Dartseq-Based Analysis of Genomic Relationships Among Species of Tribe Triticeae Received: 2 July 2018 Ofong U
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy, Morphology and Palynology of Aegilops Vavilovii (Zhuk.) Chennav
African Journal of Agricultural Research Vol. 5(20), pp. 2841-2849, 18 October, 2010 Available online at http://www.academicjournals.org/AJAR ISSN 1991-637X ©2010 Academic Journals Full Length Research Paper Taxonomy, morphology and palynology of Aegilops vavilovii (Zhuk.) Chennav. (Poaceae: Triticeae) Evren Cabi1* Musa Doan1 Hülya Özler2, Galip Akaydin3 and Alptekin Karagöz4 1Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. 2Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop Turkey. 3Department of Biology Education, Hacettepe University, 06800 Ankara, Turkey. 4Department of Biology, Aksaray University, Aksaray, Turkey. Accepted 23 September, 2010 Aegilops vavilovii (Zhuk.) Chennav., a rare species, was collected from Southeast Anatolia, Turkey. During the field studies of the project “Taxonomic revision of Tribe Triticeae in Turkey”, Ae. vavilovii was accidentally recollected from three localities in anliurfa and Mardin provinces in 2007 and 2008, respectively. The main objective of this study is to shed light on the diagnostic characteristics of this rare species including its morphological, palynological and micro morphological features. Moreover, an emended and expanded description, distribution, phenology and ecology of this rare species are also provided. A. vavilovii and A. crassa are naturally found in the Southeastern part of Turkey and they share similar morphological features that caused a confused taxonomy. Pollen grains of A. vavilovii are heteropolar, monoporate and spheroidal (A/B: 1,13) typically as Poaceous. However, it generally, prefers clayish loam soils that are slightly alkaline (pH 7.7) with low organic content (1.54%). Although it is a rare species with very narrow area of distribution, very few samples have been represented in ex situ collections and the species has not been involved in any in situ conservation activities to save its genetic resources in Turkey. -
DISSERTAÇÃO José Roseno De Mendonça Filho.Pdf
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIÊNCIAS DEPARTAMENTO DE GENÉTICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Recife 2019 JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Dissertação apresentada ao Programa de Pós- Graduação em Ciências Biológicas, Área de Concentração Genética, da Universidade Federal de Pernambuco, como requisito para obtenção do título de mestre em Ciências Biológicas. Orientadora: Profa. Dra. Ana Maria Benko Iseppon Coorientadores: Profa. Dra. Ana Christina Brasileiro-Vidal Prof. Dr Jaílson Gitai dos Santos Frazão Recife 2019 JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas, Área de Concentração Genética, da Universidade Federal de Pernambuco, como requisito para obtenção do título de mestre em Ciências Biológicas. Aprovada em: 23/07/2019 COMISSÃO EXAMINADORA ___________________________________________ Profa. Dra. Ana Maria Benko Iseppon UFPE (Orientadora) ___________________________________________ Profa. Dra. Maria Betânia de Oliveira Melo UFPE (Membro Interno) ____________________________________________ Prof. Dr. Geyner Alves dos Santos Cruz UPE – Campus de Petrolina (Membro Externo) MEMBROS SUPLENTES ____________________________________________ -
Evaluation and Utilization of Biodiversity in Triticeae for Wheat Lmprovement
Utah State University DigitalCommons@USU Intermountain Herbarium of Utah State Herbarium Publications University 6-24-1994 Evaluation and Utilization of Biodiversity in Triticeae for Wheat lmprovement A. B. Damania University of California, Davis J. Valkoun University of California, Davis Follow this and additional works at: https://digitalcommons.usu.edu/herbarium_pubs Part of the Agriculture Commons, Food Science Commons, and the Plant Sciences Commons Recommended Citation Damania, A. B. and Valkoun, J., "Evaluation and Utilization of Biodiversity in Triticeae for Wheat lmprovement" (1994). Herbarium Publications. Paper 4. https://digitalcommons.usu.edu/herbarium_pubs/4 This Conference Paper is brought to you for free and open access by the Intermountain Herbarium of Utah State University at DigitalCommons@USU. It has been accepted for inclusion in Herbarium Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Evaluation and Utilization of Biodiversity in Triticeae for Wheat lmpr.ovement A. B. DAMANIA1 and J. VALKOUN International Center for Agricultural Research in the Dry Areas (I CARDA), PO Box 5466, Aleppo, Syria. 