Dated Tribe-Wide Whole Chloroplast Genome Phylogeny Indicates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy, Morphology and Palynology of Aegilops Vavilovii (Zhuk.) Chennav
African Journal of Agricultural Research Vol. 5(20), pp. 2841-2849, 18 October, 2010 Available online at http://www.academicjournals.org/AJAR ISSN 1991-637X ©2010 Academic Journals Full Length Research Paper Taxonomy, morphology and palynology of Aegilops vavilovii (Zhuk.) Chennav. (Poaceae: Triticeae) Evren Cabi1* Musa Doan1 Hülya Özler2, Galip Akaydin3 and Alptekin Karagöz4 1Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. 2Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop Turkey. 3Department of Biology Education, Hacettepe University, 06800 Ankara, Turkey. 4Department of Biology, Aksaray University, Aksaray, Turkey. Accepted 23 September, 2010 Aegilops vavilovii (Zhuk.) Chennav., a rare species, was collected from Southeast Anatolia, Turkey. During the field studies of the project “Taxonomic revision of Tribe Triticeae in Turkey”, Ae. vavilovii was accidentally recollected from three localities in anliurfa and Mardin provinces in 2007 and 2008, respectively. The main objective of this study is to shed light on the diagnostic characteristics of this rare species including its morphological, palynological and micro morphological features. Moreover, an emended and expanded description, distribution, phenology and ecology of this rare species are also provided. A. vavilovii and A. crassa are naturally found in the Southeastern part of Turkey and they share similar morphological features that caused a confused taxonomy. Pollen grains of A. vavilovii are heteropolar, monoporate and spheroidal (A/B: 1,13) typically as Poaceous. However, it generally, prefers clayish loam soils that are slightly alkaline (pH 7.7) with low organic content (1.54%). Although it is a rare species with very narrow area of distribution, very few samples have been represented in ex situ collections and the species has not been involved in any in situ conservation activities to save its genetic resources in Turkey. -
Evaluation of Agro-Morphological Diversity in Wild Relatives of Wheat Collected in Iran
J. Agr. Sci. Tech. (2017) Vol. 19: 943-956 Evaluation of Agro-Morphological Diversity in Wild Relatives of Wheat Collected in Iran A. Pour-Aboughadareh1*, J. Ahmadi1, A. A. Mehrabi2, M. Moghaddam3, and A. Etminan4 ABSTRACT In this study, a core collection of 180 Aegilops and Triticum accessions belonging to six diploid (T. boeoticum Bioss., T. urartu Gandilyan., Ae. speltoides Tausch., Ae. tauschii Coss., Ae. caudata L. and Ae. umbellulata Zhuk.), five tetraploid (T. durum, Ae. neglecta Req. ex Bertol., Ae. cylindrica Host. and Ae. crassa Boiss) and one hexaploid (T. aestivum L.) species collected from different regions of Iran were evaluated using 20 agro- morphological characters. Statistical analysis showed significant differences among accessions. The Shannon-Weaver (HʹSW) and Nei’s (HʹN) genetic diversity indices disclosed intermediate to high diversity for most characters in both Aegilops and Triticum core sets. In factor analysis, the first five components justified 82.17% of the total of agro- morphological variation. Based on measured characters, the 180 accessions were separated into two major groups by cluster analysis. Furthermore, based on the 2D-plot generated using two discriminant functions, different species were separated into six groups, so that distribution of species accorded with their genome construction. Overall, our results revealed considerable levels of genetic diversity among studied Iranian Aegilops and Triticum accessions, which can open up new avenues for rethinking the connections between wild relatives to explore valuable agronomic traits for the improvement and adaptation of wheat. Keywords: Aegilops, Multivariate analysis, Phenotypic diversity, Triticum. INTRODUCTION traits, such as disease- or pest-resistance and even yield improvement. -
Genes Encoding Plastid Acetyl-Coa Carboxylase and 3-Phosphoglycerate Kinase of the Triticum͞aegilops Complex and the Evolutionary History of Polyploid Wheat
Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum͞Aegilops complex and the evolutionary history of polyploid wheat Shaoxing Huang*†, Anchalee Sirikhachornkit*, Xiujuan Su*, Justin Faris‡§, Bikram Gill‡, Robert Haselkorn*, and Piotr Gornicki*¶ *Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637; and ‡Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 Contributed by Robert Haselkorn, April 12, 2002 The classic wheat evolutionary history is one of adaptive radiation of at the diploid level from a common diploid ancestor and conver- the diploid Triticum͞Aegilops species (A, S, D), genome convergence gence at the polyploid level involving the diverged diploid genomes and divergence of the tetraploid (Triticum turgidum AABB, and (2). Various Aegilops species contributed