Microbial Identification Databases for Biolog Systems

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Identification Databases for Biolog Systems Microbial Identification Databases for Biolog Systems Biolog’s powerful carbon source utilization technology accurately identifies environmental and pathogenic microorganisms by producing a characteristic pattern or “metabolic fingerprint” from discrete test reactions performed within a 96 well microplate. Culture suspensions are tested with a panel of pre-selected carbon sources and compared against 2900+ identification profiles of environmental and fastidious organisms of interest in diverse fields of microbiology. Five databases are available for a broad spectrum of aerobic and anaerobic bacteria, yeasts and filamentous fungi. GE NIII AEROBIC BACTERIA (1568 taxa) Achromobacter cholinophagum Actinobacillus ureae Avibacterium avium Achromobacter denitrificans/ruhlandii Actinomyces bovis Avibacterium gallinarum Achromobacter insolitus Actinomyces canis Avibacterium paragallinarum Achromobacter piechaudii Actinomyces hordeovulneris Avibacterium volantium Achromobacter ruhlandii/denitrificans Actinomyces hyovaginalis Azospirillum brasilense Achromobacter spanius Actinomyces neuii ss anitratus Azospirillum lipoferum Achromobacter xylosoxidans ss xylosoxidans Actinomyces neuii ss neuii Bacillus acidiceler Acidovorax anthurii Actinomyces odontolyticus Bacillus acidicola Acidovorax avenae ss avenae Advenella incenata Bacillus agaradhaerens Acidovorax cattleyae Aerococcus christensenii Bacillus amyloliquefaciens Acidovorax citrulli Aerococcus sanguinicola Bacillus aquimaris Acidovorax delafieldii Aerococcus suis Bacillus atrophaeus/subtilis A Acidovorax facilis (26C) Aerococcus urinae Bacillus atrophaeus/subtilis B Acidovorax konjaci Aerococcus urinaeequi Bacillus azotoformans Acidovorax temperans Aerococcus urinaehominis Bacillus badius Acinetobacter baumannii/pittii Aerococcus viridans Bacillus bataviensis Acinetobacter baylyi Aeromonas allosaccharophila Bacillus butanolivorans/simplex Acinetobacter beijerinckii Aeromonas bestiarum Bacillus carboniphilus Acinetobacter bereziniae Aeromonas caviae Bacillus cecembensis (Bhargavaea) Acinetobacter bouvetii Aeromonas encheleia Bacillus cereus/thuringiensis Acinetobacter calcoaceticus Aeromonas enteropelogenes Bacillus cibi Acinetobacter calcoaceticus bv anitratus Aeromonas eucrenophila Bacillus circulans Acinetobacter genomospecies 14TU Aeromonas hydrophila ss hydrophila Bacillus clausii Acinetobacter genomospecies 15TU Aeromonas ichthiosmia Bacillus coagulans Acinetobacter genomospecies 6 Aeromonas jandaei Bacillus cohnii Acinetobacter gerneri Aeromonas media Bacillus decisifrondis (Lysinibacillus) Acinetobacter guillouiae Aeromonas popoffii Bacillus decolorationis Acinetobacter gyllenbergii Aeromonas salmonicida ss achromogenes Bacillus drentensis Acinetobacter haemolyticus Aeromonas salmonicida ss masoucida Bacillus endophyticus Acinetobacter johnsonii Aeromonas salmonicida ss pectinolytica Bacillus farraginis Acinetobacter junii Aeromonas salmonicida ss salmonicida Bacillus fastidiosus Acinetobacter lwoffii Aeromonas schubertii Bacillus firmus Acinetobacter nosocomialis Aeromonas sobria Bacillus flexus Acinetobacter parvus Aeromonas veronii Bacillus