Crop Wild Relatives a Valuable Resource for Crop Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protected Areas and the Challenge of Conserving Crop Wild Relatives
PARKS 2012 Vol 18.1 PROTECTED AREAS AND THE CHALLENGE OF CONSERVING CROP WILD RELATIVES Danny Hunter1*, Nigel Maxted2, Vernon Heywood3, Shelagh Kell2 and Teresa Borelli1 * Corresponding author, [email protected] 1 Bioversity International, Rome, Italy 2 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom 3 School of Biological Sciences, University of Reading, Reading RG6 6AS, United Kingdom ABSTRACT Crop wild relatives are a critical resource for sustaining future food security. It is widely recognized that many of the world’s protected areas contain CWR diversity. Despite this, it has not yet proved possible to undertake significant actions to conserve the CWR they contain. Many challenges and obstacles need to be addressed in order to improve this situation. Recent initiatives have started to address these challenges and uncovered some key lessons. Still, the need for action is urgent and the paper concludes by drawing attention to the need for a global approach to conserving priority and threatened CWR in the wild. INTRODUCTION worth noting that the same study found breeders’ use of CWR taxa was increasing year on year, even though it Crop wild relatives (CWR) - wild plant species closely was recognized that they were still far from being related to crops to which they may contribute beneficial systematically exploited. genes - constitute an enormous reservoir of genetic variation for crop improvement and are an important Some idea of the scale of benefits may be obtained from socio-economic resource. Genes from wild plants have published estimates referring to a selected number of provided crops with resistance to many pests and crops. -
Updating Barley and Rye Management in Kentucky, Year 2
UPDATING BARLEY AND RYE MANAGEMENT IN KENTUCKY, YEAR 2 Chad Lee, Carrie Knott, James Dollarhide, Kathleen Russell and Katherine McLachlan, University of Kentucky, Department of Plant & Soil Sciences PH: (859) 257-7874; E-mail: [email protected] The boom in distilleries and growing public received 30 lb N/A in the fall, consistent with our interest in locally grown foods has combined to recommendations when following excellent corn generate much interest in barley and rye for yields. For the nitrogen rate studies, all small Kentucky. These crops have not been studied grains were seeded at 1.25 million per acre. In extensively since intensive wheat management 2015-2016, the studies were conducted only at was developed in Kentucky. Spindletop Farm near Lexington, KY. For 2016- 2017, studies were conducted at Spindletop and In 2016-2017, we investigated seeding rates and at the Research and Education Center at nitrogen (N) rates on barley, malting barley and Princeton, KY. hybrid rye. Seeding rates were 0.5, 0.75, 1.0, 1.25 and 1.5 million seeds per acre. For the Six-Row Barley (Feed Barley) seeding rate studies, N rate was set at 90 lb N/A Seed Rates with 30 lb applied at Feekes 3 and 60 applied at Feekes 5. In the winter nitrogen rate study, rates Seed rates did not affect yield of feed barley at of 0, 30, 60, 90 and 120 lb N per acre were split- any tie. Yield averaged over 85 bushels per acre. applied at Feekes 3 and 5. In addition, all plots 6-Row Barley: Seed rate effect on yield at Lexington 2016, Lexington 2017 and Princeton 2017. -
Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity
plants Review Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity Samuel Pironon 1,*, James S. Borrell 1, Ian Ondo 1, Ruben Douglas 1, Charlotte Phillips 2, Colin K. Khoury 3,4 , Michael B. Kantar 5 , Nathan Fumia 5 , Marybel Soto Gomez 6,7 , Juan Viruel 1 , Rafael Govaerts 1 ,Félix Forest 1 and Alexandre Antonelli 1,8 1 Royal Botanic Gardens, Kew, Richmond TW93AQ, UK; [email protected] (J.S.B.); [email protected] (I.O.); [email protected] (R.D.); [email protected] (J.V.); [email protected] (R.G.); [email protected] (F.F.); [email protected] (A.A.) 2 Royal Botanic Gardens, Kew, Wakehurst Place TW93AE, UK; [email protected] 3 International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia; [email protected] 4 Department of Biology, Saint Louis University, St. Louis, MO 63103, USA 5 Department of Tropical Plant and Soil Science, University of Hawaii at Manoa, Honolulu, HI 96822, USA; [email protected] (M.B.K.); [email protected] (N.F.) 6 Department of Botany, University of British Columbia, Vancouver, BC V6T1Z4, Canada; [email protected] 7 UBC Botanical Garden and Centre for Plant Research, University of British Columbia, Vancouver, BC V6T1Z4, Canada 8 Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Göteborg, Sweden * Correspondence: [email protected] Received: 17 July 2020; Accepted: 27 August 2020; Published: 31 August 2020 Abstract: Global biodiversity hotspots are areas containing high levels of species richness, endemism and threat. Similarly, regions of agriculturally relevant diversity have been identified where many domesticated plants and animals originated, and co-occurred with their wild ancestors and relatives. -
Crop Wild Relatives: Plant Conservation for Food Security
Natural England Research Report NERR037 Crop Wild Relatives: Plant conservation for food security www.naturalengland.org.uk Natural England Research Report NERR037 Crop Wild Relatives: Plant conservation for food security John Hopkins1 and Nigel Maxted2 1Natural England 2University of Birmingham Published on 25 January 2011 © Natural England copyright 2011 ISSN 1754-1956 This material is subject to Natural England copyright protection under the Copyright Designs and Patents Act 1988. Natural England copyright protected material (other than Natural England logos) may be reproduced free of charge in any format or medium for non-commercial purposes, private study, criticism, review, news reporting and for internal circulation within your organisation. This is subject to the material being reproduced accurately and not used in a misleading context. Where any of the Natural England copyright material is being republished or copied to others, the source of the material must be identified and the copyright status acknowledged. However, if you wish to use all or part of this information for commercial purposes, including publishing you will need to apply for a licence. Applications can be sent to: Publications Natural England 3rd Floor, Touthill Close, City Road Peterborough PE1 1XN Tel: 0845 600 3078 Fax: 01733 455103 Email: [email protected] Crop Wild Relatives: Plant conservation for food security i Project details This report is a review of the scientific literature relating to Crop Wild Relatives and related aspects of crop genetic diversity conservation, carried out by the authors. A summary of the findings covered by this report, as well as Natural England's views on this research, can be found within Natural England Research Information Note RIN037 – Crop Wild Relatives: Plant conservation for food security. -
Whole and Enriched Grains CACFP Reference Sheet
OSPI CNS Child and Adult Care Food Program Reference Sheet Whole and Enriched Grains Whole and enriched grains are a part of identifying Whole Grain-Rich (WGR) items. There are several methods to identify WGR items. Please view the Grain Requirements in the CACFP Reference Sheet for more information. Whole Grains: Amaranth Sprouted einkorn Amaranth flour Sprouted spelt Brown rice Sprouted whole rye Buckwheat Sprouted whole wheat Buckwheat flour Steel cut oats Buckwheat groats Teff Bulgur Teff flour Cracked wheat Triticale Graham flour Triticale flour Instant oatmeal Wheat berries Millet Wheat groats Millet flour Whole durum flour Oat groats Whole einkorn berries Old fashioned oats Whole grain corn Quick cooking oats Whole grain corn flour Quinoa Whole grain einkorn flour Rye groats Whole grain oat flour Sorghum Whole grain spelt flour Sorghum flour Whole grain wheat flakes Spelt berries Whole rye flour Sprouted brown rice Whole wheat flour Sprouted buckwheat Wild rice Whole corn Brans and Germs: Corn bran Rye bran Oat bran Wheat bran Rice bran Wheat germ Enriched Grains: Enriched bromated flour Enriched rice Enriched corn flour Enriched rice flour Enriched durum flour Enriched rye flour Enriched durum wheat Enriched wheat flour flour Enriched white flour OSPI CNS November 2018 OSPI CNS Child and Adult Care Food Program Reference Sheet Disregarded Ingredients – May be ignored (typically presented in small amounts) Corn dextrin Tapioca starch Corn starch Wheat dextrin Modified -