significantly to the genetic Triticum timopheevii AAGG) and hexaploid (Triticum aestivum, makeup of the polyploid wheats. Extensive classical analyses and AABBDD) species. We analyzed Acc-1 (plastid acetyl-CoA carboxylase) more recent molecular studies have provided information on the and Pgk-1 (plastid 3-phosphoglycerate kinase) genes to determine identity of donors and some of the patterns of genome evolution of phylogenetic relationships among Triticum and Aegilops species of the Triticum͞Aegilops species (3). A review of Triticum and Aegilops the wheat lineage and to establish the timeline of wheat evolution taxonomy and related literature is available from the Wheat based on gene sequence comparisons. Triticum urartu was confirmed Genetic Resource Center at ksu.edu͞wgrc. as the A genome donor of tetraploid and hexaploid wheat. The A The Triticum and Aegilops genera contain 13 diploid and 18 genome of polyploid wheat diverged from T. -
This Article Is from the March 2013 Issue Of
This article is from the March 2013 issue of published by The American Phytopathological Society For more information on this and other topics related to plant pathology, we invite you to visit APSnet at www.apsnet.org Identifying New Sources of Resistance to Eyespot of Wheat in Aegilops longissima H. Sheng and T. D. Murray, Department of Plant Pathology, Washington State University, Pullman 99164-6430 Abstract Sheng, H., and Murray, T. D. 2013. Identifying new sources of resistance to eyespot of wheat in Aegilops longissima. Plant Dis. 97:346-353. Eyespot, caused by Oculimacula yallundae and O. acuformis, is an substitution lines containing chromosomes 1Sl, 2Sl, 5Sl, and 7Sl, and a economically important disease of wheat. Currently, two eyespot re- 4Sl7Sl translocation were resistant to O. yallundae. Chromosomes 1Sl, sistance genes, Pch1 and Pch2, are used in wheat breeding programs 2Sl, 4Sl, and 5Sl contributed to resistance to O. acuformis more than but neither provides complete control or prevents yield loss. Aegilops others. Chromosomes 1Sl, 2Sl, 5Sl, and 7Sl provided resistance to both longissima is a distant relative of wheat and proven donor of genes pathogens. This is the first report of eyespot resistance in A. longis- useful for wheat improvement, including disease resistance. Forty A. sima. These results provide evidence that genetic control of eyespot longissima accessions and 83 A. longissima chromosome addition or resistance is present on multiple chromosomes of the Sl genome. This substitution lines were evaluated for resistance to eyespot. Among the research demonstrates that A. longissima is a potential new source of 40 accessions tested, 43% were resistant to O. -
DISSERTAÇÃO José Roseno De Mendonça Filho.Pdf
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIÊNCIAS DEPARTAMENTO DE GENÉTICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Recife 2019 JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Dissertação apresentada ao Programa de Pós- Graduação em Ciências Biológicas, Área de Concentração Genética, da Universidade Federal de Pernambuco, como requisito para obtenção do título de mestre em Ciências Biológicas. Orientadora: Profa. Dra. Ana Maria Benko Iseppon Coorientadores: Profa. Dra. Ana Christina Brasileiro-Vidal Prof. Dr Jaílson Gitai dos Santos Frazão Recife 2019 JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas, Área de Concentração Genética, da Universidade Federal de Pernambuco, como requisito para obtenção do título de mestre em Ciências Biológicas. Aprovada em: 23/07/2019 COMISSÃO EXAMINADORA ___________________________________________ Profa. Dra. Ana Maria Benko Iseppon UFPE (Orientadora) ___________________________________________ Profa. Dra. Maria Betânia de Oliveira Melo UFPE (Membro Interno) ____________________________________________ Prof. Dr. Geyner Alves dos Santos Cruz UPE – Campus de Petrolina (Membro Externo) MEMBROS SUPLENTES ____________________________________________ -
Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear. -
Aegilops</Emphasis>
DOI: 10.2478/s11535-006-0027-1 Research article CEJB 1(3) 2006 399–411 Distribution and characterization of Aegilops and Triticum species from the Bulgarian Black Sea coast Penko Spetsov1∗, Dragomir Plamenov2, Vanya Kiryakova1 1 Dobroudja Agricultural Institute, 9520 General Toshevo, Bulgaria 2 Pedagogical College – Dobrich 9300, Bs. Konstantin Preslavsky University, Shumen, Bulgaria Received 30 May 2006; accepted 24 July 2006 Abstract: A total of 158 Aegilops-Triticum samples representing six Aegilops species (one diploid, four tetraploid and one hexaploid) and one diploid Triticum were collected along the Bulgarian Black Sea coast, and their distribution on the 350 km long coastal line was reported. The region south of Kamchia river, accepted as the middle point of the coast, was characterized by the greatest diversity of these wild relatives of wheat. The most widely distributed species