Lynx Conservation Strategy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential European Bison (Bison Bonasus) Habitat in Germany
PROJECT REPORT Potential European bison (Bison bonasus) habitat in Germany Tobias Kuemmerle Humboldt-University Berlin Benjamin Bleyhl Humboldt-University Berlin Wanda Olech University of Warsaw & European Bison Friends Society Kajetan Perzanowski Carpathian Wildlife Research Station MIZ, PAS & European Bison Friends Society 1 PROJECT REPORT CONTENTS CONTENTS ...............................................................................................................................................................2 INTRODUCTION .......................................................................................................................................................3 HISTORIC DISTRIBUTION OF EUROPEAN BISON IN EUROPE .....................................................................................4 EUROPEAN BISON HABITAT PREFERENCES ..............................................................................................................6 HABITAT USE OF CONTEMPORARY EUROPEAN BISON POPULATIONS .......................................................................................... 6 PALEO-ECOLOGICAL DATA ON EUROPEAN BISON HABITAT USE ............................................................................................... 10 MAPPING EUROPEAN BISON HABITAT IN GERMANY ............................................................................................ 10 APPROACH ................................................................................................................................................................. -
Eurasian Lynx – Your Essential Brief
Eurasian lynx – Your essential brief Background Q: Are lynx native to Britain? A: Based on archaeological evidence, the range of the Eurasian lynx (Lynx lynx) included Britain until at least 1,300 years ago. It is difficult to be precise about when or why lynx became extinct here, but it was almost certainly related to human activity – deforestation removed their preferred habitat, and also that of their prey, thus reducing prey availability. These declines in prey species may have been exacerbated by human hunting. Q: Where do they live now? A: Across Europe, Scandinavia, Russia, northern China and Southeast Asia. The range used to include other areas of Western Europe, including Britain, where they are no longer present. Q: How many are there? A: There are thought to be around 50,000 in the world, of which 9,000 – 10,000 live in Europe. They are considered to be a species of least concern by the IUCN. Modern range of the Eurasian lynx Q: How big are they? A: Lynx are on average around 1m in length, 75cm tall and around 20kg, with the males being slightly larger than the females. They can live to 15 years old, but this is rare in the wild. Q: What do they eat? A: The preferred prey of the lynx are the smaller deer species, primarily the roe deer. Lynx may also prey upon other deer species, including chamois, sika deer, smaller red deer, muntjac and fallow deer. Q: Do they eat other things? A: Yes. Lynx prey on many other species when their preferred prey is scarce, including rabbits, hares, foxes, wildcats, squirrel, pine marten, domestic pets, sheep, goats and reared gamebirds. -
Status of Large Carnivores in Serbia
Status of large carnivores in Serbia Duško Ćirović Faculty of Biology University of Belgrade, Belgrade Status and threats of large carnivores in Serbia LC have differend distribution, status and population trends Gray wolf Eurasian Linx Brown Bear (Canis lupus) (Lynx lynx ) (Ursus arctos) Distribution of Brown Bear in Serbia Carpathian Dinaric-Pindos East Balkan Population status of Brown Bear in Serbia Dinaric-Pindos: Distribution 10000 km2 N=100-120 Population increase Range expansion Carpathian East Balkan: Distribution 1400 km2 Dinaric-Pindos N= a few East Balkan Population trend: unknown Carpathian: Distribution 8200 km2 N=8±2 Population stable Legal status of Brown Bear in Serbia According Law on Protection of