foraminis Acinetobacter pittii/baumannii Aggregatibacter actinomycetemcomitans Bacillus fordii Acinetobacter radioresistens Aggregatibacter aphrophilus Bacillus fortis Acinetobacter schindleri Aggregatibacter segnis Bacillus funiculus Acinetobacter soli Alcaligenes faecalis ss faecalis Bacillus galactosidilyticus Acinetobacter tandoii Aliivibrio fischeri (26C) Bacillus gibsonii/murimartini Acinetobacter tjernbergiae Alloiococcus otitis Bacillus ginsengihumi Acinetobacter towneri Alysiella crassa Bacillus halmapalus Acinetobacter ursingii Alysiella filiformis Bacillus halodurans Acinetobacter venetianus Aminobacter aminovorans Bacillus horikoshii Actinobacillus capsulatus Aneurinibacillus aneurinilyticus Bacillus humi Actinobacillus equuli ss equuli Aneurinibacillus danicus Bacillus hwajinpoensis Actinobacillus equuli ss haemolyticus Aneurinibacillus migulanus Bacillus idriensis Actinobacillus hominis Aquaspirillum putridiconchylium Bacillus indicus Actinobacillus indolicus Arcanobacterium haemolyticum Bacillus infantis Actinobacillus lignieresii/pleuropneumoniae Arcanobacterium hippocoleae Bacillus jeotgali/selenatarsenatis Actinobacillus minor Arcanobacterium phocae Bacillus kribbensis Actinobacillus muris Arcanobacterium pluranimalium Bacillus krulwichiae Actinobacillus pleuropneumoniae/lignieresii Arthrobacter cumminsii Bacillus lehensis Actinobacillus porcinus Arthrobacter globiformis Bacillus lentus (26C) Actinobacillus porcitonsillarum Arthrobacter histidinolovorans Bacillus licheniformis Actinobacillus rossii Arthrobacter ilicis Bacillus litoralis Actinobacillus seminis Arthrobacter nicotianae Bacillus luciferensis Actinobacillus succinogenes Arthrobacter oxydans Actinobacillus suis Arthrobacter woluwensis (Microbial ID Products Not For Human In Vitro Diagnostic Use) GE NIII AEROBIC BACTERIA Bacillus macauensis Brenneria salicis Cellulomonas hominis Bacillus marisflavi Brevibacillus agri Cellulomonas uda Bacillus megaterium Brevibacillus borstelensis Cellulosimicrobium cellulans Bacillus mojavensis/subtilis Brevibacillus brevis Chelonobacter oris Bacillus muralis Brevibacillus formosus Chromobacterium haemolyticum Bacillus murimartini/gibsonii Brevibacillus invocatus Chromobacterium violaceum Bacillus mycoides/cereus Brevibacillus laterosporus Chryseobacterium balustinum Bacillus nealsonii Brevibacillus panacihumi Chryseobacterium bovis Bacillus niabensis Brevibacillus parabrevis Chryseobacterium caeni Bacillus niacini Brevibacillus reuszeri Chryseobacterium culicis Bacillus novalis Brevibacterium casei Chryseobacterium daecheongense/defluvii Bacillus okuhidensis Brevibacterium epidermidis Chryseobacterium daeguense Bacillus oleronius Brevibacterium linens Chryseobacterium defluvii/daecheongense Bacillus oshimensis Brevibacterium mcbrellneri Chryseobacterium formosense Bacillus panaciterrae Brevibacterium otitidis Chryseobacterium gambrini Bacillus patagoniensis Brevibacterium paucivorans Chryseobacterium gleum Bacillus plakortidis Brevibacterium sanguinis Chryseobacterium gregarium Bacillus pseudomycoides/cereus Brevundimonas alba Chryseobacterium haifense Bacillus psychrosaccharolyticus (26C) Brevundimonas diminuta Chryseobacterium hominis Bacillus pumilus/safensis Brevundimonas vancanneytii Chryseobacterium humi Bacillus ruris Brevundimonas