Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA

Total Page:16

File Type:pdf, Size:1020Kb

Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure. In fact, when excluding species ranked as Extinct, Extirpated, Undetermined, Not Assessed, Exotic or Accidental, a total of 77% have a Canada General Status Rank (Canada rank) of Secure. This number varies considerably among taxonomic groups. The species groups that have the lowest proportion of species ranked as Secure were the reptiles (33%) and freshwater mussels (39%). At the opposite, ground beetles (88%), bumblebees (94%), mosquitoes (95%) and predaceous diving beetles (98%) were the taxonomic groups that had the highest proportion of species ranked as Secure. However, the high percentages of species ranked as Secure in these taxonomic groups might reflect our lack of knowledge on these species, since they were also among the taxonomic groups with the highest proportion of species ranked as Undetermined or Not Assessed. One of the important achievements of this report is to update the status assessments of taxonomic groups that were included in previous Wild Species reports. Among the taxonomic groups that were reassessed in this report, 626 species had a change in their Canada rank. In total, 15% of the changes involved species moving into a rank with an increased level of risk, 27% involved species moving into a rank with a reduced level of risk, and 16% involved species moving into or out of the Undetermined, Not Assessed, Exotic or Accidental ranks. Updates have also resulted in the addition of 162 new species to the national list (26% of the changes) and 101 species have been removed from the national list (16% of changes). Most of these changes were due to improved knowledge of the species, but taxonomic changes, biological changes, and changes due to new detailed assessments from the Committee on the Status of Endangered iii Wildlife in Canada (COSEWIC) also accounted for an important part of the reasons of the changes. The report Wild Species 2010 also serves as a first warning on possible conservation concerns for some species that have not been looked in details previously. The species that are ranked as May Be At Risk by the National General Status Working Group (NGSWG) are species that could be candidates for more detailed assessments. A total of 806 species were ranked as May Be At Risk. These species could be prioritized by COSEWIC for more detailed status assessments. The taxonomic groups that had the most species ranked as May Be At Risk were the vascular plants (444 species), followed by lichens (100 species), mosses (71 species) and spiders (62 species). One of the issues highlighted in this report is the large number of non- native species in Canada. Of the 11 950 species assessed in this report, 1426 species are ranked Exotic at the national level, meaning that these species are not native to Canada, but were introduced by humans. Of the groups covered in this report, the vascular plants have the highest proportion of Exotic species (24%). Exotic species have been brought to Canada, both deliberately and accidentally, from around the world, and can have a number of damaging impacts on native species, including competing for space and resources, preying on native wildlife, breeding with native species and introducing novel diseases and parasites. Finally, one purpose of this report also is to encourage more information to be collected on species currently ranked as Undetermined or Not Assessed. In this report, a total of 1618 species had these ranks because of a lack of knowledge. It is hoped that the Wild Species series will continue to raise the profile of existing data gaps and stimulate people either to contribute data for these species, or to collect new data to address these shortfalls. Without information on the status of these species, it is difficult to judge how the human uses affect the ecosystems and species. The taxonomic groups that had the highest number of species ranked as Undetermined or Not Assessed were the spiders (477 species), the ground beetles (260 species), the mosses (235 species) and the lichens (218 species). This report represents a huge achievement by summarizing the general status assessments of a large number and variety of wild species occurring in Canada. However, with a total number of species in Canada estimated to be more than 70 000, there are still many species left to be assessed. In the future, the Wild Species series will continue to consolidate our knowledge of wild species by using information from experts to create a baseline for comparison of the status of Canada’s species. iv Table of contents Abstract................................................................................................................. ii Table of contents ................................................................................................. iv List of figures ...................................................................................................... xii List of tables....................................................................................................... xiv Section 1 – Introduction ........................................................................................1 Context..............................................................................................................1 The species concept .........................................................................................3 Why a report on species in Canada? ................................................................5 What this report does ........................................................................................5 Users of the reports from the Wild Species series.............................................7 Summary of Wild Species 2000 ........................................................................8 