plants Article Response of Three Greek Populations of Aegilops triuncialis (Crop Wild Relative) to Serpentine Soil Maria Karatassiou 1,* , Anastasia Giannakoula 2, Dimitrios Tsitos 1 and Stefanos Stefanou 3 1 Laboratory of Rangeland Ecology (PO 286), School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
[email protected] 2 Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece;
[email protected] 3 Laboratory of Soil Science, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece;
[email protected] * Correspondence:
[email protected]; Tel.: +30-231-099-2302 Abstract: A common garden experiment was established to investigate the effects of serpentine soil on the photosynthetic and biochemical traits of plants from three Greek populations of Aegilops triuncialis. We measured photosynthetic and chlorophyll fluorescence parameters, proline content, and nutrient uptake of the above plants growing in serpentine and non-serpentine soil. The photochemical activity of PSII was inhibited in plants growing in the serpentine soil regardless of the population; however, this inhibition was lower in the Aetolia-Acarnania population. The uptake and the allocation of Ni, as well as that of some other essential nutrient elements (Ca, Mg, Fe, Mn), to upper parts were decreased with the lower decrease recorded in the Aetolia-Acarnania population. Our results showed that excess Ni significantly increased the synthesis of proline, an antioxidant compound that plays an important role in the protection against oxidative stress. We conclude that the reduction in the photosynthetic performance is most probably due to reduced nutrient supply to the upper plant parts.