A Manual of in Situ Conservation Edited by Danny Hunter and Vernon Heywood

Total Page:16

File Type:pdf, Size:1020Kb

A Manual of in Situ Conservation Edited by Danny Hunter and Vernon Heywood ES_CWR_30-11 30/11/10 14:32 Page i Crop Wild Relatives ES_CWR_30-11 30/11/10 14:32 Page ii Issues in Agricultural Biodiversity This series of books is published by Earthscan in association with Bioversity International.The aim of the series is to review the current state of knowledge in topical issues in agricultural biodiversity, to identify gaps in our knowledge base, to synthesize lessons learned and to propose future research and development actions.The overall objective is to increase the sustainable use of biodiversity in improving people’s well-being and food and nutrition security.The series’ scope is all aspects of agricultural biodiversity, ranging from conservation biology of genetic resources through social sciences to policy and legal aspects. It also covers the fields of research, education, communication and coordination, information management and knowledge sharing. Published Titles: Crop Wild Relatives: A Manual of in situ Conservation Edited by Danny Hunter and Vernon Heywood The Economics of Managing Crop Diversity On-farm: Case Studies from the Genetic Resources Policy Initiative Edited by Edilegnaw Wale, Adam G. Drucker and Kerstin K. Zander Forthcoming in 2011: Plant Genetic Resources and Food Security Stakeholder Perspectives on the International Treaty on Plant Genetic Resources for Food and Agriculture Edited by Christine Frison, Francisco López and José T.Esquinas Farmers’ Crop Varieties and Farmers’ Rights: Challenges in Taxonomy and Law Edited by Michael Halewood Crop Genetic Resources as a Global Commons: Challenges in International Law and Governance Edited by Michael Halewood, Isabel López Noriega and Selim Louafi ES_CWR_30-11 30/11/10 14:32 Page iii Crop Wild Relatives A Manual of in situ Conservation Edited by Danny Hunter and Vernon Heywood London • Washington, DC ES_CWR_30-11 2/12/10 10:54 Page iv First published in 2011 by Earthscan For a full list of Earthscan publications please contact: Earthscan 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN 711 Third Avenue, New York, NY, 10017, USA Earthscan is an imprint of the Taylor & Francis Group, an informa business Copyright © Bioversity International, 2011 All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Notices: Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data Crop wild relatives : a manual of in situ conservation / edited by Danny Hunter and Vernon Heywood. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-1-84971-178-4 (hardback) – ISBN 978-1-84971-179-1 (pbk.) 1. Crops–Germplasm resources. 2. Germplasm resources, Plant. 3. Genetic resources conservation. I. Hunter, Danny. II. Heywood,V. H. (Vernon Hilton), 1927- SB123.3.C769 2010 333.95'3416–dc22 2010023826 ISBN-13: 978-1-84971-178-4 (hbk) ISBN-13: 978-1-84971-179-1 (pbk) Typeset by MapSet Ltd, Gateshead, UK Cover design by Adam Bohannon ES_CWR_30-11 30/11/10 14:32 Page v Contents Acknowledgements and contributors vii Foreword xvii Preface xix List of acronyms and abbreviations xxiii Part I: Introduction 1 Introductory and background material 3 2 Crop wild relatives in the project countries 31 3 What do we mean by in situ conservation of CWR? 47 Part II: Conservation Planning 4 Planning for CWR conservation and partnership building 71 5 Participatory approaches for CWR in situ conservation 87 6 Developing national CWR strategies and action plans 109 7 Selection and prioritization of species/populations and areas 129 8 Establishing an information baseline: Ecogeographic surveying 169 Part III: Conservation Actions 9 Protected areas and CWR conservation 211 10 Species and population management/recovery plans 231 11 Conservation strategies for species/populations occurring outside protected areas 253 12 Complementary conservation actions 275 13 Monitoring of areas and species/populations to assess effectiveness of conservation/management actions 295 ES_CWR_30-11 2/12/10 10:46 Page vi vi Crop Wild Relatives Part IV: Other Major Issues 14 Adapting to global change 317 15 Capacity building 335 16 Communication, public awareness