Summary of Wild Species 2005 ......................................................................10 Further information..........................................................................................12 References......................................................................................................13 Section 2 – Data sources and methods ..............................................................14 Working group.................................................................................................14 Codes used for the regions .............................................................................16 Sources of information ....................................................................................18 Criteria underlying general status assessments..............................................19 General status categories ...............................................................................21 Updated general status assessments .............................................................23 From regional to national general status assessments ...................................23 The general status search tool ........................................................................24 Further information..........................................................................................25 References......................................................................................................25 Section 3 – Results of the general status assessments......................................26 Assessed taxonomic groups ...........................................................................26 Interpretations of the results............................................................................28 Macrolichens...................................................................................................29 Quick facts ......................................................................................................29 Background .....................................................................................................30
Recommended publications
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • The Mosquitoes of Minnesota
    Technical Bulletin 228 April 1958 The Mosquitoes of Minnesota (Diptera : Culicidae : Culicinae) A. RALPH BARR University of Minnesota Agricultural Experiment Station ~2 Technirnl Rull!'lin :z2g 1-,he Mosquitoes of J\ilinnesota (Diptera: Culicidae: Culicinae) A. llALPII R\lm University of Minnesota Agricultural Experiment Station CONTENTS I. Introduction JI. Historical Ill. Biology of mosquitoes ................................ Zoogeography Oviposition ......................................... Breeding places of larvae ................................... I) Larrnl p;rowth ....................................... Ill ,\atural factors in the control of larvae .................. JI The pupal stage ............................................... 12 .\lating .................................... _ ..... 12 Feeding of adults ......................................... 12 Hibernation 11 Seasonal distribution II I\ . Techniques Equipment Eggs ............................... · .... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Larvae Pupae Adults Colonization and rearing . IB \. Systematic treatment Keys to genera Adult females . l'J \fale terminalia . 19 Pupae ······················································· .... ········ 2.'i Larvae ····················································· ..... ········ 2S :-n Anopheles ········································· ··························· Anopheles (Anopheles) barberi .................... · · · · · · · · · · · · · · · · · · · · · · · · earlei ...•......................... · · · · ·
    [Show full text]
  • Nitrogen Content in Riparian Arthropods Is Most Dependent on Allometry and Order
    Wiesenborn: Nitrogen Contents in Riparian Arthropods 71 NITROGEN CONTENT IN RIPARIAN ARTHROPODS IS MOST DEPENDENT ON ALLOMETRY AND ORDER WILLIAM D. WIESENBORN U.S. Bureau of Reclamation, Lower Colorado Regional Office, P.O. Box 61470, Boulder City, NV 89006 ABSTRACT I investigated the contributions of body mass, order, family, and trophic level to nitrogen (N) content in riparian spiders and insects collected near the Colorado River in western Arizona. Most variation (97.2%) in N mass among arthropods was associated with the allometric effects of body mass. Nitrogen mass increased exponentially as body dry-mass increased. Significant variation (20.7%) in N mass adjusted for body mass was explained by arthropod order. Ad- justed N mass was highest in Orthoptera, Hymenoptera, Araneae, and Odonata and lowest in Coleoptera. Classifying arthropods by family compared with order did not explain signifi- cantly more variation (22.1%) in N content. Herbivore, predator, and detritivore trophic-levels across orders explained little variation (4.3%) in N mass adjusted for body mass. Within or- ders, N content differed only among trophic levels of Diptera. Adjusted N mass was highest in predaceous flies, intermediate in detritivorous flies, and lowest in phytophagous flies. Nitro- gen content in riparian spiders and insects is most dependent on allometry and order and least dependent on trophic level. I suggest the effects of allometry and order are due to exoskeleton thickness and composition. Foraging by vertebrate predators, such as insectivorous birds, may be affected by variation in N content among riparian arthropods. Key Words: nutrients, spiders, insects, trophic level, exoskeleton, cuticle RESUMEN Se investiguo las contribuciones de la masa de cuerpo, orden, familia y el nivel trófico al con- tenido de nitógeno (N) en arañas e insectos riparianos (que viven en la orilla del rio u otro cuerpo de agua) recolectadaos cerca del Rio Colorado en el oeste del estado de Arizona.