Botanic Gardens Are Important Contributors to Crop Wild Relative Preservation
Published November 21, 2019 RESEARCH Botanic Gardens Are Important Contributors to Crop Wild Relative Preservation Abby Meyer* and Nicholas Barton Botanic Gardens Conservation International US at at The Huntington ABSTRACT Library, Art Museum, and Botanical Gardens, 1151 Oxford Rd., San Humans rely on crop wild relatives (CWRs) for Marino, CA 91108. Received 2 June 2019. Accepted 11 Oct. 2019. sustainable agriculture and food security through *Corresponding author ([email protected]). Assigned to Associate augmentation of crop yield, disease resistance, Editor Joseph Robins. and climatic tolerance, among other important Abbreviations: BGCI, Botanic Gardens Conservation International; traits. Many CWRs are underrepresented in crop CWR, crop wild relative; GRIN, Germplasm Resources Information gene banks. With at least one-third of known Network. plant species maintained in botanic garden living collections, the botanic garden community serves as an important global ex situ network rop wild relatives (CWRs), plants that have “an indirect that supports plant conservation and research Cuse derived from its relatively close genetic relationship to a around the world. We sought to characterize crop,” provide important genetic diversity needed by breeders and botanic garden holdings of CWRs and demon- scientists to develop a wide range of crop plant adaptations (Maxted strate capacity for cross-sector coordination in et al., 2006, p. 2680). Benefits such as increased production, better support of CWR ex situ preservation. To do this, nutrition, drought tolerance, and pest and disease resistance have Botanic Gardens Conservation International been made possible through the use of CWRs and allowed for US (BGCI-US), in partnership with the United more consistent and sustainable yields of conventional crops for States Botanic Garden, used the BGCI Plant- Search database to conduct an ex situ survey of decades (Dempewolf et al., 2017; Guarino and Lobell, 2011; Hajjar CWRs maintained in botanic gardens. -
Wheat, Barley, Rye, GO! Students Get Active and Learn About Whole Grains in This Spirited Game Overview
Wheat, Barley, Rye, GO! Students get active and learn about whole grains in this spirited game Overview In this wacky version of "Rock, Paper, Scissors," students strategize and chase Description each other while learning about whole grains. Objective Students will identify a variety of whole grain foods they can eat for snack. Activity 1. Have the studends form a large circle. 2. Ask them to raise their hands if they eat whole grain foods for snack (e.g. crackers, bread, etc). Explain that grains are carbohydrates, the body’s main source of energy. Tell the class that whole grains are usually brown and are healthier than white grains because they have more vitamins and nutrients, which give the body more energy to run and play. 3. Then, ask them to share a few specific whole grain foods they eat. (If a student mentions a processed, "white" grain such as white bread, tell them it is okay to eat foods like white bread once in a while, but they should eat whole grains more often. Can they think of a whole grain food to replace the other?) 4. Divide the class into two groups and have them stand at opposite ends of the room. 5. Explain that they are going to play a familiar game "Rock, Paper, Scissors" with a twist. The name of the game is "Wheat, Barley, Rye." 6. Have the class create one full-body pose (as opposed to hand sign) for each grain. Have the students practice the movements as you call out the grains so they become familiar. -
Alkaline Foods...Acidic Foods