and outreach 355 Annexes I CWR species for which field data were collected in Bolivia during 2006–2009, by institution 377 II Monitoring plan for cereal crop wild relatives in Erebuni State Reserve 383 III Management plan for Amygdalus bucharica in the Chatkal Biosphere State Reserve, Uzbekistan 387 Index of organisms 393 General index 399 ES_CWR_30-11 30/11/10 14:32 Page vii Acknowledgements and Contributors This book is the result of the combined efforts of many people who were closely involved with the UNEP/GEF Crop Wild Relatives Project since its beginning in 2004. It has involved significant contributions from individuals representing national and international organizations who collaborated closely with the project. Their dedication and commitment to the implementation of the project and the realization of this manual is gratefully recognized and appreciated. Editors The compilers and editors of the book were: Danny Hunter, senior scientist and global project coordinator of the UNEP/GEF Crop Wild Relatives Project, Bioversity International, Rome, Italy Vernon Heywood, Professor Emeritus, Centre for Plant Diversity and Systematics, School of Biological Sciences, University of Reading, United Kingdom Chapter authors Danny Hunter was the lead author for Chapters 4, 5, 15 and 16;Vernon Heywood was the lead author for Chapters 1–3, 6–11, 13 and 14; Ehsan Dulloo was the lead author for Chapter 12. The editors would like to thank the following chapter co-authors for their contri- butions to the chapters indicated: Per G. Rudebjer, scientist, education and capacity development, Bioversity International, Rome, Italy (co-author, Chapter 15) Elizabeth Goldberg, head, capacity development unit, Bioversity International, Rome, Italy (co-author, Chapter 15) Ruth Raymond, head, public awareness unit, Bioversity International, Rome, Italy (co-author, Chapter 16) ES_CWR_30-11 30/11/10 14:32 Page viii viii Crop Wild Relatives Ehsan Dulloo, senior scientist, agricultural biodiversity conservation, under- standing and managing biodiversity programme, Bioversity International, Rome, Italy (contributor to Chapter 8) Many individuals have contributed boxes, tables and illustrations which, where possible, are clearly acknowledged in the text in the appropriate place. In particu- lar, the book has benefited considerably from the dedication and contributions of the national project coordinators responsible for the implementation of project activities in the five participating countries: Armen Danielyan, national project coordinator, Crop Wild Relatives Project, Yerevan, Armenia Jeannot Ramelison, national project coordinator, Crop Wild Relatives Project, Centre National de la Recherche Appliquée au Développement Rural – FOFIFA, Antananarivo, Madagascar Beatriz Zapata Ferrufino, national project coordinator, Crop Wild Relatives Project, Ministry for the Environment and Water,Vice-Ministry for Environment, Biodiversity and Climate Change, La Paz, Bolivia Anura Wijesekara, national project coordinator, Crop Wild Relatives Project, Horticulture Crops Development and Research Institute, Peredeniya, Sri Lanka Sativaldi Djataev, national project coordinator, Crop Wild Relatives Project, Institute of Genetics and Plant Experimental Biology, Academy of Sciences, Republic of Uzbekistan,Tashkent, Uzbekistan Figure A.1 The national project coordinators for the Crop Wild Relatives Project from left to right, Armen Danielyan, Jeannot Ramelison, Beatriz Zapata Ferrufino, Anura Wijesekara and Sativaldi Djataev Source: Sativaldi Djataev ES_CWR_30-11 30/11/10 14:32 Page ix Acknowledgements and Contributors ix Case study and other contributors Teresa Borelli, Bioversity International, Italy;Vololoniaina Jeannoda, University of Antananarivo, Madagasacar; Tianjanahary Randriamboavonjy, RBG Kew, Antananarivo Madagascar, R.S.S. Ratnayake, Biodiversity Secretariat, Ministry of Environment and Natural Resources, Sri Lanka; Bhuwon Sthapit, Bioversity International, India; Feruza Mustafina and Gulayim Reimova, UNEP/GEF CWR Project, Uzbekistan; Naire Yeritsyan, UNEP/GEF CWR Project, Armenia; Janna Akopian, Institute of Botany of the National Academy of Sciences, Armenia; Siranush Muradyan, Bioresources Management Agency of the Ministry of Nature Protection, Armenia; Wendy Leslie Tejeda Perez, CWR Bolivia Project Assistant, Bolivia; Saul Cuellar from FAN-Bolivia. The contributions of the following individuals, researchers, national executing agency and national partner organizations to the successful outcomes of the UNEP/GEF Crop Wild Relatives Project are gratefully acknowledged, some of which are captured in this manual. Armenia Siranush Muradyan, Ministry