    [Show full text]
  • 2017, Jones Road, Near Blackhawk, RAIN (Photo: Michael Dawber)
    Edited and Compiled by Rick Cavasin and Jessica E. Linton Toronto Entomologists’ Association Occasional Publication # 48-2018 European Skippers mudpuddling, July 6, 2017, Jones Road, near Blackhawk, RAIN (Photo: Michael Dawber) Dusted Skipper, April 20, 2017, Ipperwash Beach, LAMB American Snout, August 6, 2017, (Photo: Bob Yukich) Dunes Beach, PRIN (Photo: David Kaposi) ISBN: 978-0-921631-53-7 Ontario Lepidoptera 2017 Edited and Compiled by Rick Cavasin and Jessica E. Linton April 2018 Published by the Toronto Entomologists’ Association Toronto, Ontario Production by Jessica Linton TORONTO ENTOMOLOGISTS’ ASSOCIATION Board of Directors: (TEA) Antonia Guidotti: R.O.M. Representative Programs Coordinator The TEA is a non-profit educational and scientific Carolyn King: O.N. Representative organization formed to promote interest in insects, to Publicity Coordinator encourage cooperation among amateur and professional Steve LaForest: Field Trips Coordinator entomologists, to educate and inform non-entomologists about insects, entomology and related fields, to aid in the ONTARIO LEPIDOPTERA preservation of insects and their habitats and to issue Published annually by the Toronto Entomologists’ publications in support of these objectives. Association. The TEA is a registered charity (#1069095-21); all Ontario Lepidoptera 2017 donations are tax creditable. Publication date: April 2018 ISBN: 978-0-921631-53-7 Membership Information: Copyright © TEA for Authors All rights reserved. No part of this publication may be Annual dues: reproduced or used without written permission. Individual-$30 Student-free (Association finances permitting – Information on submitting records, notes and articles to beyond that, a charge of $20 will apply) Ontario Lepidoptera can be obtained by contacting: Family-$35 Jessica E.
    [Show full text]
  • TERRESTRIAL ARTHROPODS 2012-2016 BIOBLITZ VASHON ISLAND List Compiled By: Harsi Parker
    COMPLETE LIST OF TERRESTRIAL ARTHROPODS 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Harsi Parker Number Species name Common name Notes Year Location Taxonomic Order 1 Gammaridae sp. scud 2016 J Amphipoda – Gammaridae 2 Hyalella sp. amphipod 2014, 2016 CH, J Amphipoda – Hyalellidae 3 Acari sp. #1 mite 2012, 2013, 2015, 2016 NP, SH, M, J Arachnida 4 Acari sp. #2 mite 2014 CH Arachnida 5 Opiliones sp. harvestman 2013, 2015 SH, M Arachnida 6 Callobius sp. hacklemesh weaver 2012 NP Arachnida – Amaurobiidae 7 Araneidae sp. orb weaver 2016 J Arachnida – Araneidae 8 Araneus diadematus Cross Orbweaver 2012, 2014 NP, CH Arachnida – Araneidae 9 Clubiona sp. leafcurling sac spider 2012 NP Arachnida – Clubionidae 10 Linyphiinae sp. sheetweb spider tentative ID 2012 NP Arachnida – Linyphiidae 11 Neriene sp. sheetweb spider tentative ID 2014 CH Arachnida – Linyphiidae 12 Pardosa sp. thinlegged wolf spider 2012 NP Arachnida – Lycosidae 13 Philodromus dispar running crab spider 2012 NP Arachnida – Philodromidae 14 Tibellus sp. slender crab spider tentative ID 2014 CH Arachnida – Philodromidae 15 Eris militaris Bronze Jumper tentative ID 2014 CH Arachnida – Salticidae 16 Metaphidippus manni jumping spider tentative ID 2014, 2016 CH, J Arachnida – Salticidae 17 Salticidae sp. #1 jumping spider 2014 CH Arachnida – Salticidae 18 Salticidae sp. #2 jumping spider 2015 M Arachnida – Salticidae 19 Salticus scenicus Zebra Jumper 2013, 2014, 2015 SH, CH, M Arachnida – Salticidae 20 Metellina sp. long-jawed orb weaver 2012 NP Arachnida – Tetragnathidae 21 Tetragnatha sp. long-jawed orb weaver 2013 SH Arachnida – Tetragnathidae 22 Theridiidae sp. cobweb spider 2012 NP Arachnida – Theridiidae 23 Misumena vatia Goldenrod Crab Spider 2013, 2016 SH, J Arachnida – Thomisidae 24 Thomisidae sp.