...ALKALINE FOODS... ...ACIDIC FOODS... ALKALIZING ACIDIFYING VEGETABLES VEGETABLES Alfalfa Corn Barley Grass Lentils Beets Olives Beet Greens Winter Squash Broccoli Cabbage ACIDIFYING Carrot FRUITS Cauliflower Blueberries Celery Canned or Glazed Fruits Chard Greens Cranberries Chlorella Currants Collard Greens Plums** Cucumber Prunes** Dandelions Dulce ACIDIFYING Edible Flowers GRAINS, GRAIN PRODUCTS Eggplant Amaranth Fermented Veggies Barley Garlic Bran, wheat Green Beans Bran, oat Green Peas Corn Kale Cornstarch Kohlrabi Hemp Seed Flour Lettuce Kamut Mushrooms Oats (rolled) Mustard Greens Oatmeal Nightshade Veggies Quinoa Onions Rice (all) Parsnips (high glycemic) Rice Cakes Peas Rye Peppers Spelt Pumpkin Wheat Radishes Wheat Germ Rutabaga Noodles Sea Veggies Macaroni Spinach, green Spaghetti Spirulina Bread Sprouts Crackers, soda Sweet Potatoes Flour, white Tomatoes Flour, wheat Watercress Wheat Grass ACIDIFYING Wild Greens BEANS & LEGUMES Black Beans ALKALIZING Chick Peas ORIENTAL VEGETABLES Green Peas Maitake Kidney Beans Daikon Lentils Dandelion Root Pinto Beans Shitake Red Beans Kombu Soy Beans Reishi Soy Milk Nori White Beans Umeboshi Rice Milk Wakame Almond Milk ALKALIZING ACIDIFYING FRUITS DAIRY Apple Butter Apricot Cheese Avocado Cheese, Processed Banana (high glycemic) Ice Cream Berries Ice Milk Blackberries Cantaloupe ACIDIFYING Cherries, sour NUTS & BUTTERS Coconut, fresh Cashews Currants Legumes Dates, dried Peanuts Figs, dried Peanut Butter Grapes Pecans Grapefruit Tahini Honeydew Melon Walnuts Lemon Lime ACIDIFYING Muskmelons -
Oat Whiskey Millet Whiskey Rye Whiskey White Rye Whiskey Bourbon Whiskey Four Grain Whiskey
GRAIN TO BOTTLE ORGANIC SPIRITS HANDMADE IN CHICAGO Miniature bottles of KOVAL whiskey are a perfect fit for the hotel mini bar. The price point is great for someone venturing into our luxury craft spirits for the first time, or for someone looking to give a unique gift. WHITE RYE WHISKEY RYE WHISKEY 80 Proof 80 Proof Gold Medal - White Whiskey 1st Place - Best International Whisky -2010 American Distilling Institute- -2013 InterWhisky Competition- Peppery and floral notes overflow in this white whiskey, Aged in new American oak from Minnesota. Grains which some compare to aquavit. It is a traditional sourced from a local organic farmer collective in the American spirit. George Washington made it in his distillery, Midwest. Single Barrel. Unfiltered 100% Rye. Heart and it was common in the New World before the rise of Cut. Organic. bourbon after the Whiskey Rebellion. Our unaged White Rye is perfect when sipped neat but also excellent over ice “This is no ordinary rye, because it doesn’t come from or in classic and contemporary cocktails. Barely touching an ordinary distillery. [...] Despite being 100% rye grain, the barrel before being bottled, this is the true essence of rye this whiskey is fresh and light [...] with a maple-y, candy without being overshadowed by oak. Unfiltered 100% Rye. corn entry and a kiss of spice on the finish.” Heart Cut. Organic. -The Wall Street Journal 200ML 200ML MILLET WHISKEY OAT WHISKEY 80 Proof 80 Proof Gold Medal - Grain Spirit Best Local Spirit -2010 Destillata Spirits Competition- -2012 Chicago Reader- Aged in new American oak from Minnesota. -
Developing Methodologies for the Global in Situ Conservation of Crop
Developing methodologies for the global in situ conservation of crop wild relatives By Holly A. Vincent A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham June 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Climate change is predicted to have far-reaching deleterious impacts worldwide; agriculture in particular is expected to be effected by significant loss of suitable land and crop yields in the world’s most populous and poorest regions. Crop wild relatives (CWR) are a rich source of underutilised genetic diversity which could help to mitigate climate change for agriculture through breeding new resilient varieties. However, CWR are under-conserved and threatened in the wild. This thesis researches and develops systematic methodologies to advance knowledge and support action on in situ CWR conservation at the global level. Methods included developing a global inventory of CWR associated with crops important for food security worldwide, species distribution modelling, climate change analysis, in situ gap analysis, reserve planning and prioritisation, and, examining the congruence of CWR distributions with regions of high biodiversity and crop diversity. -