Recommended publications
  • Protected Areas and the Challenge of Conserving Crop Wild Relatives
    PARKS 2012 Vol 18.1 PROTECTED AREAS AND THE CHALLENGE OF CONSERVING CROP WILD RELATIVES Danny Hunter1*, Nigel Maxted2, Vernon Heywood3, Shelagh Kell2 and Teresa Borelli1 * Corresponding author, [email protected] 1 Bioversity International, Rome, Italy 2 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom 3 School of Biological Sciences, University of Reading, Reading RG6 6AS, United Kingdom ABSTRACT Crop wild relatives are a critical resource for sustaining future food security. It is widely recognized that many of the world’s protected areas contain CWR diversity. Despite this, it has not yet proved possible to undertake significant actions to conserve the CWR they contain. Many challenges and obstacles need to be addressed in order to improve this situation. Recent initiatives have started to address these challenges and uncovered some key lessons. Still, the need for action is urgent and the paper concludes by drawing attention to the need for a global approach to conserving priority and threatened CWR in the wild. INTRODUCTION worth noting that the same study found breeders’ use of CWR taxa was increasing year on year, even though it Crop wild relatives (CWR) - wild plant species closely was recognized that they were still far from being related to crops to which they may contribute beneficial systematically exploited. genes - constitute an enormous reservoir of genetic variation for crop improvement and are an important Some idea of the scale of benefits may be obtained from socio-economic resource. Genes from wild plants have published estimates referring to a selected number of provided crops with resistance to many pests and crops.
    [Show full text]
  • Taxonomy, Morphology and Palynology of Aegilops Vavilovii (Zhuk.) Chennav
    African Journal of Agricultural Research Vol. 5(20), pp. 2841-2849, 18 October, 2010 Available online at http://www.academicjournals.org/AJAR ISSN 1991-637X ©2010 Academic Journals Full Length Research Paper Taxonomy, morphology and palynology of Aegilops vavilovii (Zhuk.) Chennav. (Poaceae: Triticeae) Evren Cabi1* Musa Doan1 Hülya Özler2, Galip Akaydin3 and Alptekin Karagöz4 1Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. 2Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop Turkey. 3Department of Biology Education, Hacettepe University, 06800 Ankara, Turkey. 4Department of Biology, Aksaray University, Aksaray, Turkey. Accepted 23 September, 2010 Aegilops vavilovii (Zhuk.) Chennav., a rare species, was collected from Southeast Anatolia, Turkey. During the field studies of the project “Taxonomic revision of Tribe Triticeae in Turkey”, Ae. vavilovii was accidentally recollected from three localities in anliurfa and Mardin provinces in 2007 and 2008, respectively. The main objective of this study is to shed light on the diagnostic characteristics of this rare species including its morphological, palynological and micro morphological features. Moreover, an emended and expanded description, distribution, phenology and ecology of this rare species are also provided. A. vavilovii and A. crassa are naturally found in the Southeastern part of Turkey and they share similar morphological features that caused a confused taxonomy. Pollen grains of A. vavilovii are heteropolar, monoporate and spheroidal (A/B: 1,13) typically as Poaceous. However, it generally, prefers clayish loam soils that are slightly alkaline (pH 7.7) with low organic content (1.54%). Although it is a rare species with very narrow area of distribution, very few samples have been represented in ex situ collections and the species has not been involved in any in situ conservation activities to save its genetic resources in Turkey.