    [Show full text]
  • Metropolitan Mosquito Control District 2020 Operational Review & Plans for 2021
    This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. https://www.lrl.mn.gov METROPOLITAN MOSQUITO CONTROL DISTRICT 2020 OPERATIONAL REVIEW & PLANS FOR 2021 Annual Report to the Technical Advisory Board Joe Elling, Field Operations Supervisor, Plymouth Facility, testing larvicide treatments by drone in a small wetland. MMCD photo Metro Counties Government Center ~ 2099 University Avenue West ~ St. Paul, MN 55104-3431 www.mmcd.org Metropolitan Mosquito Control District Mission Technical Advisory Board The MMCC formed the TAB in 1981 to provide annual, The Metropolitan Mosquito Control District’s mission is to promote health and well-being by independent review of the field control programs, to enhance protecting the public from disease and annoyance inter-agency cooperation, and to facilitate compliance with caused by mosquitoes, black flies, and ticks in an Minnesota State Statute 473.716. environmentally sensitive manner. Technical Advisory Board Members Governance 2020-2021 The Metropolitan Mosquito Control District, Stephen Kells, Chair University of Minnesota established in 1958, controls mosquitoes and Donald Baumgartner US EPA gnats and monitors ticks in the metropolitan Phil Monson Mn Pollution Control Agency counties of Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, and Washington. The District John Moriarty Three Rivers Park District operates under the eighteen-member Metropolitan Elizabeth Schiffman Mn Department of Health Mosquito Control Commission (MMCC), Gary Montz Mn Dept. of Natural Resources composed of county commissioners from the Susan Palchick Hennepin Co. Public Health participating counties. An executive director is responsible for the operation of the program and Robert Sherman Independent Statistician reports to the MMCC.
    [Show full text]
  • Guide to Crustacea
    46 Guide to Crustacea. Order 2.—Decapoda. (Table-cases Nos. 9-16.) The gills are arranged typically in three series—podo- branchiae, arthrobranchiae, and pleurobranchiae. Only in the aberrant genus Leucifer are the gills entirely absent. The first three pairs of thoracic limbs are more or less completely modified to act as jaws (maxillipeds), while the last five form the legs. This very extensive and varied Order includes all the larger and more familiar Crustacea, such as Crabs, Lobsters, Crayfish, FIG. 30. Penaeus caramote, from the side, about half natural size. [Table-case No. 9.] Prawns, and Shrimps. From their greater size and more general interest, it is both possible and desirable to exhibit a much larger series than in the other groups of Crustacea, and in Table-cases Nos. 9 to 16 will be found representatives of all the Tribes and of the more important families composing the Order. On the system of classification adopted here, these tribes are grouped under three Sub-orders :— Sub-order 1.—Macrura. „ 2.—Anomura. ,, 3.—Brachyura. Eucarida—Decapoda. 47 SUB-ORDER I.— MACRURA. (Table-cases Nos. 9-11.) The Macrura are generally distinguished by the large size of the abdomen, which is symmetrical and not folded under the body. The front, or rostrum, is not united with the " epistome." The sixth pair of abdominal appendages (uropods) are always present, generally broad and flattened, forming with the telson, a " tail-fan." The first Tribe of the Macrura, the PENAEIDEA, consists of prawn-like animals having the first three pairs of legs usually chelate or pincer-like, and not differing greatly in size.