Nature and the Law on Game and Hunting brown bear in Serbia is strictly protected species. He is under the centralized jurisdiction of the Ministry of Environmental Protection Treats of Brown Bear in Serbia Intensive forestry practice and infrastructure development . Illegal killing Low acceptance due to fear for personal safety Distribution of Gray wolf in Serbia Carpathian Dinaric-Pindos East Balkan Population status of Gray wolf in Serbia Dinaric-Balkan: 2 Carpathian Distribution cca 43500 km N=800-900 Population - stabile/slight increasingly Dinaric Range - slight expansion Carpathian: Distribution 480 km2 (was) Population – a few Population status of Gray wolf in Serbia Carpathian population is still undefined Carpathian Peri-Carpathian Legal status of Gray wolf in Serbia According the Law on Game and Hunting the gray wolf in majority pars of its distribution (south from Sava and Danube rivers) is game species with closing season from April 15th to July 1st. -
Prey Density, Environmental Productivity and Home-Range Size in the Eurasian Lynx (Lynx Lynx)
J. Zool., Lond. (2005) 265, 63–71 C 2005 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904006053 Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Ivar Herfindal1, John D. C. Linnell2*, John Odden2, Erlend Birkeland Nilsen1 and Reidar Andersen1,2 1 Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway 2 Norwegian Institute for Nature Research, Tungasletta 2, N-7485 Trondheim, Norway (Accepted 19 May 2004) Abstract Variation in size of home range is among the most important parameters required for effective conservation and management of a species. However, the fact that home ranges can vary widely within a species makes data transfer between study areas difficult. Home ranges of Eurasian lynx Lynx lynx vary by a factor of 10 between different study areas in Europe. This study aims to try and explain this variation in terms of readily available indices of prey density and environmental productivity. On an individual scale we related the sizes of 52 home ranges, derived from 23 (9:14 male:female) individual resident lynx obtained from south-eastern Norway, with an index of density of roe deer Capreolus capreolus. This index was obtained from the density of harvested roe deer within the municipalities covered by the lynx home ranges. We found a significant negative relationship between harvest density and home- range size for both sexes. On a European level we related the sizes of 111 lynx (48:63 male: female) from 10 study sites to estimates derived from remote sensing of environmental productivity and seasonality. -
Biodiversity of the Hercynian Mountains of Central Europe
Pirineos, 151-152: 83 a 99, JACA; 1998 BIODIVERSITY OF THE HERCYNIAN MOUNTAINS OF CENTRAL EUROPE JAN JENÍK Faculty of Science, Charles University, Benátská 2, CZ-12801 Praha 2, Czech Republic SUMMARY.- The vegetation of temperate Central Europe north of the Alps is mainly of low diversity broadleaf and conifer forest. The occurrence of three azonal habitat types: mires with their numerous microhabitats, the georelief of the karst and its deeply-cut river valleys, and ecological islands with a distinct vegetation near the treeline of the middle-mountains causes local areas of high diversity. These high species diversity spots are the result of an interplay between physical, biotic and historical factors. A model of an anemo-orographic system with its underlying factors is described to explain the high plant and animal diversity in the corries (glacial cirques) of the Hercynian mountains. RÉSUMÉ.-La végétation de l'Europe Centrale tempérée au nord des Alpes nous montre surtout des forêts à de feuillues et de connifères à faible diversité. Cependant, la présence de trois types d'habitats azonaux peut produire une haute diversité au niveau local: zones humides avec leur nombreux microhabitats, reliefs karstiques et leur profonds défilés fluviaux, et enfin des îles écologiques avec une végétation par ticulière situées près de la limite supérieure des arbres (treeline). Ces secteurs riches en espèces peuvent s'expliquer par l'interaction des facteurs physiques, biotiques et historiques. Dans ce domaine nous proposons un système anémo-orographique avec ses facteurs inféodés qui pourrait expliquer la haute diversité animale et végétale dans les cirques glaciaires des montagnes hercyniennes. -