in this area was Ae. geniculata. Ae. cylindrica was distributed only in north (Durankulak), while Ae. biuncialis and Ae. triuncialis were collected both north and south of Kamchia river. All samples of Ae. neglecta were hexaploid. Natural hybrids of goatgrass and wheat were found in Ae. cylindrica populations. Triticum monococcum ssp. aegilopoides had limited distribution in the south region. Aegilops uniaristata was recorded as a new species for the Bulgarian flora. Most of the samples expressed resistance to powdery mildew in seedling and adult stage, but all of them were polymorphic regarding the resistance to leaf rust (cultures 73760 and 43763). The study revealed additional data for the distribution of Aegilops and Triticum species in Bulgaria and their potential value as genetic resources in wheat improvement. -
Evaluation and Utilization of Biodiversity in Triticeae for Wheat Lmprovement
Utah State University DigitalCommons@USU Intermountain Herbarium of Utah State Herbarium Publications University 6-24-1994 Evaluation and Utilization of Biodiversity in Triticeae for Wheat lmprovement A. B. Damania University of California, Davis J. Valkoun University of California, Davis Follow this and additional works at: https://digitalcommons.usu.edu/herbarium_pubs Part of the Agriculture Commons, Food Science Commons, and the Plant Sciences Commons Recommended Citation Damania, A. B. and Valkoun, J., "Evaluation and Utilization of Biodiversity in Triticeae for Wheat lmprovement" (1994). Herbarium Publications. Paper 4. https://digitalcommons.usu.edu/herbarium_pubs/4 This Conference Paper is brought to you for free and open access by the Intermountain Herbarium of Utah State University at DigitalCommons@USU. It has been accepted for inclusion in Herbarium Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Evaluation and Utilization of Biodiversity in Triticeae for Wheat lmpr.ovement A. B. DAMANIA1 and J. VALKOUN International Center for Agricultural Research in the Dry Areas (I CARDA), PO Box 5466, Aleppo, Syria. 1Present address: Genetic Resources Conservation Program, University of California, Davis, CA 95616-8602, USA ABSTRACT A population structure of a species is defined as the totality of ecological and genetical relationships among To adapt new varieties to a wide spectrum of individual members which may co-evolve as a result of environments breeders and farmers have emphasized the gene exchange but may also diverge under localized forces need for broadening the current narrow genetic base of of evolutionary change Qain, 1975). Landraces and obsolete modern varieties of important cereal crops such as wheat cultivars are as a rule products of several years of crop and barley. -
A Comparative Study of Chromosome Morphology Among Some Accessions of Aegilops Crassa
African Journal of Biotechnology Vol. 9(7), pp. 996-1000, 15 February, 2010 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB09.243 ISSN 1684–5315 © 2010 Academic Journals Full Length Research Paper A comparative study of chromosome morphology among some accessions of Aegilops crassa Hatami-Maleki Hamid 1, Samizadeh Habibollah 2, Asghari-Zakaria Rasool 3, Moshtaghi Nasrin 4 and Fazeli-Sangari Esmaeil 4 1Department of Agriculture and Plant Breeding, Faculty of Agriculture, Maragheh University, Maragheh, Iran. 2Department of Agriculture, Faculty of Agriculture, Guilan University, Rasht, Iran. 3Department of Agriculture and Plant Breeding, Faculty of Agriculture, Mohaghegh Ardebili University, Ardebil, Iran. 4Department of Biotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran Accepted 10 April, 2009 In this study karyotype and chromosome characteristics of the nine accessions of Aegilops crassa species obtained from gene bank of Seed and Plant Improvement Research Institute (SPII) of Iran and one accession collected by authors were inspected. Aceto-iron-hematoxilin staining method was used to stain chromosomes. For each accession, chromosome characteristics including long and short arms, chromosome lengths, arm ratio index and relative chromosome lengths were measured using micro measure 3.3 software. Results revealed that all of the studied accessions were tetraploid (2n = 4x = 28) and consisted of 13 pairs of metacentric and one pair of submetacentric chromosomes, of which two pairs were satellite chromosomes. Karyotype formula for these accessions were 13 m + 1 sm. Arm ratio index value of chromosomes ranged from 1.11 in chromosome number 6 to 1.77 in chromosome number 12. The B chromosomes were not seen in any of the accessions. -
Chloroplast Phylogenomic Analyses Resolve Multiple Origins of the Kengyilia Species Via Independent Polyploidization Events