Identifying Conservation Priorities for Crop Wild Relatives in South Africa
Identifying conservation priorities for Crop Wild Relatives in South Africa Domitilla Raimondo, Michelle Hamer, Steven Holness, Joana Brehm Why this work is a priority for South Africa • The conservation of Crop Wild Relatives is important for food security. • Forms part of the work on Benefits from Biodiversity that will be communicated to policy makers via South African National Biodiversity Assessment. • One of the targets of South Africa’s Plant Conservation Strategy a CBD linked commitment. Process followed to identify CWR: • SANBI Biosystematics division developed a checklist of wild relatives of human food (including beverages) and fodder crops. • Checklist includes both indigenous and naturalised taxa present in South Africa, that are relatives of cultivated crops, with a focus on major crops, but also including some less established but potentially important crops.. • A total of 1593 taxa (species, subspecies and varieties), (or 7% of the total number of plant taxa in South Africa) form part of this checklist. Solanum aculeastrum relative of egg plants Ipomoea bathycolpos relative of sweet potatoes Prioritisation of CWRS The South African CWR checklist has been prioritized. Four criteria were used: • socio-economic value of the related crop (at a global, continental and regional scale) • potential for use of the wild relative in crop improvement • threat status and distribution (whether indigenous or naturalized and if indigenous • whether it is restricted to South Africa, ie. endemic The Priority list • 15 families, 33 genera and 258 taxa. • The predominant families in the list are the Poaceae, Fabaceae and Solanaceae • 258 taxa of which 93 are endemic to South Africa • Nine species on the priority list are included in the National List of Alien and Invasive Species (Ipomoea alba, I. -
Usual Planting and Harvesting Dates for U.S. Field Crops
United States Department of Agriculture Usual Planting and National Agricultural Harvesting Dates for Statistics Service U.S. Field Crops December 1997 Agricultural Handbook Number 628 Introduction Usual planting and harvesting dates for major field crops appear in this report. Information is arranged by States for major crops and by commodity for selected States. In addition, dot maps show major areas of production. The information was assembled by the National Agricultural Statistics Service, based on the best and latest information available. The same data for vegetables may be found in “Commercial Vegetables for Fresh Market and Processing in Principal Producing Areas, Usual Planting and Harvesting Dates” Agriculture Handbook No. 507, issued February 1977. The dates shown indicate the periods in which the crops are planted and harvested in most years. They do not account for exceptionally early or late dates of scattered planting and harvesting, nor abnormal seasons caused by climatic or economic conditions. Beginning dates indicate when planting or harvesting is about 5 percent complete and ending dates when operations are about 95 percent complete. The “usual planting dates” are the times when crops are usually planted in the fields. For transplanted crops, such as tobacco, the planting period refers to the time of setting plants in the field. The “harvest dates” refer to the periods during which harvest of the crop actually occurs. They do not extend through the subsequent period in which some commodities are stored in the field after harvest. Usual Planting and Harvesting Dates Agricultural Statistics Board December 1997 NASS, USDA Barley Nearly 7 million acres of barley were harvested in the United States (U.S.) during 1996.