    [Show full text]
  • Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity
    plants Review Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity Samuel Pironon 1,*, James S. Borrell 1, Ian Ondo 1, Ruben Douglas 1, Charlotte Phillips 2, Colin K. Khoury 3,4 , Michael B. Kantar 5 , Nathan Fumia 5 , Marybel Soto Gomez 6,7 , Juan Viruel 1 , Rafael Govaerts 1 ,Félix Forest 1 and Alexandre Antonelli 1,8 1 Royal Botanic Gardens, Kew, Richmond TW93AQ, UK; [email protected] (J.S.B.); [email protected] (I.O.); [email protected] (R.D.); [email protected] (J.V.); [email protected] (R.G.); [email protected] (F.F.); [email protected] (A.A.) 2 Royal Botanic Gardens, Kew, Wakehurst Place TW93AE, UK; [email protected] 3 International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia; [email protected] 4 Department of Biology, Saint Louis University, St. Louis, MO 63103, USA 5 Department of Tropical Plant and Soil Science, University of Hawaii at Manoa, Honolulu, HI 96822, USA; [email protected] (M.B.K.); [email protected] (N.F.) 6 Department of Botany, University of British Columbia, Vancouver, BC V6T1Z4, Canada; [email protected] 7 UBC Botanical Garden and Centre for Plant Research, University of British Columbia, Vancouver, BC V6T1Z4, Canada 8 Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Göteborg, Sweden * Correspondence: [email protected] Received: 17 July 2020; Accepted: 27 August 2020; Published: 31 August 2020 Abstract: Global biodiversity hotspots are areas containing high levels of species richness, endemism and threat. Similarly, regions of agriculturally relevant diversity have been identified where many domesticated plants and animals originated, and co-occurred with their wild ancestors and relatives.
    [Show full text]
  • Crop Wild Relatives: Plant Conservation for Food Security
    Natural England Research Report NERR037 Crop Wild Relatives: Plant conservation for food security www.naturalengland.org.uk Natural England Research Report NERR037 Crop Wild Relatives: Plant conservation for food security John Hopkins1 and Nigel Maxted2 1Natural England 2University of Birmingham Published on 25 January 2011 © Natural England copyright 2011 ISSN 1754-1956 This material is subject to Natural England copyright protection under the Copyright Designs and Patents Act 1988. Natural England copyright protected material (other than Natural England logos) may be reproduced free of charge in any format or medium for non-commercial purposes, private study, criticism, review, news reporting and for internal circulation within your organisation. This is subject to the material being reproduced accurately and not used in a misleading context. Where any of the Natural England copyright material is being republished or copied to others, the source of the material must be identified and the copyright status acknowledged. However, if you wish to use all or part of this information for commercial purposes, including publishing you will need to apply for a licence. Applications can be sent to: Publications Natural England 3rd Floor, Touthill Close, City Road Peterborough PE1 1XN Tel: 0845 600 3078 Fax: 01733 455103 Email: [email protected] Crop Wild Relatives: Plant conservation for food security i Project details This report is a review of the scientific literature relating to Crop Wild Relatives and related aspects of crop genetic diversity conservation, carried out by the authors. A summary of the findings covered by this report, as well as Natural England's views on this research, can be found within Natural England Research Information Note RIN037 – Crop Wild Relatives: Plant conservation for food security.