Chloroplast phylogenomic analyses resolve multiple origins of the Kengyilia species via independent polyploidization events Shi-Yong Chen Triticeae Research Institute Hao Yan Triticeae Research Institute Li-Na Sha Triticeae Research Institute Ning Chen Triticeae Research Institute Yue Zhang Triticeae Research Institute Yi Wang Triticeae Research Institute Hou-Yang Kang Triticeae Research Institute Hai-Qin Zhang Triticeae Research Insitute Yong-Hong Zhou Triticeae Research Institute Xing Fan ( [email protected] ) Triticeae Research Institute Research article Keywords: Polyploid, Triticeae, multiple origins, maternal donor Posted Date: February 5th, 2020 DOI: https://doi.org/10.21203/rs.2.22669/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Background Kengyilia is a group of allohexaploid species that arose from two hybridization events followed by genome doubling of three ancestral diploid species with different genomes St, Y and P in the wheat tribe. Estimating phylogenetic relationship in resolution of the maternal lineages has been dicult, owing to the extremely low rate of sequence divergence. Here, phylogenetic reconstructions based on the plastome sequences were used to explore the role of maternal progenitors in establishment of Kengyilia polyploid species. Results The plastome sequences of 11 Kengyilia species were analyzed together with 11 tetraploid species (PP, StP, and StY) and 33 diploid taxa representing 20 basic genomes in the Triticeae. Phylogenomic analysis and genetic divergence patterns suggested that (1) Kengyilia is closely related to Roegneria, Pseudoroegneria, Agropyron, Lophopyrum, Thinopyrum, and Dasypyrum; (2) both the StY genome Roegneria tetraploids and the PP genome Agropyron tetraploids severed as the maternal donor during the speciation of Kengyilia species; (3) the different Kengyilia species derived their StY genome from different Roegneria species. -
Aegilops Triuncialis Subsp. Bozdagensis (Poaceae), a New Subspecies from South-Western Turkey
Aegilops triuncialis subsp. bozdagensis (Poaceae), a new subspecies from South-Western Turkey Evren CABİ*1, Burçin EKİCİ2, Musa DOĞAN3 1Department of Biology, Faculty of Arts and Sciences, Namık Kemal University, 59030, Tekirdağ, Turkey. 2Department of Landscape Architecture, Faculty of Fine Arts, Design and Architecture, Namık Kemal University, 59030, Tekirdağ, Turkey. 3Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. *Corresponding author: [email protected] Abstract: A new subspecies Aegilops triuncialis L. subsp. bozdagensis Cabi & Doğan, is described and illustrated. This new subspecies is confined to Denizli, Acıpayam, Bozdağ in southwestern Anatolia. It differs from the other two subspecies of Ae. triuncialis subsp. triuncialis and Ae. triuncialis subsp. persica, by its unawned glumes of the lateral spikelets. Concerning the new subspecies, IUCN red list category, distribution map, notes on its biogeography and ecology are given. An identification key of the subspecies of Ae. triuncialis is also provided. Keywords: Aegilops, Poaceae, New subspecies, Turkey. Introduction 2009 and collected a large number of specimens for The genus Aegilops L. consists of ca. 25 species in the revising the genus Aegilops. In addition, population size, world. It constitutes the primary and secondary gene pool phenological traits and ecological preferences of the for cultivated wheats (van Slageren, 1994; Cabi, 2010). species in the genus were observed during the field Species in the genus are distributed in Southwest and studies. Particular attention was paid to Aegilops Central Asia and throughout the Mediterranean basin. A specimens collected from Bozdağ Mountain, Southwest primary center of diversity of the Aegilops is considered Anatolia (B2 Denizli sensu Davis, 1965) in 2007. -
Genetic Variation in Spanish Populations of the Genus Aegilops Revealed by Rapds Juan-Vicente Monte, Carlos Casanova, Consuelo Soler
Genetic variation in Spanish populations of the genus Aegilops revealed by RAPDs Juan-Vicente Monte, Carlos Casanova, Consuelo Soler To cite this version: Juan-Vicente Monte, Carlos Casanova, Consuelo Soler. Genetic variation in Spanish populations of the genus Aegilops revealed by RAPDs. Agronomie, EDP Sciences, 1999, 19 (5), pp.419-427. hal- 00885941 HAL Id: hal-00885941 https://hal.archives-ouvertes.fr/hal-00885941 Submitted on 1 Jan 1999 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Genetic variation in Spanish populations of the genus Aegilops revealed by RAPDs Juan-Vicente Monte Carlos Casanova, Consuelo Soler Department of Plant Breeding and Biotechnology, C.LT., I.N.I.A., La Canaleja, P.O. Box 1100, 28008, Alcala de Henares, Madrid, Spain (Received 26 January 1999, accepted 16 April 1999) Abstract - Random amplified polymorphic DNA (RAPD) markers were used to analyse genetic variability and rela- tionships in wild species of the genus Aegilops. Fifty natural populations, which included the species Aegilops biun- cialis (UUMM), Ae. neglecta (UUMMNN), Ae. ovata (UUMM), Ae. ventricosa (DDNN) and Ae. triuncialis (UUCC) were selected. These populations are widely distributed in the Iberian peninsula and Balearic islands.