    [Show full text]
  • The Catalogue of the Freshwater Crayfish (Crustacea: Decapoda: Astacidae) from Romania Preserved in “Grigore Antipa” National Museum of Natural History of Bucharest
    Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 115–123 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0008-5 THE CATALOGUE OF THE FRESHWATER CRAYFISH (CRUSTACEA: DECAPODA: ASTACIDAE) FROM ROMANIA PRESERVED IN “GRIGORE ANTIPA” NATIONAL MUSEUM OF NATURAL HISTORY OF BUCHAREST IORGU PETRESCU, ANA-MARIA PETRESCU Abstract. The largest collection of freshwater crayfish of Romania is preserved in “Grigore Antipa” National Museum of Natural History of Bucharest. The collection consists of 426 specimens of Astacus astacus, A. leptodactylus and Austropotamobius torrentium. Résumé. La plus grande collection d’écrevisses de Roumanie se trouve au Muséum National d’Histoire Naturelle «Grigore Antipa» de Bucarest. Elle comprend 426 exemplaires appartenant à deux genres et trois espèces, Astacus astacus, A. leptodactylus et Austropotamobius torrentium. Key words: Astacidae, Romania, museum collection, catalogue. INTRODUCTION The first paper dealing with the freshwater crayfish of Romania is that of Cosmovici, published in 1901 (Bãcescu, 1967) in which it is about the freshwater crayfish from the surroundings of Iaºi. The second one, much complex, is that of Scriban (1908), who reports Austropotamobius torrentium for the first time, from Racovãþ, Bahna basin (Mehedinþi county). Also Scriban made the first comment on the morphology and distribution of the species Astacus astacus, A. leptodactylus and Austropotamobius torrentium, mentioning their distinctive features. Also, he published the first drawings of these species (cephalothorax). Entz (1912) dedicated a large study to the crayfish of Hungary, where data on the crayfish of Transylvania are included. Probably it is the amplest paper dedicated to the crayfish of the Romanian fauna from the beginning of the last century, with numerous data on the outer morphology, distinctive features between species, with more detailed figures and with the very first morphometric measures, and also with much detailed data on the distribution in Transylvania.
    [Show full text]
  • AKES Newsletter 2016
    Newsletter of the Alaska Entomological Society Volume 9, Issue 1, April 2016 In this issue: A history and update of the Kenelm W. Philip Col- lection, currently housed at the University of Alaska Museum ................... 23 Announcing the UAF Entomology Club ...... 1 The Blackberry Skeletonizer, Schreckensteinia fes- Bombus occidentalis in Alaska and the need for fu- taliella (Hübner) (Lepidoptera: Schreckensteini- ture study (Hymenoptera: Apidae) ........ 2 idae) in Alaska ................... 26 New findings of twisted-wing parasites (Strep- Northern spruce engraver monitoring in wind- siptera) in Alaska .................. 6 damaged forests in the Tanana River Valley of Asian gypsy moths and Alaska ........... 9 Interior Alaska ................... 28 Non-marine invertebrates of the St. Matthew Is- An overview of ongoing research: Arthropod lands, Bering Sea, Alaska ............. 11 abundance and diversity at Olive-sided Fly- Food review: Urocerus flavicornis (Fabricius) (Hy- catcher nest sites in interior Alaska ........ 29 menoptera: Siricidae) ............... 20 Glocianus punctiger (Sahlberg, 1835) (Coleoptera: The spruce aphid, a non-native species, is increas- Curculionidae) common in Soldotna ....... 32 ing in range and activity throughout coastal Review of the ninth annual meeting ........ 34 Alaska ........................ 21 Upcoming Events ................... 37 Announcing the UAF Entomology Club by Adam Haberski nights featuring classic “B-movie” horror films. Future plans include an entomophagy bake sale, summer collect- I am pleased to announce the formation of the Univer- ing trips, and sending representatives to the International sity of Alaska Fairbanks Entomology Club. The club was Congress of Entomology in Orlando Florida this Septem- conceived by students from the fall semester entomology ber. course to bring together undergraduate and graduate stu- The Entomology Club would like to collaborate with dents with an interest in entomology.