    [Show full text]
  • Botanic Gardens Are Important Contributors to Crop Wild Relative Preservation
    Published November 21, 2019 RESEARCH Botanic Gardens Are Important Contributors to Crop Wild Relative Preservation Abby Meyer* and Nicholas Barton Botanic Gardens Conservation International US at at The Huntington ABSTRACT Library, Art Museum, and Botanical Gardens, 1151 Oxford Rd., San Humans rely on crop wild relatives (CWRs) for Marino, CA 91108. Received 2 June 2019. Accepted 11 Oct. 2019. sustainable agriculture and food security through *Corresponding author ([email protected]). Assigned to Associate augmentation of crop yield, disease resistance, Editor Joseph Robins. and climatic tolerance, among other important Abbreviations: BGCI, Botanic Gardens Conservation International; traits. Many CWRs are underrepresented in crop CWR, crop wild relative; GRIN, Germplasm Resources Information gene banks. With at least one-third of known Network. plant species maintained in botanic garden living collections, the botanic garden community serves as an important global ex situ network rop wild relatives (CWRs), plants that have “an indirect that supports plant conservation and research Cuse derived from its relatively close genetic relationship to a around the world. We sought to characterize crop,” provide important genetic diversity needed by breeders and botanic garden holdings of CWRs and demon- scientists to develop a wide range of crop plant adaptations (Maxted strate capacity for cross-sector coordination in et al., 2006, p. 2680). Benefits such as increased production, better support of CWR ex situ preservation. To do this, nutrition, drought tolerance, and pest and disease resistance have Botanic Gardens Conservation International been made possible through the use of CWRs and allowed for US (BGCI-US), in partnership with the United more consistent and sustainable yields of conventional crops for States Botanic Garden, used the BGCI Plant- Search database to conduct an ex situ survey of decades (Dempewolf et al., 2017; Guarino and Lobell, 2011; Hajjar CWRs maintained in botanic gardens.
    [Show full text]
  • Developing Methodologies for the Global in Situ Conservation of Crop
    Developing methodologies for the global in situ conservation of crop wild relatives By Holly A. Vincent A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham June 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Climate change is predicted to have far-reaching deleterious impacts worldwide; agriculture in particular is expected to be effected by significant loss of suitable land and crop yields in the world’s most populous and poorest regions. Crop wild relatives (CWR) are a rich source of underutilised genetic diversity which could help to mitigate climate change for agriculture through breeding new resilient varieties. However, CWR are under-conserved and threatened in the wild. This thesis researches and develops systematic methodologies to advance knowledge and support action on in situ CWR conservation at the global level. Methods included developing a global inventory of CWR associated with crops important for food security worldwide, species distribution modelling, climate change analysis, in situ gap analysis, reserve planning and prioritisation, and, examining the congruence of CWR distributions with regions of high biodiversity and crop diversity.
    [Show full text]
  • Aegilops Triuncialis Subsp. Bozdagensis (Poaceae), a New Subspecies from South-Western Turkey
    Aegilops triuncialis subsp. bozdagensis (Poaceae), a new subspecies from South-Western Turkey Evren CABİ*1, Burçin EKİCİ2, Musa DOĞAN3 1Department of Biology, Faculty of Arts and Sciences, Namık Kemal University, 59030, Tekirdağ, Turkey. 2Department of Landscape Architecture, Faculty of Fine Arts, Design and Architecture, Namık Kemal University, 59030, Tekirdağ, Turkey. 3Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. *Corresponding author: [email protected] Abstract: A new subspecies Aegilops triuncialis L. subsp. bozdagensis Cabi & Doğan, is described and illustrated. This new subspecies is confined to Denizli, Acıpayam, Bozdağ in southwestern Anatolia. It differs from the other two subspecies of Ae. triuncialis subsp. triuncialis and Ae. triuncialis subsp. persica, by its unawned glumes of the lateral spikelets. Concerning the new subspecies, IUCN red list category, distribution map, notes on its biogeography and ecology are given. An identification key of the subspecies of Ae. triuncialis is also provided. Keywords: Aegilops, Poaceae, New subspecies, Turkey. Introduction 2009 and collected a large number of specimens for The genus Aegilops L. consists of ca. 25 species in the revising the genus Aegilops. In addition, population size, world. It constitutes the primary and secondary gene pool phenological traits and ecological preferences of the for cultivated wheats (van Slageren, 1994; Cabi, 2010). species in the genus were observed during the field Species in the genus are distributed in Southwest and studies. Particular attention was paid to Aegilops Central Asia and throughout the Mediterranean basin. A specimens collected from Bozdağ Mountain, Southwest primary center of diversity of the Aegilops is considered Anatolia (B2 Denizli sensu Davis, 1965) in 2007.
