Monitoring a Half-Century of Change in a Hardwood Rangeland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomespecific Introgression Between Wheat and Its Wild Relative
doi: 10.1111/jeb.12040 SHORT COMMUNICATION Genome-specific introgression between wheat and its wild relative Aegilops triuncialis C. PARISOD*, C. DEFINOD*, A. SARR*, N. ARRIGO*† &F.FELBER*1 *Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchaˆtel, Neuchaˆtel, Switzerland †Department of Ecology and Evolution, University of Arizona, Tucson, AZ, USA Keywords: Abstract barbed goatgrass; Introgression of sequences from crop species in wild relatives is of funda- containment strategy; mental and practical concern. Here, we address gene flow between culti- crop-to-wild gene flow; vated wheat and its widespread polyploid relative, Aegilops triuncialis, using genetically modified wheat; 12 EST-SSR markers mapped on wheat chromosomes. The presence of genome-specific introgression; wheat diagnostic alleles in natural populations of the barbed goatgrass hybridization; growing in proximity to cultivated fields highlights that substantial gene mapped EST-SSR; flow occurred when both species coexisted. Furthermore, loci from the A transgene escape. subgenome of wheat were significantly less introgressed than sequences from other subgenomes, indicating differential introgression into Ae. triun- cialis. Gene flow between such species sharing nonhomeologous chromo- somes addresses the evolutionary outcomes of hybridization and may be important for efficient gene containment. have been reported in European agro-ecosystems Introduction (Felber et al., 2007). With the advent of genetically Reproduction between genetically distinct taxa, pro- modified crops, the consequences of introgression on ducing offspring of mixed ancestry (i.e. hybridization), local biota are receiving growing attention (Chapman plays a crucial role in evolution (Arnold, 2006). & Burke, 2006; Kwit et al., 2011). However, interspecific gene flow has been generally The Triticum/Aegilops species complex represents an overlooked, and the factors determining the outcome outstanding model to evaluate crop-to-wild gene flow. -
Gopher–Plant–Fungal Interactions Affect
Ecology, 84(1), 2003, pp. 120±128 q 2003 by the Ecological Society of America GOPHER±PLANT±FUNGAL INTERACTIONS AFFECT ESTABLISHMENT OF AN INVASIVE GRASS VALERIE T. E VINER1,3 AND F. S TUART CHAPIN, III2 1Department of Integrative Biology, University of California, Berkeley, California 94720 USA 2Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775 USA Abstract. Many attempts have been made to link invasions of exotic plants to speci®c plant traits and key attributes of invaded ecosystems. While these factors play a role in determining the potential for invasion, they are often inadequate in predicting the success of a speci®c invasion. We show that interactions of an invasive grass with other members of the community determine the local pattern of invasion. A fungus, Ulocladium atrum, aids the establishment of barbed goatgrass (Aegilops triuncialis) by weakening the grass's tough seed head, thereby accelerating germination and seedling establishment. In contrast, gophers, Thomomys bottae, decrease establishment of this invader by selectively burying patches of goatgrass seedlings under mounds. Plants that survive these gopher disturbances produce seeds that are uninfected by Ulocladium atrum, which may further decrease the establishment of the next generation of goatgrass. A ®eld survey indicated that goatgrass achieves dominance in areas with minimal gopher disturbance, but has limited establishment in pastures with high gopher activity, indicating that the landscape pattern of gopher activity in¯uences patterns of goatgrass invasion by manipulating gopher±plant±fungal interactions. Key words: Aegilops triuncialis; California (USA) annual grasslands; disturbance; fungus; ger- mination; goatgrass; plant invasion; pocket gophers; species interactions, role in plant invasion; Thomomys bottae; Ulocladium atrum. -
18 New Nothogenera and 8 New Combinations in the Grass Family Poaceae
