<<

Ecography ECOG-04504 Henderson, C. J., Gilby, B. L., Schlacher, T. A., Connolly, R. M., Sheaves, M., Maxwell, P. S., Flint, N., Borland, H. P., Martin, T. S. H., Gorissen, B. and Olds, A. D. 2019. Landscape transformation alters functional diversity in coastal seascapes. – Ecography doi: 10.1111/ecog.04504

Supplementary material Appendix 1

Table A1. List of traits included in functional diversity analysis for each . All information sourced from Froese and Pauly (2018a).

Species Functional Group Trophic level Body shape Max. Body depth Head length Pre-orbital Eye diameter Total (% of Max (% of Max length (% of (% of Head length length) length) Head length) length) Acanthopagrus australis Omnivore 3.1 Compressiform 66 39.05 21.9 21.7 27.36 Acanthopagrus pacificus Omnivore 3.34 Compressiform 50 34.9 19.2 51.2 22.1 Alectis indica Zoobenthivore 4.09 Compressiform 165 40.94 22.64 34.17 24.67 Ambassis marianus Zooplanktivore 3.4 Compressiform 10 27.8 25.1 17 40.1 Arothron hispidus Zoobenthivore 3.10 Globiform 50 38.04 22.03 43.75 23.44 Arothron manilensis Zoobenthivore 3.50 Globiform 31 32.02 23.22 34.68 17.74 Arrhamphus sclerolepis Omnivore 3.10 Sagittiform 36 14.9 20.4 45.2 21 Arripis georgianus Zoobenthivore 4.31 Compressiform 41 22.67 19.97 23.73 32.2 Atherinomorus vaigiensis Zooplanktivore 3.24 Sagittiform 17 16.6 21.2 22 35 Atule mate Omnivore 3.27 Fusiform 30 24.9 21.86 27.84 26.03 Bathygobius cocosensis Zoobenthivore 3.5 Taeniform 12 16.55 21.79 19.38 30.23 Brachirus nigra Piscivore 3.8 Depressiform 35 48.6 18.6 21 14.3 ignobilis Piscivore 4.48 Compressiform 170 29.75 26.94 26.8 21.57 Caranx sexfasciatus Piscivore 3.58 Compressiform 120 28.15 26.42 28.1 22.88 Chelonodon patoca Zoobenthivore 3.1 Globiform 38 33.22 26.4 37.75 19.87 Dasyatis sephen Zoobenthivore 3.7 Depressiform 183 14.5 39.9 9.5 Eleutheronema tetradactylum Zoobenthivore 4.11 Fusiform 200 19.38 20.84 10.51 18.29 Epinephelus coeruleopunctatus Piscivore 4.17 Fusiform 76 25.91 32.64 21.21 15.4 Epinephelus coioides Piscivore 3.95 Fusiform 120 25.07 32.36 22.27 15.76 Epinephelus malobaricus Piscivore 4.2 Fusiform 234 25.1 32 21.7 11.8 Favonigobius exquisitus Zoobenthivore 3.5 Taeniform 9 15.4 22.4 23.5 25.8 Feroxodon multistriatus Zoobenthivore 4.01 Globiform 39 38.31 28.88 42.18 19.73 Gerres filamentosus Zoobenthivore 3.20 Compressiform 39 34.83 24.27 26 35.25 Gerres subfasciatus Zoobenthivore 3.30 Compressiform 20 34.9 24.2 25.6 35.4 Girella tricuspidata Herbivore 2.47 Compressiform 71 33.45 20.67 36.59 18.7 Glaucostegus typus Zoobenthivore 3.60 Depressiform 270 30.7 58 12.2 Gymnothorax pseudothyrsoideus Zoobenthivore 3.70 Anguilliform 80 9 14.6 14.1 9 Hemitrygon fluviorum Zoobenthivore 3.60 Depressiform 130 10 15.5 45.3 14.6 Herklotsichthys castlenaui Zooplanktivore 3.10 Compressiform 20 29.5 20.1 26.5 31.6 Himantura leoparda Zoobenthivore 3.60 Depressiform 110.5 10 12.7 41.3 8 Hyporhamphus australis Omnivore 2.59 Sagittiform 39.8 9.92 27.23 66.05 12.35 Kyphosus vaigiensis Herbivore 2.83 Compressiform 70 37.45 20.43 22.86 26.94 Lagocephalus lunaris