Proxy Environmental Record from the Bohemian Forest, Czech Republic
bs_bs_banner The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic KLARA VOCADLOV A, LIBOR PETR, PAVLA ZA CKOV A, MAREK KRIZEK, LENKA KRIZOV A, SIMON M. HUTCHINSON AND MIROSLAV SOBR Vocadlova, K., Petr, L., Zackova, P., Krızek, M., Krızova, L., Hutchinson, S. M. & Sobr M.: The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic. Boreas. 10.1111/bor.12126. ISSN 0300-9483. The Hercynian mountain ranges were islands of mountain glaciation and alpine tundra in a Central European ice-free corridor during the Late Pleistocene. Today they are notable areas of glacial landforms, alpine-forest free areas, peatlands and woodlands. However, our knowledge of the Lateglacial and early Holocene environmental changes in this region is limited. We present a new multi-proxy reconstruction of a mid-altitude environment in the Bohemian Forest spanning this period. A core (5.2 m length) in the Cern e Lake cirque (1028 m a.s.l.) was sub- jected to lithological, geochemical, pollen and macrofossil analysis supplemented by two optically stimulated luminescence (OSL) and 10 AMS radiocarbon dates. We determined the impact of regional and supraregional cli- mate changes on the environment. The two most significant changes in sedimentation during the Lateglacial (17.6 and 15.8–15.5 cal. ka BP) were synchronous with regional glacial chronostratigraphy. Unlike Central European mountain ranges, in the Bohemian Forest the Younger Dryas was not coincident with glacier re-advance, but was a dry, cold episode with low lake levels, which prevailed until the early Preboreal. -
Current Status of the Eurasian Lynx. Cat News. (2016)
ISSN 1027-2992 I Special Issue I N° 10 | Autumn 2016 CatsCAT in Iran news 02 CATnews is the newsletter of the Cat Specialist Group, a component Editors: Christine & Urs Breitenmoser of the Species Survival Commission SSC of the International Union Co-chairs IUCN/SSC for Conservation of Nature (IUCN). It is published twice a year, and is Cat Specialist Group available to members and the Friends of the Cat Group. KORA, Thunstrasse 31, 3074 Muri, Switzerland For joining the Friends of the Cat Group please contact Tel ++41(31) 951 90 20 Christine Breitenmoser at [email protected] Fax ++41(31) 951 90 40 <[email protected]> Original contributions and short notes about wild cats are welcome Send <[email protected]> contributions and observations to [email protected]. Guidelines for authors are available at www.catsg.org/catnews Cover Photo: From top left to bottom right: Caspian tiger (K. Rudloff) This Special Issue of CATnews has been produced with support Asiatic lion (P. Meier) from the Wild Cat Club and Zoo Leipzig. Asiatic cheetah (ICS/DoE/CACP/ Panthera) Design: barbara surber, werk’sdesign gmbh caracal (M. Eslami Dehkordi) Layout: Christine Breitenmoser & Tabea Lanz Eurasian lynx (F. Heidari) Print: Stämpfli Publikationen AG, Bern, Switzerland Pallas’s cat (F. Esfandiari) Persian leopard (S. B. Mousavi) ISSN 1027-2992 © IUCN/SSC Cat Specialist Group Asiatic wildcat (S. B. Mousavi) sand cat (M. R. Besmeli) jungle cat (B. Farahanchi) The designation of the geographical entities in this publication, and the representation of the material, do not imply the expression of any opinion whatsoever on the part of the IUCN concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. -
Sulphate Sorption Characteristics of the Bohemian Forest Soils