CACTOLOGIA PHANTASTICA 3(2) 4 FEB 2019 10 ISSN 2590-3403 DOI 10.5281/zenodo.2556225 18 New Nothogenera and 8 New Combinations in the Grass Family Poaceae By MAARTEN H. J. VAN DER MEER The grass family Poaceae includes major crop genera like Triticum (wheat), Hordeum (barley) and Secale (rye) in the subfamily Pooideae, and Saccharum (sugarcane), Sorghum (sorghum) and Zea (maize) in the subfamily Panicoideae. Species from this family have been used for extensive hybridization experiments. No less than 59 valid nothogenera are listed in IPNI, yet dozens of intergeneric hybrids remain nameless.1 Notho- generic names are proposed here for eighteen intergeneric hybrids, including one tetrageneric hybrid, ten trigeneric hybrids and seven bigeneric hybrids. In addition, seven new combinations for nothospecies are proposed. Wheat Barley Rye David Monniaux Cliff LSDSL CC BY-SA 3.0 / Wikimedia CC BY 2.0 / Wikimedia CC BY-SA 3.0 / Wikimedia 1 Note that the widely used ×Triticale, an invalid younger synonym of ×Triticosecale, is not listed. MAARTEN H. J. VAN DER MEER ROGGEKAMP 379 NL-2592 VV DEN HAAG [email protected] CACTOLOGIA PHANTASTICA 3(2) 4 FEB 2019 11 ISSN 2590-3403 DOI 10.5281/zenodo.2556225 Valid Nothogenera in Poaceae NOTHOGENUS PARENT 1 PARENT 2 PARENT 3 ×Achnella Achnatherum Nassella ×Aegilosecale Aegilops Secale ×Aegilotriticum Aegilops Triticum ×Agrocalamagrostis Agrostis Calamagrostis ×Agroëlymus Agropyron Elymus ×Agrohordeum Agropyron Hordeum ×Agropogon Agrostis Polypogon ×Agrositanion Acropyron Sitanion ×Agrotrigia Agropyron Elytrigia ×Agrotrisecale Agropyron Secale Triticum ×Agrotriticum Agropyron Triticum ×Ammocalamagrostis Ammophila Calamacrostis ×Arctodupontia Arctophila Dupontia ×Bromofestuca Bromus Festuca ×Calamophila Ammophila Calamagrostis ×Cynochloris Chloris Cynodon ×Danthosieglingia Danthonia Sieglingia ×Dupoa Dupontia Poa ×Dupontopoa Arctopoa Dupontia ×Elyleymus Elymus Leymus ×Elymopyron Agropyron Elymus ×Elymordeum Elymus Hordeum MAARTEN H. -
Plant List and Planting Guidance for Landscape- Based Stormwater Measures
Appendix BB Plant List and Planting Guidance for Landscape- Based Stormwater Measures Table of Contents B.1 Introduction 1 B.2 General Recommendations 2 B.3 Plants for Stormwater Measures 2 B.4 Planting Specifications 23 B.5 Monitoring and Maintenance 26 B.6 Bay-Friendly Landscaping and Integrated Pest Management 28 B.7 Planting Tips for Single-Family Homes 31 B.8 Nursery Sources for Native Plants 32 References 34 B.1 Introduction The purpose of this appendix is to provide guidance on the planting techniques and selection of appropriate plant materials for the stormwater measures described in this handbook. The plant lists described in this appendix are not prescriptive, but should serve as a guide. In selecting plant materials, it is important to consider factors that influence plant establishment and success, such as microclimate, type of soil, water availability, proximity to saltwater and exposure to sun. Numerous resources are available to assist in selecting appropriate plant species in San Mateo County, including Sunset's Western Garden Book and the East Bay Municipal Utility District’s Plants and Landscapes for Summer-Dry Climates of the San Francisco Bay Region. APPENDIX B B-1 SAN MATEO COUNTYWIDE WATER POLLUTION PREVENTION PROGRAM In addition, the function of the individual stormwater measure should be carefully considered when selecting plant materials. Factors to be considered include inundation period, expected flow of water, and The plant lists described in access and maintenance requirements. this appendix are not prescriptive, but should B.2 General Recommendations serve as a guide. In selecting plant materials, it Avoid the use of invasive species. -
Barb Goatgrass
University of California Division of Agriculture and Natural Resources http://anrcatalog.ucdavis.edu Publication 8315 / October 2008 Barb Goatgrass JOSH S. DAVY, University of California Livestock and Natural Resources Program Representative, Tehama, Glenn, and Colusa Counties; JOSEPH M. DITOMASO, University of California Cooperative Extension Specialist; EmILIO A. LACA, Rangeland Ecologist, University of California, Davis Barb Barb goatgrass (Aegilops triuncialis L.; see fig. 1) is a winter goatgrass annual that is native to Mediterranean Europe and western Asia. Although barb goatgrass was first identified in California in the early 1900s, its