vesicularis Chryseobacterium hungaricum Bacillus safensis/pumilus Brochothrix campestris Chryseobacterium indologenes Bacillus selenatarsenatis/jeotgali Brochothrix thermosphacta Chryseobacterium indoltheticum Bacillus seohaeanensis Budvicia aquatica Chryseobacterium jejuense Bacillus shackletonii Burkholderia ambifaria/cepacia Chryseobacterium joostei Bacillus simplex/butanolivorans Burkholderia anthina Chryseobacterium luteum Bacillus siralis Burkholderia cenocepacia Chryseobacterium molle Bacillus soli Burkholderia cepacia/ambifaria Chryseobacterium oranimense Bacillus sonorensis Burkholderia contaminans Chryseobacterium pallidum Bacillus sporothermodurans Burkholderia dolosa Chryseobacterium palustre Bacillus subterraneus Burkholderia gladioli pv gladioli Chryseobacterium scophthalmum Bacillus subtilis ss spizizenii Burkholderia glumae Chryseobacterium shigense Bacillus subtilis ss subtilis Burkholderia multivorans Chryseobacterium soldanellicola Bacillus taeanensis Burkholderia plantarii Chryseobacterium soli Bacillus thuringiensis/cereus Burkholderia pyrrocinia/cepacia Chryseobacterium taeanense Bacillus vallismortis/subtilis Burkholderia stabilis/cepacia Chryseobacterium taichungense Bacillus vietnamensis Burkholderia vietnamiensis Chryseobacterium ureilyticum Bacillus vireti Buttiauxella agrestis Chryseobacterium wanjuense Bacillus weihenstephanensis/cereus Buttiauxella brennerae Citrobacter amalonaticus Balneatrix alpica Buttiauxella ferragutiae Citrobacter braakii Basfia succiniciproducens Buttiauxella gaviniae Citrobacter farmeri Bergeriella denitrificans Buttiauxella izardii Citrobacter freundii Bergeyella zoohelcum Buttiauxella noackiae Citrobacter gillenii Bhargavaea beijingensis Buttiauxella warmboldiae Citrobacter koseri Bhargavaea ginsengi Campylobacter jejuni/coli Citrobacter murliniae Bibersteinia trehalosi Capnocytophaga canimorsus Citrobacter rodentium Bordetella avium Capnocytophaga cynodegmi Citrobacter sedlakii Bordetella bronchiseptica Capnocytophaga gingivalis Citrobacter werkmanii Bordetella hinzii Capnocytophaga granulosa Citrobacter youngae Bordetella holmesii Capnocytophaga haemolytica Clavibacter michiganensis ss insidiosus A Bordetella parapertussis Capnocytophaga ochracea/sputigena Clavibacter michiganensis ss insidiosus B Bordetella petrii Cardiobacterium hominis Clavibacter michiganensis ss michiganensis Bordetella trematum Carnobacterium alterfunditum (26C) Clavibacter michiganensis ss nebraskensis Brachybacterium alimentarium Carnobacterium divergens Clavibacter michiganensis ss sepedonicus A Brachybacterium conglomeratum Carnobacterium gallinarum Clavibacter michiganensis ss sepedonicus B Brachybacterium faecium Carnobacterium inhibens Clavibacter michiganensis ss tessellarius Brachybacterium fresconis (26C) Carnobacterium maltaromaticum Cloacibacterium normanense Brachybacterium muris Carnobacterium mobile Collimonas fungivorans Brachybacterium nesterenkovii Castellaniella defragrans Comamonas aquatica Brachybacterium paraconglomeratum Castellaniella denitrificans Comamonas denitrificans Brachybacterium phenoliresistens Castellaniella ginsengisoli
Recommended publications
  • Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
    International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota.