Silva Gabreta vol. 11 (1) p. 3–12 Vimperk, 2005 Sulphate sorption characteristics of the Bohemian Forest soils Jiří Kaňa* & Jiří Kopáček Faculty of Biological Sciences, University of South Bohemia, and Hydrobiological Institute, AS CR, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic *[email protected] Abstract Sulphate (SO4-S) sorption characteristics were determined in soils from catchments of three acidified mountain lakes, Plešné (PL), Čertovo (CT), and Černé (CN), situated in the Bohemian Forest. The SO4-S desorption ranged between 0.07–0.73, 0.21–0.68, and 0.39–0.82 mmol.kg–1 in the PL, CT, and CN catchments, respectively. SO4-S desorption was observed to be higher in horizon A than in mineral horizons below. The SO4-S represented only 3.4% of total S pool in the catchments and did not explain a relatively high rate of terrestrial leaching of sulphate over last 10 years. This disproportion suggests that the soil SO4-S pool is being replenished from internal soil processes from the pool of total S. Sulphate sorption maxima in soils in the catchments of the Bohemian Forest lakes varied between 1.5–11.7 mmol.kg–1, being highest in A-horizon and lowest in E-horizon. Key words: acidification, recovery, soil chemistry INTRODUCTION The chemistry (and, consequently, biology) of mountain lakes is determined by amount of precipitation and their composition, bedrock (PSENNER & CATALAN 1994), catchment soils and vegetation (e.g. BARON et al. 1994), and hydrology (WETZEL 2002). Soil sorption charac- teristics may significantly affect water composition, e.g. -
The IUCN Red List of Threatened Speciestm
Species 2014 Annual ReportSpecies the Species of 2014 Survival Commission and the Global Species Programme Species ISSUE 56 2014 Annual Report of the Species Survival Commission and the Global Species Programme • 2014 Spotlight on High-level Interventions IUCN SSC • IUCN Red List at 50 • Specialist Group Reports Ethiopian Wolf (Canis simensis), Endangered. © Martin Harvey Muhammad Yazid Muhammad © Amazing Species: Bleeding Toad The Bleeding Toad, Leptophryne cruentata, is listed as Critically Endangered on The IUCN Red List of Threatened SpeciesTM. It is endemic to West Java, Indonesia, specifically around Mount Gede, Mount Pangaro and south of Sukabumi. The Bleeding Toad’s scientific name, cruentata, is from the Latin word meaning “bleeding” because of the frog’s overall reddish-purple appearance and blood-red and yellow marbling on its back. Geographical range The population declined drastically after the eruption of Mount Galunggung in 1987. It is Knowledge believed that other declining factors may be habitat alteration, loss, and fragmentation. Experts Although the lethal chytrid fungus, responsible for devastating declines (and possible Get Involved extinctions) in amphibian populations globally, has not been recorded in this area, the sudden decline in a creekside population is reminiscent of declines in similar amphibian species due to the presence of this pathogen. Only one individual Bleeding Toad was sighted from 1990 to 2003. Part of the range of Bleeding Toad is located in Gunung Gede Pangrango National Park. Future conservation actions should include population surveys and possible captive breeding plans. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership. -
Predicting Global Population Connectivity and Targeting Conservation Action for Snow Leopard Across Its Range
Ecography 39: 419–426, 2016 doi: 10.1111/ecog.01691 © 2015 e Authors. Ecography © 2015 Nordic Society Oikos Subject Editor: Bethany Bradley. Editor-in-Chief: Miguel Araújo. Accepted 27 April 2015 Predicting global population connectivity and targeting conservation action for snow leopard across its range Philip Riordan, Samuel A. Cushman, David Mallon, Kun Shi and Joelene Hughes P. Riordan ([email protected]) and J. Hughes, Dept of Zoology, Univ. of Oxford, South Parks Road, Oxford, OX1 3PS, UK. – S. A. Cushman, US Forest Service, Rocky Mountain Research Station, 800 E Beckwith, Missoula, MT 59801, USA. – D. Mallon, Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan Univ., Manchester, M1 5GD, UK. – K. Shi and PR, Wildlife Inst., College of Nature Conservation, Beijing Forestry Univ., 35, Tsinghua-East Road, Beijing 100083, China. Movements of individuals within and among populations help to maintain genetic variability and population viability. erefore, understanding landscape connectivity is vital for effective species conservation. e snow leopard is endemic to