rapid spread is relatively recent. Its first introduction into California was associated with the importation of Mexican cattle to El Dorado and Sacramento Counties. This species is expanding throughout Northern California and the Central and South Coast in areas below 1,100 meters (3,600 feet) in elevation. Barb goatgrass populations quickly create a devastating monoculture (fig. 2) that diminishes species diversity, forage quality and quantity, and wildlife habitat of infested areas. It primarily inhabits dryland fields, roadsides, annual rangelands, and oak woodlands in both disturbed and undisturbed sites. Infestations generally do not occur in irrigated areas. A distinguishing feature of barb goatgrass is its ability to proliferate in varying types of conditions, including serpentine soils where many annual grasses Figure 1. have not prospered. Mature barb goatgrass. Barb goatgrass is one of Photo: J. S. Davy. three goatgrass species prevalent in California. The others are jointed goatgrass (Aegilops cylindrical Host) and ovate goatgrass (Aegilops ovata L.). All three goatgrass species can hybridize with winter wheat (Triticum aestivum L.) and are currently B-rated noxious weeds in California by the California Department of Food and Agriculture. -
Classification of the Vegetation Alliances and Associations of Sonoma County, California
Classification of the Vegetation Alliances and Associations of Sonoma County, California Volume 1 of 2 – Introduction, Methods, and Results Prepared by: California Department of Fish and Wildlife Vegetation Classification and Mapping Program California Native Plant Society Vegetation Program For: The Sonoma County Agricultural Preservation and Open Space District The Sonoma County Water Agency Authors: Anne Klein, Todd Keeler-Wolf, and Julie Evens December 2015 ABSTRACT This report describes 118 alliances and 212 associations that are found in Sonoma County, California, comprising the most comprehensive local vegetation classification to date. The vegetation types were defined using a standardized classification approach consistent with the Survey of California Vegetation (SCV) and the United States National Vegetation Classification (USNVC) system. This floristic classification is the basis for an integrated, countywide vegetation map that the Sonoma County Vegetation Mapping and Lidar Program expects to complete in 2017. Ecologists with the California Department of Fish and Wildlife and the California Native Plant Society analyzed species data from 1149 field surveys collected in Sonoma County between 2001 and 2014. The data include 851 surveys collected in 2013 and 2014 through funding provided specifically for this classification effort. An additional 283 surveys that were conducted in adjacent counties are included in the analysis to provide a broader, regional understanding. A total of 34 tree-overstory, 28 shrubland, and 56 herbaceous alliances are described, with 69 tree-overstory, 51 shrubland, and 92 herbaceous associations. This report is divided into two volumes. Volume 1 (this volume) is composed of the project introduction, methods, and results. It includes a floristic key to all vegetation types, a table showing the full local classification nested within the USNVC hierarchy, and a crosswalk showing the relationship between this and other classification systems. -
Aegilops Triuncialis Subsp. Bozdagensis (Poaceae), a New Subspecies from South-Western Turkey
Aegilops triuncialis subsp. bozdagensis (Poaceae), a new subspecies from South-Western Turkey Evren CABİ*1, Burçin EKİCİ2, Musa DOĞAN3 1Department of Biology, Faculty of Arts and Sciences, Namık Kemal University, 59030, Tekirdağ, Turkey. 2Department of Landscape Architecture, Faculty of Fine Arts, Design and Architecture, Namık Kemal University, 59030, Tekirdağ, Turkey. 3Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. *Corresponding author: [email protected] Abstract: A new subspecies Aegilops triuncialis L. subsp. bozdagensis Cabi & Doğan, is described and illustrated. This new subspecies is confined to Denizli, Acıpayam, Bozdağ in southwestern Anatolia. It differs from the other two subspecies of Ae. triuncialis subsp. triuncialis and Ae. triuncialis subsp. persica, by its unawned glumes of the lateral spikelets. Concerning the new subspecies, IUCN red list category, distribution map, notes on its biogeography and ecology are given. An identification key of the subspecies of Ae. triuncialis is also provided. Keywords: Aegilops, Poaceae, New subspecies, Turkey. Introduction 2009 and collected a large number of specimens for The genus Aegilops L. consists of ca. 25 species in the revising the genus Aegilops. In addition, population size, world. It constitutes the primary and secondary gene pool phenological traits and ecological preferences of the for cultivated wheats (van Slageren, 1994; Cabi, 2010). species in the genus were observed during the field Species in the genus are distributed in Southwest and studies. Particular attention was paid to Aegilops Central Asia and throughout the Mediterranean basin. A specimens collected from Bozdağ Mountain, Southwest primary center of diversity of the Aegilops is considered Anatolia (B2 Denizli sensu Davis, 1965) in 2007. -
Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S
Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S. Fish and Wildlife Service G. Leppig and A. Pickart and California Department of Fish Game Release 4.0 June 2014* www.fws.gov/refuge/humboldt_bay/ Habitat- Habitat - Occurs on Species Status Occurs within Synonyms Common name specific broad Lanphere- Jepson Manual (2012) (see codes at end) refuge (see codes at end) (see codes at end) Ma-le'l Units UD PW EW Adoxaceae Sambucus racemosa L. red elderberry RF, CDF, FS X X N X X Aizoaceae Carpobrotus chilensis (Molina) sea fig DM X E X X N.E. Br. Carpobrotus edulis ( L.) N.E. Br. Iceplant DM X E, I X Alismataceae lanceleaf water Alisma lanceolatum With. FM X E plantain northern water Alisma triviale Pursh FM X N plantain Alliaceae three-cornered Allium triquetrum L. FS, FM, DM X X E leek Allium unifolium Kellogg one-leaf onion CDF X N X X Amaryllidaceae Amaryllis belladonna L. belladonna lily DS, AW X X E Narcissus pseudonarcissus L. daffodil AW, DS, SW X X E X Anacardiaceae Toxicodendron diversilobum Torrey poison oak CDF, RF X X N X X & A. Gray (E. Greene) Apiaceae Angelica lucida L. seacoast angelica BM X X N, C X X Anthriscus caucalis M. Bieb bur chevril DM X E Cicuta douglasii (DC.) J. Coulter & western water FM X N Rose hemlock Conium maculatum L. poison hemlock RF, AW X I X Daucus carota L. Queen Anne's lace AW, DM X X I X American wild Daucus pusillus Michaux DM, SW X X N X X carrot Foeniculum vulgare Miller sweet fennel AW, FM, SW X X I X Glehnia littoralis (A. -
A Checklist of Vascular Plants Endemic to California
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 3-2020 A Checklist of Vascular Plants Endemic to California James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "A Checklist of Vascular Plants Endemic to California" (2020). Botanical Studies. 42. https://digitalcommons.humboldt.edu/botany_jps/42 This Flora of California is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A LIST OF THE VASCULAR PLANTS ENDEMIC TO CALIFORNIA Compiled By James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 13 February 2020 CONTENTS Willis Jepson (1923-1925) recognized that the assemblage of plants that characterized our flora excludes the desert province of southwest California Introduction. 1 and extends beyond its political boundaries to include An Overview. 2 southwestern Oregon, a small portion of western Endemic Genera . 2 Nevada, and the northern portion of Baja California, Almost Endemic Genera . 3 Mexico. This expanded region became known as the California Floristic Province (CFP). Keep in mind that List of Endemic Plants . 4 not all plants endemic to California lie within the CFP Plants Endemic to a Single County or Island 24 and others that are endemic to the CFP are not County and Channel Island Abbreviations . -
Yellow Starthistle Management Guide