1Present address: Genetic Resources Conservation Program, University of California, Davis, CA 95616-8602, USA ABSTRACT A population structure of a species is defined as the totality of ecological and genetical relationships among To adapt new varieties to a wide spectrum of individual members which may co-evolve as a result of environments breeders and farmers have emphasized the gene exchange but may also diverge under localized forces need for broadening the current narrow genetic base of of evolutionary change Qain, 1975). Landraces and obsolete modern varieties of important cereal crops such as wheat cultivars are as a rule products of several years of crop and barley. -
Aegilops Triuncialis Subsp. Bozdagensis (Poaceae), a New Subspecies from South-Western Turkey
Aegilops triuncialis subsp. bozdagensis (Poaceae), a new subspecies from South-Western Turkey Evren CABİ*1, Burçin EKİCİ2, Musa DOĞAN3 1Department of Biology, Faculty of Arts and Sciences, Namık Kemal University, 59030, Tekirdağ, Turkey. 2Department of Landscape Architecture, Faculty of Fine Arts, Design and Architecture, Namık Kemal University, 59030, Tekirdağ, Turkey. 3Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. *Corresponding author: [email protected] Abstract: A new subspecies Aegilops triuncialis L. subsp. bozdagensis Cabi & Doğan, is described and illustrated. This new subspecies is confined to Denizli, Acıpayam, Bozdağ in southwestern Anatolia. It differs from the other two subspecies of Ae. triuncialis subsp. triuncialis and Ae. triuncialis subsp. persica, by its unawned glumes of the lateral spikelets. Concerning the new subspecies, IUCN red list category, distribution map, notes on its biogeography and ecology are given. An identification key of the subspecies of Ae. triuncialis is also provided. Keywords: Aegilops, Poaceae, New subspecies, Turkey. Introduction 2009 and collected a large number of specimens for The genus Aegilops L. consists of ca. 25 species in the revising the genus Aegilops. In addition, population size, world. It constitutes the primary and secondary gene pool phenological traits and ecological preferences of the for cultivated wheats (van Slageren, 1994; Cabi, 2010). species in the genus were observed during the field Species in the genus are distributed in Southwest and studies. Particular attention was paid to Aegilops Central Asia and throughout the Mediterranean basin. A specimens collected from Bozdağ Mountain, Southwest primary center of diversity of the Aegilops is considered Anatolia (B2 Denizli sensu Davis, 1965) in 2007. -
1 Wybrane Aspekty Postępu Biologicznego W Hodowli Pszenżyta
Postêpy Nauk Rolniczych nr 4/2011: 3–10 Wybrane aspekty postêpu biologicznego w hodowli pszen¿yta (× Triticosecale WITTM . ex A. C AMUS ) Mateusz Labudda 1, Joanna Machczyñska 1, Henryk Woœ 2, Piotr T. Bednarek 1 1 Zak³ad Biochemii i Fizjologii Roœlin, Instytut Hodowli i Aklimatyzacji Roœlin – Pañstwowy Instytut Badawczy, Radzików k/Warszawy, 05-870 B³onie 2 Hodowla Roœlin Strzelce Sp. z o.o. Grupa IHAR – PIB, Oddzia³ Borowo e-mail: [email protected] S³owa kluczowe: pszen¿yto, hodowla roœlin, postêp biologiczny Wstêp Nazwa botaniczna taksonu, który powsta³ w wyniku skrzy¿owania pszenicy z ¿ytem, brzmi × Triticosecale – od Triticum (pszenica) i Secale (¿yto). W Polsce zbo¿e to przyjê³o siê nazywaæ pszen¿ytem, a w œwiecie upowszechni³a siê nazwa triticale. Wed³ug Miêdzynarodowego Kodeksu Nomenklatury Botanicznej kluczow¹ rolê w ustaleniu autorstwa nazwy nowo opisywanego taksonu odgrywa nie tylko jej pierwsze przedstawienie w publikacji naukowej, ale równie¿ odpowiednie opisanie w formie diagnozy systematycznej. W przypadku pszen¿yta za pierwszego autora nazwy naukowej uznaje siê niemieckiego botanika Ludwiga Wittmacka. Jednak opisa³ on jedynie nazwê botaniczn¹ bez opisu taksonomicznego. Pe³nej diagnozy taksonomicznej wraz z podaniem nazwy naukowej dokona³a francuska botanik Aimée