    [Show full text]
  • Crop Wild Relatives
    Crop wild relatives The Crop Wild Relatives Project The benefits of foods from the forests The value of wild relatives Managing Editor Contents Ruth D. Raymond An introduction to crop wild relatives 1 ssistant Managing Editor The Crop Wild Relatives Project 2 Cassandra Moore Use crop wild relatives or lose them! 3 Intern Kelly Wagner Wild foods are rich in micronutrients 4 Design & layout The benefits of foods from the forests 5 Patrizia Tazza Frances Ferraiuolo The value of wild relatives 6 Cover Photo Bringing crop relatives to the public 7 The wild relatives of banana could provide solutions for Spicy wild relatives get some respect 8 improving the crop, which is notoriously difficult to breed. The importance of wild bananas in Sri Lanka 9 Karen Robinson/Panos Wild relatives offer new lease on life to an ancient grain 10 Pictures Global conference maps out future for wild relatives 11 © Bioversity International 2006 Regional catalogue supports national strategies 12 Reprinted from Geneflow 2006. Putting diversity back into wheat 13 Protecting the wild relatives of walnut 14 Saving Central Asia's pistachio diversity 15 Ask the old women 16 Tapping the potential of medicinal and aromatic plants in northern Europe 17 Climate change threatens wild relatives with extinction 18 This publication was Wild potato relative may blunt late blight 19 supported by the UNEP/GEF On the rocks 20 project "In situ conservation of crop wild relatives through Spreading the word about wild relatives 21 enhanced information management and field Wild relatives could help boost berry market 22 application." Groundnut relatives hit the spot 23 Glossary 24 n introduction to crop wild relatives Crop wild relatives include value of some crops, crop ancestors as well as including protein content other species more or less in durum wheat, calcium closely related to crops.
    [Show full text]
  • Section A. Crop Wild Relatives A.1
    SECTION A. CROP WILD RELATIVES A.1. Introduction What are crop wild relatives? Crop wild relatives (CWR) are taxa closely related to crops and are defined by their potential ability to contribute beneficial traits for crop improvement; for example, to confer resistance to pests and diseases, improve tolerance to environmental conditions such as extreme temperatures, drought and flooding, and to improve nutrition, flavour, colour, texture and handling qualities . A working definition of a CWR based on the Gene Pool concept or, in the 1 absence of crossing and genetic diversity information, the Taxon Group concept , has been proposed: ‘‘A crop wild relative is a wild plant taxon that has an indirect use derived from its relatively close genetic relationship to a crop; this relationship is defined in terms of the CWR belonging to gene pools 1 or 2, or taxon groups 1 to 4 of the crop’’. Pyrus salicifolia Pall., a wild relative of pear (P. pyraster Burgsd.), in Naxcıvan, Azerbaijan. This species grows in very dry and rocky areas; in some places the seeds of P. salicifolia are used to obtain the rootstock for local varieties of pears (photo: Mirza Musayev). Genetic erosion is a key problem for CWR. What is genetic erosion? Genetic erosion is a fundamental problem for CWR and has been referred to in the literature as the permanent reduction in richness (total number of alleles) or evenness (i.e. spread of allelic diversity)3 of common local alleles, or the loss of combinations of alleles over time in a defined area4. Genetic erosion can affect wild populations conserved in situ and ex situ collections (i.e.