Yellow Starthistle Management Guide JOSEPH M. DITOMASO Weed Science Program, Department of Plant Sciences University of California, Davis GUY B. KYSER Department of Plant Sciences, University of California, Davis MICHAEL J. PITCAIRN Biocontrol Program, Integrated Pest Management Branch California Department of Food and Agriculture, Sacramento Published by the California Invasive Plant Council US Army Corps of Engineers September 2006 Engineer Research and Development Center YSTMgmt(FINAL).indd 1 10/12/06 12:49:19 PM ACKNOWLEDGEMENTS Development of this management guide was one of the long-term goals of a re- search demonstration project on Integrated Weed Management of Yellow Starthistle at Fort Hunter Liggett, CA. The authors are grateful to the Department of Defense Legacy Resource Management Program for partial funding through Legacy Project Model Invasive Species Control Project: Yellow Starthistle (Legacy Project #01-160 and 03-160) under MIPR W31RYO30983808, and the U.S. Army Environmental Center for their financial support of the project, and to the Western Integrated Pest Management Center “IPM Issues” program for their financial support of the preparation and publication of this management guide. The authors also thank the many people who assisted in the development and completion of the Fort Hunter Liggett project. Dr. Steven R. Bennett, U.S. Army Environmental Center, provided leadership on the the project’s vision and orga- nization. Dr. Al Cofrancesco, U.S. Army Corps of Engineers, Engineer Research and Development Center, and Dr. Herb Bolton, U.S. Department of Agriculture, Cooperative State Research, Education, and Extension Service liaison to the U.S. Army Environmental Center, assisted with technical coordination for the project. -
Response of Three Greek Populations of Aegilops Triuncialis (Crop Wild Relative) to Serpentine Soil
plants Article Response of Three Greek Populations of Aegilops triuncialis (Crop Wild Relative) to Serpentine Soil Maria Karatassiou 1,* , Anastasia Giannakoula 2, Dimitrios Tsitos 1 and Stefanos Stefanou 3 1 Laboratory of Rangeland Ecology (PO 286), School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; [email protected] 2 Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece; [email protected] 3 Laboratory of Soil Science, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-231-099-2302 Abstract: A common garden experiment was established to investigate the effects of serpentine soil on the photosynthetic and biochemical traits of plants from three Greek populations of Aegilops triuncialis. We measured photosynthetic and chlorophyll fluorescence parameters, proline content, and nutrient uptake of the above plants growing in serpentine and non-serpentine soil. The photochemical activity of PSII was inhibited in plants growing in the serpentine soil regardless of the population; however, this inhibition was lower in the Aetolia-Acarnania population. The uptake and the allocation of Ni, as well as that of some other essential nutrient elements (Ca, Mg, Fe, Mn), to upper parts were decreased with the lower decrease recorded in the Aetolia-Acarnania population. Our results showed that excess Ni significantly increased the synthesis of proline, an antioxidant compound that plays an important role in the protection against oxidative stress. We conclude that the reduction in the photosynthetic performance is most probably due to reduced nutrient supply to the upper plant parts. -
Flora of North America North of Mexico
Flora of North America North of Mexico Edited by FLORA OF NORTH AMERICA EDITORIAL COMMITTEE VOLUME 24 MagnoUophyta: Commelinidae (in part): Foaceae, part 1 Edited by Mary E. Barkworth, Kathleen M. Capéis, Sandy Long, Laurel K. Anderton, and Michael B. Piep Illustrated by Cindy Talbot Roché, Linda Ann Vorobik, Sandy Long, Annaliese Miller, Bee F Gunn, and Christine Roberts NEW YORK OXFORD • OXFORD UNIVERSITY PRESS » 2007 Oxford Univei;sLty Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education. Oxford New York /Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto Copyright ©2007 by Utah State University Tlie account of Avena is reproduced by permission of Bernard R. Baum for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. The accounts of Arctophila, Dtipontui, Scbizacbne, Vahlodea, xArctodiipontia, and xDiipoa are reproduced by permission of Jacques Cayouette and Stephen J. Darbyshire for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. The accounts of Eremopoa, Leitcopoa, Schedoiioms, and xPucciphippsia are reproduced by permission of Stephen J. Darbyshire for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Utah State University.