    [Show full text]
  • Estimating the Population Size of Astacus Leptodactylus (Decapoda: Astacidae) by Mark-Recapture Technique in E₣Irdir Lake, Turkey
    African Journal of Biotechnology Vol. 10(55), pp. 11778-11783, 21 September, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.758 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Estimating the population size of Astacus leptodactylus (Decapoda: Astacidae) by mark-recapture technique in Eirdir lake, Turkey Yildiz Bolat1*, Yavuz Mazlum2, Aydin Demirci2 and Habil Uur Koca1 1Departmant of Fishing and Fish Processing Technology, Faculty of Fisheries, University of Süleyman Demirel, 32500 Eirdir, Isparta, Turkey. 2Faculty of Fisheries, Mustafa Kemal University, TR-31200 Iskenderun-Hatay, Turkey. Accepted 13 June, 2011 The mark-recapture technique for closed populations was employed to estimate the population size and density of Astacus leptodactylus during August and September, 2005 by using minnow traps of 34 mm mesh size in Eirdir Lake. A total of 600 minnow traps were set randomly along the shoreline at approximately 3, 5 and 7 m depth. The nets were set in the late afternoon to each study depths, and were hauled the next day or after two days. The research was performed two times each month. In August, 1956 adult crayfish and in September, 2756 adult crayfish were marked by cauterization of the carapace. The recapture rates were found to be 3.5% in August and 2.3% in September, respectively. A total of 200 crayfish were randomly selected, 74 females and 126 males. The sex ratio was 1:1.7. Moreover, length and weight data gotten from 200 untagged crayfish showed that females and males differed significantly in their weight, but no significant difference was evident in the carapace length.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • A Personal History the BIOLOGICAL SURVEY of CANADA
    THE BIOLOGICAL SURVEY OF CANADA: A Personal History Biological Survey of Canada H.V. Danks Commission biologique du Canada THE BIOLOGICAL SURVEY OF CANADA: A PERSONAL HISTORY H.V. Danks Biological Survey of Canada Monograph Series No. 8 (2016) ii Published by the BIOLOGICAL SURVEY OF CANADA©2016 All illustrations in this book are copyright by individual authors or agencies, and their unauthorized use is prohibited. For further information contact the Biological Survey of Canada. The Biological Survey of Canada is an incorporated not-for-profit group devoted to promoting biodiversity science in Canada. It develops and coordinates national initiatives in systematics, biodiversity surveys, and publication of knowledge products. The monograph series of the Biological Survey of Canada comprises invited, fully reviewed publications relevant to the biodiversity of Canada. ISBN: 978-0-9689321-9-3 doi: 10.3752/9780968932193 iii CONTENTS INTRODUCTION......................................................................................... 1 THE GENESIS OF AN IDEA ...................................................................... 2 Background ................................................................................................. 2 The Department of Agriculture ................................................................. 2 The Entomological Society of Canada ...................................................... 4 Elements of the original plan ..................................................................... 5 SECURING INITIAL
    [Show full text]