    [Show full text]
  • Autotrophy in Groundwater Ecosystems
    Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München Autotrophy in Groundwater Ecosystems Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades vorgelegt von Claudia Sabine Kellermann aus München München im November 2008 1. Gutachter: Prof. Dr. Anton Hartmann, LMU München 2. Gutachter: Prof. Dr. Dirk Schüler, LMU München Tag der Abgabe: 06.11.2008 Tag des Promotionskolloquiums: 15.07.2009 Publications originating from this Thesis Chapter 2 Kellermann, C & Griebler, C (2008) Thiobacillus thiophilus D24TNT sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. International Journal of Systematic and Evolutionary Microbiology (IJSEM), 59: 583-588 Chapter 3 Kellermann, C, Selesi, D, Hartmann, A, Lee, N, Hügler, M, Esperschütz, J, & Griebler, C (2008) Chemolithoautotrophy in an organically polluted aquifer – Potential for CO2 fixation and in situ bacterial autotrophic activity. (in preparation) Contributions Chapter 3 Enzyme assays were performed in cooperation with Dr. Michael Hügler at the IFM- GEOMAR, Kiel, Germany. Chapter 4 FISH-MAR analysis was performed in cooperation with Prof. Dr. Natuschka Lee at the Technical University Munich, Germany. Enzyme assays were performed in cooperation with Dr. Michael Hügler at the IFM-GEOMAR, Kiel, Germany. PLFA analysis was performed by Dr. Jürgen Esperschütz at the Institute of Soil Ecology, Helmholtz Center Munich, Germany. I hereby confirm the above statements Claudia Kellermann Prof. Dr. Anton Hartmann Autotrophy in Groundwater Ecosystems Claudia Kellermann Abstract: The major role in global net CO2 fixation plays photosynthesis of green plants, algae and cyanobacteria, but other microorganisms are also important concerning autotrophy; i.e. autotrophic microorganisms can be found in most bacterial groups (Eubacteria) and there are even numerous representatives within the Archaea.
    [Show full text]
  • Revisiting the Taxonomy of Allorhizobium Vitis (Ie
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.19.423612; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Revisiting the taxonomy of Allorhizobium vitis (i.e. Agrobacterium vitis) using genomics - emended description of All. vitis sensu stricto and description of Allorhizobium ampelinum sp. nov. Nemanja Kuzmanović1,*, Enrico Biondi2, Jörg Overmann3, Joanna Puławska4, Susanne Verbarg3, Kornelia Smalla1, Florent Lassalle5,6,* 1Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany 2Alma Mater Studiorum - University of Bologna, Viale G. Fanin, 42, 40127 Bologna, Italy 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany 4Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland 5Imperial College London, St-Mary’s Hospital campus, Department of Infectious Disease Epidemiology, Praed Street, London W2 1NY, UK; Imperial College London, St-Mary’s Hospital campus, MRC Centre for Global Infectious Disease Analysis, Praed Street, London W2 1NY, United Kingdom 6Wellcome Sanger Institute, Pathogens and Microbes Programme, Wellcome Genome Campus, Hinxton, Saffron Walden, CB10 1RQ, United Kingdom *Corresponding authors. Contact: [email protected], [email protected] (N. Kuzmanovid); [email protected] (F. Lassalle) bioRxiv preprint doi: https://doi.org/10.1101/2020.12.19.423612; this version posted December 21, 2020.
    [Show full text]
  • Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides
    H OH metabolites OH Review Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides Yaojie Guo , Jens C. Frisvad and Thomas O. Larsen * Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark; [email protected] (Y.G.); [email protected] (J.C.F.) * Correspondence: [email protected]; Tel.: +45-4525-2632 Received: 12 May 2020; Accepted: 8 June 2020; Published: 15 June 2020 Abstract: Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed. Keywords: oxepine; nonribosomal peptides; bioactivity; biosynthesis; fungi; Aspergillus 1. Introduction Nonribosomal peptides (NRPs), mostly found in bacteria and fungi, are a class of peptidyl secondary metabolites biosynthesized by large modularly organized multienzyme complexes named nonribosomal peptide synthetases (NRPSs) [1]. These products are amongst the most structurally diverse secondary metabolites in nature; they exhibit a broad range of activities, which have been exploited in treatments such as the immunosuppressant cyclosporine A and the antibiotic daptomycin [2,3].
