDUCATION: 2004-2009 Master of Science, Florida State University, Tallahassee, FL Advisor: Robert Reeves

2002-2004 Florida State University, Tallahassee, FL Graduate courses as a special student: Microbiology, Virology, Cell Biology, Biochemistry, and Molecular Biology

1998 - 2002 Bachelor of Science, Florida State University, Tallahassee, FL

1994 - 1998 High School Diploma, Martin County High School, Stuart, FL

PROFESSIONAL EXPERIENCE: 2008 – Present Florida State University, Tallahassee, FL Laboratory Manager/Research Assistant for Dr. Don Levitan

2004 – 2009 Florida State University, Tallahassee, FL Graduate Assistant/Lab Manager

2004 – 2009 University of Connecticut, Storrs, CT Dr. Richard French; joint project

2003 – 2004 Florida State University, Tallahassee, FL Laboratory Manager/Research Assistant for Dr. Don Levitan

2003 – 2004 Florida State University, Tallahassee, FL MCB2004L General Microbiology Lab (Spring Semesters) Teaching Assistant

2003 Fall Florida State University, Tallahassee, FL MCB4403L Prokaryotic Biology Lab Teaching Assistant

2000 – 2003 Florida State University, Tallahassee, FL Laboratory Technician for Jane Reeves, Microbiology Lab Coordinator

2000 Spring Florida State University, Tallahassee, FL Laboratory Technician for Dr. Robert H. Reeves

129

PROFESSIONAL MEMBERSHIPS: American Society for Microbiology (ASM)

HONORS, AWARDS, & SCHOLARSHIPS: 2007 Keys Marine Laboratory

2006 The American Society for Microbiology

2006 The Congress of Graduate Students (COGS)

2000 National Society of Collegiate Scholar

1998 Florida Bright Futures Award

PROFESSIONAL PRESENTATIONS: Lowenberg, M. M., Porter, L., Hoops, K. E. M., and Reeves, R. H. 2006. The Association of Erwinia with the Caribbean Spiny Lobster, Panulirus argus. abstr. Q-350. Abstr. 106th Annu. Meet. Am. Soc. Microbiol.

Porter, L., Lowenberg, M. M., French, R. A., and Reeves, R. H. 2006. The Microbiology and Pathology of Shell Disease in the Caribbean Spiny Lobster, Panulirus argus. abstr. Q-348. Abstr. 106th Annu. Meet. Am. Soc. Microbiol.

130