Antoinette Camus. W takim przypadku wed³ug zasad nazewnictwa botanicz- nego w pracach naukowych podaje siê skrót nazwiska drugiego autora, ewentualnie poprzedzony skrótem pierwszego i dopiskiem ‘ex’, dlatego te¿ nazwa pszen¿yta jako jednostki taksonomicznej brzmi × Triticosecale WITTM. ex A. C AMUS, gdzie znak mno¿enia wskazuje na miêdzyrodzajowego mieszañca. Pszen¿yto (× Triticosecale WITTM. ex A. C AMUS) wed³ug systemu Reveala – jed- nego z nowoczesnych systemów klasyfikacji roœlin okrytonasiennych nale¿y do klasy jednoliœcienne ( Liliopsida BRONGN.), podklasy komelinowe ( Commelinidae TAKHT.), nadrzêdu sitopodobne ( Juncanae TAKHT .), rzêdu wiechlinowce ( Poales SMALL), ro- 4 M. -
Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits from Aegilops Species Into Bread Wheat (Triticum Aestivum)
ORIGINAL RESEARCH published: 24 January 2019 doi: 10.3389/fpls.2018.01993 Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits From Aegilops Species Into Bread Wheat (Triticum aestivum) Alexandra M. Przewieslik-Allen 1*, Amanda J. Burridge 1, Paul A. Wilkinson 1, Mark O. Winfield 1, Daniel S. Shaw 1, Lorna McAusland 2, Julie King 2, Ian P. King 2, Keith J. Edwards 1 and Gary L. A. Barker 1 1 Life Sciences, University of Bristol, Bristol, United Kingdom, 2 Plant Sciences, Sutton Bonington Campus, Leicestershire, United Kingdom The genus Aegilops contains a diverse collection of wild species exhibiting variation Edited by: in geographical distribution, ecological adaptation, ploidy and genome organization. István Molnár, Centre for Agricultural Research Aegilops is the most closely related genus to Triticum which includes cultivated wheat, (MTA), Hungary a globally important crop that has a limited gene pool for modern breeding. Aegilops Reviewed by: species are a potential future resource for wheat breeding for traits, such as adaptation Parveen Chhuneja, Punjab Agricultural University, India to different ecological conditions and pest and disease resistance. This study describes Kentaro Yoshida, the development and application of the first high-throughput genotyping platform Kobe University, Japan specifically designed for screening wheat relative species. The platform was used to Pilar Hernandez, Instituto de Agricultura Sostenible screen multiple accessions representing all species in the genus Aegilops. Firstly, the (IAS), Spain data was demonstrated to be useful for screening diversity and examining relationships *Correspondence: within and between Aegilops species. Secondly, markers able to characterize and track Alexandra M. -
Alien Introgressions and Chromosomal Rearrangements Do Not Affect the Activity of Gliadin-Coding Genes in Hybrid Lines of Triticum Aestivum L
Вавиловский журнал генетики и селекции. 2018;22(5):507-514 Генетика растений DOI 10.18699/VJ18.388 ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ / ORIGINAL ARTICLE Alien introgressions and chromosomal rearrangements do not affect the activity of gliadin-coding genes in hybrid lines of Triticum aestivum L. × Aegilops columnaris Zhuk. A.Yu. Novoselskaya-Dragovich , A.A. Yankovskaya, E.D. Badaeva Vavilov Institute of General Genetics, RAS, Moscow, Russia Using chromosome C-banding and electrophoresis of Интрогрессии и хромосомные grain storage proteins, gliadins, 17 Triticum aestivum- перестройки не влияют на Aegilops columnaris lines with substitutions of активность глиадинкодирующих chromosomes of homoeologous groups 1 and 6 were examined. Based on their high polymorphism, gliadins генов в линиях гибридов Triticum were used to identify alien genetic material. For all of the aestivum L. × Aegilops columnaris Zhuk. lines examined, electrophoretic analysis of gliadin spectra confirmed substitution of wheat chromosomes 6A, 6D А.Ю. Новосельская-Драгович , А.А. Янковская, or 1D for the homoeologous Aegilops chromosomes of Е.Д. Бадаевa genomes Uс or Xс. The substitution manifested in the disappearance of the products of gliadin-coding genes Институт общей генетики им. Н.И. Вавилова Российской академии наук, on chromosomes 6A, 6D or 1D with the simultaneous Москва, Россия appearance of the products of genes localized on alien chromosomes of genomes Uс or Xс. Thus, Aegilops chromosomes were shown to be functionally active in Вид дикорастущей пшеницы Aegilops columnaris Zhuk. the alien wheat genome. The absence of alien genes представляет собой потенциальный источник новых генов, expression in the lines carrying a long arm deletion in важных для улучшения хозяйственно ценных признаков chromosome 6Xc suggested that the gliadin-coding пшеницы. -