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Download Full Article in PDF Format
    Cryptogamie,Mycologie, 2009, 30 (4): 363-376 © 2009 Adac. Tous droits réservés Composition and characterization of fungal communities from different composted materials SusanaTISCORNIAa, Carlos SEGUÍ a &LinaBETTUCCIa* aLaboratorio de Micología. Facultad de Ciencias-Facultad de Ingeniería. Universidad de la República. Julio Herrera y Reissig 565,Montevideo,Uruguay Résumé – L’analyse des communautés de champignons provenant des composts préparés avec différentes matières premières a été menée pour évaluer l’abondance et la fréquence des espèces qui pourraient constituer un risque pour les plantes, les animaux ou la santé humaine. Un total de 40 405 × 103 propagules correspondant à 90 espèces a été dénombré dans 30 échantillons de deux composts de composition différente. Douze de ces espèces sont thermo-tolérantes, trois sont thermophiles et les autres sont des espèces mésophiles. Acrodontium crateriforme, est l’espèce la plus abondante, présente dans presque la moitié des échantillons de compost préparé principalement à partir de déchets de poils de l’industrie du cuir. D’autres espèces, Aspergillus spp, Monocillium mucidum, Penicillium spp. Paecilomyces variotii, Candida sp. et Humicola grisea var. thermoidea étaient aussi présentes. Le compost composé de déchets de Ligustrum et d’écorces de riz mélangés avec des déjections de poulets est caractérisé par la présence de Aspergillus fumigatus, espèce présente dans presque tous les échantillons, et par Penicillium spp., Fusarium spp., Emericella nidulans, Emericella rugulosa et Humicola fuscoatra. Toutes ces espèces ont été mentionnées dans d’autres composts de différentes origines. Plusieurs d’entre elles sont importantes dans la biodégradation et d’autres sont des antagonistes vis-à-vis des agents pathogènes. Les deux composts peuvent être utilisés séparément ou ensembles pour améliorer la nutrition du sol et participer à la lutte biologique.
    [Show full text]
  • Biocontrol of Crown Gall by Rhizobium Rhizogenes
    agronomy Case ReportReport Biocontrol of Crown Gall byby RhizobiumRhizobium rhizogenesrhizogenes:: Challenges in Biopesticide Commercialisation 1 2, Allen Kerr 1 and Gary Bullard 2,** 1 Department of Plant Pathology, University of Adelaide, Adelaide, SA 5064, Australia; [email protected] 1 Department of Plant Pathology, University of Adelaide, Adelaide SA 5064, Australia; [email protected] 2 Bio-Care Technology Pty Ltd., Myocum, NSW 2481, Australia 2 Bio-Care Technology Pty Ltd., Myocum NSW 2481, Australia * Correspondence: [email protected] * Correspondence: [email protected] Received: 18 June 2020 2020;; Accepted: 30 July 2020 2020;; Published: 3 3 August August 2020 2020 Abstract: The biocontrolbiocontrol of crown gall has been practisedpractised in AustraliaAustralia for 4848 years.years. Control is so eefficientfficient thatthat itit is is di difficultfficult to to find find a galleda galled stone stone fruit fruit tree, tree, when when previously, previously, crown crown gall had gall been had abeen major a problem.major problem. This paper This explainspaper explains how it works how andit works why onlyand pathogenswhy only arepathog inhibited.ens are A inhibited. commercial A biopesticidecommercial biopesticide is available inis Australia,available in Canada, Australia, Chile, Canada, New Zealand,Chile, New Turkey, Zealand, the USA, Turkey, South the Africa USA, andSouth Japan. Africa The and challenges Japan. The of commercialisingchallenges of commercialising a biopesticide area biopesticide outlined. Rigid
    [Show full text]
  • AAA Vol 2 CD.Indb
    Isolation and Identification of Cold-Adapted Fungi in the Fox Permafrost Tunnel, Alaska Mark P. Waldrop United States Geological Survey, Geologic Division, Menlo Park, CA, USA Richard White III United States Geological Survey, Geologic Division, Menlo Park, CA, USA Thomas A. Douglas Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA Abstract Permafrost microbiology is important for understanding biogeochemical processes, paleoecology, and life in extreme environments. Within the Fox, Alaska, permafrost tunnel, fungi grow on tunnel walls despite below freezing (-3°C) temperatures for the past 15,000 years. We collected fungal mycelia from ice, Pleistocene roots, and frozen loess. We identified the fungi by PCR, amplifying the ITS region of rRNA and searching for related sequences. The fungi within the tunnel were predominantly one genus, Geomyces, a cold-adapted fungi, and has likely “contaminated” the permafrost tunnel from outside. We were unable to obtain DNA or fungal isolates from the frozen loess, indicating fungal survival in permafrost soils can be strongly restricted. Geomyces can degrade complex carbon compounds, but we are unable to determine whether this is occurring. Results from this study suggest Geomyces may be an important colonizer species of other permafrost environments. Keywords: Fox tunnel; fungi; Geomyces; ice wedge; loess; permafrost. Introduction starts to melt and then sublimate. Therefore, when a hole is drilled, moisture is liberated, and fungal growth at these sites The permafrost tunnel near Fox, Alaska, was constructed should be possible. in the early 1960s to examine mining, tunneling, and Our research objective was to determine the identity of the construction techniques in permafrost.