    [Show full text]
  • Crop Wild Relative Checklist and Inventory Descriptors V.1
    Crop wild relative checklist and inventory descriptors v.1 Bioversity International and University of Birmingham Crop wild relative checklist and inventory descriptors v.1 ii Crop wild relative checklist and inventory descriptors v.1 Bioversity International is a research-for-development organization working with partners worldwide to use and conserve agricultural and forest biodiversity for improved livelihoods, nutrition, sustainability and productive and resilient ecosystems. Bioversity International is working towards a world in which smallholder farming communities in developing countries of Africa, Asia and the Americas are thriving and sustainable. Bioversity International focuses on rain-fed farming systems, primarily managed by smallholder farmers, in areas where large-scale agriculture is not a viable option. Its research influences policy decisions and investment in agricultural research, from the local level to the global level. Bioversity International is a member of the CGIAR Consortium, a global partnership that unites organizations engaged in research for a food secure future. CGIAR research is dedicated to reducing rural poverty, increasing food security, improving human health and nutrition, and ensuring more sustainable management of natural resources. It is carried out by the 15 centers who are members of the CGIAR Consortium in close collaboration with hundreds of partner organizations, including national and regional research institutes, civil society organizations, academia, and the private sector. www.cgiar.org University of Birmingham is one of the leading research-based universities in the United Kingdom (UK). The School of Biosciences (within the College of Life and Environmental Sciences) has been a leading teaching and research centre for plant genetic resources (PGR) conservation and sustainable use since the 1960s.
    [Show full text]
  • Crop Wild Relatives in Europe Prioritizing Species for Conservation Action
    Funded by the Horizon 2020 Framework Programme of the European Union Crop wild relatives in Europe Prioritizing species for conservation action Shelagh Kell University of Birmingham, UK Eurosite/Farmer’s Pride webinar Crop wild relative conservation – adding value to Europe’s natural sites 23 June 2020 Europe’s valuable crop wild relative diversity § Europe is an important centre of diversity of many crops and their wild relatives and these crop wild relatives (CWR) are potential genetic resources for crop improvement and thus important for food, nutrition and economic security § Food crops with significant CWR diversity in the region include wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), sugar beet (Beta vulgaris L.), cabbage and other brassicas (Brassica L. spp. and allied genera), onion and other alliums (Allium L. spp.), asparagus (Asparagus officinalis L.), lettuce (Lactuca sativa L.) and apple (Malus domestica L.) § Forage and fodder crops with CWR in the Europe include annual meadow grass (Festuca pratensis), white clover (Trifolium repens), alfalfa (Medicago sativa L.) and common vetch (Vicia sativa L.) Maxted, N., Avagyan, A. Frese, L., Iriondo, J.M., Magos Brehm, J., Singer, A. and Kell, S.P. (2015) ECPGR Concept for in situ conservation of crop wild relatives in Europe. Wild Species Conservation in Genetic Reserves Working Group, European Cooperative Programme for Plant Genetic Resources, Rome, Italy. ecpgr.cgiar.org/fileadmin/templates/ecpgr.org/upload/WG_UPLOADS_PHASE_IX/WILD_SPECIES/Concept_for_in__situ_conservation_of_CWR_in_Europe.pdf
    [Show full text]
  • Crop Wild Relatives a Valuable Resource for Crop Development
    www.pwc.co.uk/valuations Crop wild relatives A valuable resource for crop development July 2013 Overview PwC have conducted a valuation exercise commissioned by Kew’s Millennium Seed Bank (‘MSB’), focused on estimating the current and potential indicative value of Crop Wild Relatives (‘CWRs’) in breeding new varieties resilient to biotic and abiotic factors. With the global population set to reach What are CWRs? i) Resistance to potato late blight Why was this study commissioned? approx. 9.6 billion by 20501, it is CWRs are the wild species closely related to Potato late blight is one of the most damaging The MSB sought to understand the current and reported that agricultural production crops and they have the potential to contribute 2 diseases for potato, and its negative economic potential value of CWRs in order to support will need to increase by 70% . In order 5 beneficial traits for crop improvement , such as impact is thought to be $3.5bn per year in their business case for increased investment to satisfy this demand, production will disease resistance or tolerance to drought. developed countries alone7. for the collection and research of CWR need to continue to grow at similar material. rates to that achieved in the past which They are viewed as a significant source of Resistance to late blight in the current includes the dramatic impact of the biodiversity for crop production and their use European potato varieties has been exclusively This study also allows the MSB and other Green Revolution3. Furthermore, due in the breeding of new crop varieties is likely derived from CWRs.
    [Show full text]