Wheat Crop Germplasm Committee Report
WHEAT CROP GERMPLASM COMMITTEE REPORT 1996 Update I. INTRODUCTION World Production: Wheat is the leading crop in world production, with over 500 million metric tons harvested in 1995 (NAWG, 1995). World consumption continues to increase with production. Major country producers (approximately by rank in production) include China, Russia, the European Union (EU), the U.S., and India. The U.S. is the largest exporter, followed by the EU, Canada, and Australia. Regions with the largest imports are the EU, North America, and China. World stocks of wheat today are at their lowest level in many years. U.S. Production: U.S. production has declined steadily since the record year of 1981 when nearly 2.8 billion bushels were produced. Current production is below 2.2 billion bushels. One third of all wheat farmers harvest 85% of the wheat produced. Grain yields have averaged 37.4bu/ac so far in the 1990s, compared with 35.8 bu/ac in the 1980s. Ending Stocks of wheat have dropped from 1.9 billion bushels in 1985 to only 427 million bushels in 1995. Domestic Use: We consume about half of our own production, and of that 1.1 billion bushels (3 million bushels of wheat each day), approximately 80% is milled. The rest is used for livestock feed and industrial purposes. Baked goods, including bread, rolls, crackers, cookies, and other sweet goods represent the greatest value of consumption, followed by cereal, flour, and pasta products. The current grain classification system describes 5 different classes of wheat that are roughly related to milling and baking uses. -
Investigation of Chromosome Variation in Four Aegilops L. (Poaceae) Species and Populations in Iran
IUFS Journal of Biology Research Article IUFS J Biol 2015, 74(2): 9-16 Investigation of chromosome variation in four Aegilops L. (Poaceae) species and populations in Iran 1* 2 1 Sara Sadeghian , Seyed Mohsen Hesamzadeh Hejazi , Ahmad Hatami *1Research Division of Natural Resources Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran 2esearch Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran Abstract The genus Aegilops is one of the most important genera of the Poaceae family. It belongs to the tribe Triticeae with 12 species in Iran. The research karyological analyzed in 12 populations of 4 Aegilops species: A. umbellulata Zhuk., A. tauschii Coss., A. columnaris Zhuk. and, A. triuncialis L. were done. We used fresh grown root tips. Then α-bromonaphtaline, formaldehyde and chromium trioxide (1:1), 1 N NaOH and hematoxiline were used for pre- treatment, fixative, hydrolyser and chromosome staining agent, respectively. We used video Analysis system for each species with Micromeasure software. All populations in the secondary basic numbers were x=7. The ploidy levels were different. In A. tauschii and A. umbellulata were found 2n=14, and A. columnaris and A. triuncialis were found 2n=28. Detailed karyotype analysis allows us to group the different species and to postulate relationships among them. Keywords: Aegilops, Chromosome, Karyology, Poaceae, Populations *Corresponding Author: Sara Sadeghian (e-mail: [email protected]) (Received: 06.01.2016 Accepted: 26.10.2016 ) Introduction The genus Aegilops L. (Poaceae) is one of Barnhart 1992). Aegilops tauschii encompasses the wheat relatives with a wide distribution four morphological varieties, of which three, in Iran, and is capable of making different var. -
THE ROLE of Aegilops SPECIES in the ORIGIN and IMPROVEMENT of COMMON WHEAT