    [Show full text]
  • The Role of Intestinal Fungi and Its Metabolites in Chronic Liver Diseases
    Gut and Liver, Vol. 14, No. 3, May 2020, pp. 291-296 Review The Role of Intestinal Fungi and Its Metabolites in Chronic Liver Diseases Ningning You1, Lili Zhuo1, Jingxin Zhou1, Yu Song2, and Junping Shi1 1Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, and 2Department of Liver Diseases, Zhejiang Chinese Medical University, Hangzhou, China Current studies have confirmed that liver diseases are cades have documented an important role for intestinal bacteria closely related to intestinal microorganisms; however, those in liver diseases. Growing evidences indicate that like the bac- studies have mainly concentrated on bacteria. Although the teria, the intestinal fungi are also closely associated with liver proportion of intestinal microorganisms accounted for by col- disease. onizing fungi is very small, these fungi do have a significant Intestinal fungi, as an important part of intestinal micro- effect on the homeostasis of the intestinal microecosystem. ecology, though the proportion is very low, its role in human In this paper, the characteristics of intestinal fungi in patients health and disease cannot be ignored. Under physiological con- with chronic liver diseases such as alcoholic liver disease, ditions, a variety of components on fungal cell wall (including nonalcoholic fatty liver disease and cirrhosis are summa- β-glucan, zymosan, mannan, chitosan, DNA, and RNA) can be rized, and the effects of intestinal fungi and their metabolites recognized by host cells to activate innate and acquired immu- are analyzed and discussed. It is important to realize that not nity. The reaction inhibits the overgrowth of the intestinal fungi only bacteria but also intestinal fungi play important roles in or the colonization of exogenous pathogens.
    [Show full text]
  • Neonatal Septicemia Caused by a Rare Pathogen: Raoultella Planticola
    Chen et al. BMC Infectious Diseases (2020) 20:676 https://doi.org/10.1186/s12879-020-05409-5 CASE REPORT Open Access Neonatal septicemia caused by a rare pathogen: Raoultella planticola - a report of four cases Xianrui Chen1,2,3, Shaoqing Guo1,2,3* , Dengli Liu1,2,3 and Meizhen Zhong1,2,3 Abstract Background: Raoultella planticola(R.planticola) is a very rare opportunistic pathogen and sometimes even associated with fatal infection in pediatric cases. Recently,the emergence of carbapenem resistance strains are constantly being reported and a growing source of concern for pediatricians. Case presentation: We reported 4 cases of neonatal septicemia caused by Raoultella planticola. Their gestational age was 211 to 269 days, and their birth weight was 1490 to 3000 g.The R. planticola infections were detected on the 9th to 27th day after hospitalizationandoccuredbetweenMayandJune.They clinically manifested as poor mental response, recurrent cyanosis, apnea, decreased heart rate and blood oxygen, recurrent jaundice, fever or nonelevation of body temperature. The C-reactive protein and procalcitonin were elevated at significantly in the initial phase of the infection,and they had leukocytosis or leukopenia. Prior to R.planticola infection,all of them recevied at least one broad-spectrum antibiotic for 7- 27d.All the R.planticola strains detected were only sensitive to amikacin, but resistant to other groups of drugs: cephalosporins (such as cefazolin, ceftetan,etc) and penicillins (such as ampicillin-sulbactam,piperacillin, etc),and even developed resistance to carbapenem. All the infants were clinically cured and discharged with overall good prognosis. Conclusion: Neonatal septicemia caused by Raoultella planticola mostly occured in hot and humid summer, which lack specific clinical manifestations.
    [Show full text]