mountainous areas of central Asia and occurs within 12 countries. We assess potential connectivity across the species’ range to highlight corridors for dispersal and genetic flow between populations, prioritizing research and conservation action for this wide-ranging, endangered top-predator. We used resistant kernel modeling to assess snow leopard population connectivity across its global range. We developed an expert-based resistance surface that predicted cost of movement as functions of topographical complexity and land cover. e distribution of individuals was simulated as a uniform density of points throughout the currently accepted global range. -
Vegetation of the Czech Republic: Diversity, Ecology, History and Dynamics
Preslia 84: 427–504, 2012 427 Vegetation of the Czech Republic: diversity, ecology, history and dynamics Vegetace České republiky: diverzita, ekologie, historie a dynamika Dedicated to the centenary of the Czech Botanical Society (1912–2012) Milan C h y t r ý Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Chytrý M. (2012): Vegetation of the Czech Republic: diversity, ecology, history and dynamics. – Preslia 84: 427–504. This review summarizes basic information on the diversity of vegetation in the Czech Republic. It describes basic environmenal factors affecting vegetation, vegetation history since the last glacial, biomes occurring in the Czech Republic (zonal biomes of broad-leaved deciduous forest and forest- steppe, and azonal biomes of taiga and tundra), altitudinal zonation of vegetation and landscapes with an exceptionally high diversity of vegetation types (deep river valleys in the Bohemian Massif, karst areas, sandstone pseudokarst areas, solitary volcanic hills, glacial cirques, lowland riverine landscapes and serpentine areas). Vegetation types, delimited according to the monograph Vegeta- tion of the Czech Republic, are described with emphasis on their diversity, ecology, history and dynamics. K e y w o r d s: alpine, aquatic, central Europe, forest, grassland, phytosociology, plant communi- ties, ruderal, vegetation change, vegetation classification, vegetation history, weed, wetland Introduction The Czech Republic is a land-locked country in central Europe occupying an area of 78,867 km2. It is situated in the zone of temperate broad-leaved deciduous forest, which in the south-east borders on the forest-steppe zone. -
Monitoring of the Eurasian Lynx (Lynx Lynx) in the Vtáčnik Mountains, Slovakia: Importance for the National and European Management and Conservation of the Species
MONITORING OF THE EURASIAN LYNX (LYNX LYNX) IN THE VTÁČNIK MOUNTAINS, SLOVAKIA: IMPORTANCE FOR THE NATIONAL AND EUROPEAN MANAGEMENT AND CONSERVATION OF THE SPECIES KUBALA JAKUB, BRANISLAV TÁM, NUNO FILIPE GUIMARÃES, ĽUBOMÍR FERLICA, TIBOR PATAKY, PETER KLINGA, PETER KOVÁČ, MICHAL BELÁK, EVA GREGOROVÁ, PETER SMOLKO, STJEPAN STOPIĆ, LUKÁŠ HOLÁSEK, PETER GRMAN, PETER HOLKA, BEŇADIK MACHCINÍK, JAROSLAV BRNDIAR, MIRKO KRAJČI & RUDOLF KROPIL Technical University in Zvolen, September 2020 Monitoring of the Eurasian lynx (lynx lynx) in the Vtáčnik Mountains, Slovakia: importance for the national and European management and conservation of the species The publication was developed as part of the LIFE Lynx project “Preventing the Extinction of the Dinaric-SE Alpine Lynx Population through Reinforcement and Long-term Conservation" (LIFE16 NAT / SI / 000634) with financial support from the European Commission Authors: Jakub Kubala – Technical university in Zvolen, Zvolen, Slovakia, Branislav Tám – Bojnice National Zoo, Bojnice, Slovakia; Slovak University of Agriculture in Nitra, Nitra, Slovakia, Nuno Filipe Guimarães – OZ DIANA – Carpathian wildlife research, Slovakia, Ľubomír Ferlica – Technical university in Zvolen, Zvolen, Slovakia, Tibor Pataky – Technical university in Zvolen, Zvolen, Slovakia, Peter Klinga – Technical university in Zvolen, Zvolen, Slovakia, Peter Kováč – OZ DIANA – Carpathian wildlife research, Slovakia, Michal Belák – Bojnice National Zoo, Bojnice, Slovakia, Eva Gregorová – Bojnice National Zoo, Bojnice, Slovakia, Peter Smolko