ACTA AGROBOTANICA Vol. 66 (4), 2013: 7–14 Reviews DOI: 10.5586/aa.2013.046 THE ROLE OF Aegilops SPECIES IN THE ORIGIN AND IMPROVEMENT OF COMMON WHEAT Roman Prażak University of Life Sciences in Lublin, Subdepartment of Plant Biology, Faculty of Agricultural Sciences Szczebrzeska 102, 22-400 Zamość, Poland e-mail: [email protected] Received: 22.04.2013 Abstract rust [9,10,11,12,13,14,15,16,17,18,19,20,21,22], to Some Aegilops species participated in wheat evolu- powdery mildew (Blumeria graminis) [23,24,25], tion playing a major role in wheat domestication and therefore to eyespot (Pseudocercosporella herpotrichoides) the genus Aegilops represents a big part of the additional gene [26,27], to tan spot (Pyrenophora tritici-repentis) [28], pool determining important traits of wheat. Breeders have been to nematodes and insects [29,30,31], and to pre-harvest using these genes for many years to produce improved cultivars. sprouting [32]; and tolerance for soil salinity, drought Wide crosses between its wild relatives are sources of desira- [33,34] and soil acidification [35,10]. ble characteristics for genetic improvement of common wheat. An example of the transfer of beneficial traits Triticum aestivum evolution and methods for transfer of alien from Aegilops species to cultivated wheat is the trans- material into wheat, briefly reviewed in this article, include in- location from Ae. ventricosa introduced in France to the corporation of the whole genomes, single chromosomes, small winter variety VPM1, conferring resistance – owing to chromosomal segments, single genes and cytoplasm substitu- tion in wheat. the genes Pch1 and Pch2 – to eyespot, caused by Pseu- docercosporella herpotrichoides [26]. -
Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits from Aegilops Species Into Bread Wheat (Triticum Aestivum)
Przewieslik-Allen, A. M., Burridge, A. J., Wilkinson, P. A., Winfield, M. O., Shaw, D. S., McAusland, L., King, J., King, I. P., Edwards, K. J., & Barker, G. L. A. (2019). Developing a high-throughput SNP-based marker system to facilitate the introgression of traits from Aegilops species into bread wheat (Triticum aestivum). Frontiers in Plant Science, 9(1993), [1993]. https://doi.org/10.3389/fpls.2018.01993 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.3389/fpls.2018.01993 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Frontiers at DOI: 10.3389/fpls.2018.01993. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ORIGINAL RESEARCH published: 24 January 2019 doi: 10.3389/fpls.2018.01993 Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits From Aegilops Species Into Bread Wheat (Triticum aestivum) Alexandra M. Przewieslik-Allen 1*, Amanda J. Burridge 1, Paul A. Wilkinson 1, Mark O. Winfield 1, Daniel S. Shaw 1, Lorna McAusland 2, Julie King 2, Ian P. King 2, Keith J. Edwards 1 and Gary L. A. Barker 1 1 Life Sciences, University of Bristol, Bristol, United Kingdom, 2 Plant Sciences, Sutton Bonington Campus, Leicestershire, United Kingdom The genus Aegilops contains a diverse collection of wild species exhibiting variation Edited by: in geographical distribution, ecological adaptation, ploidy and genome organization. -
Analysis of the B Chromosomes Undergoing Root-Specific Elimination During the Embryogenesis of Aegilops Speltoides
Analysis of the B chromosomes undergoing root-specific elimination during the embryogenesis of Aegilops speltoides Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik Martin-Luther-Universität Halle-Wittenberg vorgelegt von Frau Alevtina Ruban Geboren am 05.06.1987 in Nowomoskowsk, Russland Gutachter: 1. Prof. Dr. Andreas Houben 2. Prof. Dr. Jeremy N. Timmis Tag der öffentlichen Verteidigung: 18. November 2019, Halle (Saale) Table of content 1. Introduction .............................................................................................................. 4 1.1. General features of B chromosomes ............................................................. 4 1.2. B chromosome carrying species in the genus Aegilops ................................ 5 1.3. Characteristics of Ae. speltoides B chromosomes ........................................ 6 1.4 Organ-specific distribution of B chromosomes ............................................. 11 1.5 Programmed DNA/chromosome elimination in eukaryotes .......................... 13 2. Aims of the study ................................................................................................... 16 3. Publications prepared in the frame of the PhD thesis ............................................ 17 3.1. Evolution of the S-Genomes in Triticum-Aegilops alliance: evidences from chromosome analysis........................................................................................