Zoobenthivore 3.70 Globiform 45 29.83 27.87 35.78 31.63 Zoobenthivore 3.73 Globiform 110 18.57 30.83 34.81 31.49 Species Functional Group Trophic level Body shape Max. Body depth Head length Pre-orbital Eye diameter Total (% of Max (% of Max length (% of (% of Head length length) length) Head length) length) Lates calcarifer Piscivore 3.83 Compressiform 200 24.83 27.97 17.88 11.82 Lutjanus argentimaculatus Zoobenthivore 3.85 Compressiform 150 31.92 29.84 31.4 20.64 Lutjanus fulviflamma Piscivore 3.85 Compressiform 35 29.26 29.26 25.44 26.43 Lutjanus russellii Piscivore 3.80 Compressiform 50 30.85 29.21 32.11 20.5 Marilyna pleurosticta Zoobenthivore 3.3 Globiform 9.5 28.5 23.2 16.2 26.9 Microcanthus strigatus Omnivore 3 Compressiform 16 47.75 26.43 24.33 33 Monodactylus argenteus Omnivore 2.95 Compressiform 27 57.42 26.2 16.18 35.29 Mugil cephalus Detritivore 2.48 Sagittiform 50 19.65 17.89 19.16 21.96 Muraenesox bagio Zoobenthivore 3.99 Anguilliform 200 5.77 15.06 25.14 10.29 Neoarius graeffei Zoobenthivore 3.6 Sagittiform 60 18.87 21.52 28.46 17.69 Neotrygon kuhlii Zoobenthivore 3.73 Depressiform 70 10 24.8 35.9 7.1 Omegophora cyanopunctata Zoobenthivore 3.4 Globiform 25 20.87 25.39 34.93 25.34 Omobranchus punctatus Omnivore 2.5 Taeniform 9.5 19.18 20.96 16.95 29.66 Pantolabus radiatus Zoobenthivore 3.7 Compressiform 40 26.07 21.61 26.98 26.98 Pastinachus ater Piscivore 3.7 Depressiform 183 14.5 39.9 9.5 Pelates quadrilineatus Zoobenthivore 3.5 Compressiform 30 25.43 24.23 26.15 29.68 Pelates sexlineatus Zoobenthivore 3.5 Compressiform 15 25.43 24.23 26.15 29.68 Platycephalus arenarius Piscivore 4.4 Depressiform 45 10.69 26.12 25.5 9.4 Platycephalus endrachtensis Piscivore 4.4 Depressiform 45 10.69 26.12 25.5 9.4 Platycephalus fuscus Piscivore 4.06 Depressiform 120 10.69 26.12 25.5 9.4 Pomadasys kaakan Zoobenthivore 3.46 Compressiform 80 32.27 25.59 20.92 20.26 Pomatomus saltatrix Piscivore 4.08 Fusiform 130 32.59 24.75 21 17.33 Pomatoschistus minutus Zoobenthivore 3.25 Globiform 11 13.13 23.29 23.31 21.8 Protonibea diacanthus Zoobenthivore 3.93 Compressiform 150 23.8 23.47 21.51 19.71 Pseudocaranx dentex Piscivore 3.9 Compressiform 122 30 25.8 34.2 13.2 Pseudorhombus arsius Zoobenthivore 3.84 Depressiform 45 37.86 23.19 23.44 15.63 Remora remora Omnivore 3 Sagittiform 86.4 15.07 20.21 37.72 12.28 Rhabdosargus sarba Omnivore 3.25 Compressiform 80 37.95 22.74 29.7 27.82 Saurida undosquamis Piscivore 4.25 Sagittiform 50 12.79 18.88 20.18 17.94 Scomberoides commersonnianus Piscivore 4.36 Fusiform 120 23.73 16.2 16.16 20.2 Scomberoides lysan Piscivore 4.04 Fusiform 110 20.95 16.11 22.45 22.96 Scomberomorus queenslandicus Piscivore 4.39 Fusiform 100 19.05 19.22 29.2 22.12 Selenotoca multifasciata Detritivore 2.90 Compressiform 40 45.66 27.17 23.53 29.41 Siganus fuscescens Herbivore 2.28 Compressiform 40 32.39 18.45 33.22 35.83 Sillago analis Zoobenthivore 3.3 Fusiform 45 21.08 24.5 38.24 19.85 Sillago cilliata Zoobenthivore 3.2 Fusiform 55 18.4 25.1 40.6 19.6 Sillago maculata Zoobenthivore 3.52 Fusiform 30 17.69 23.83 40.15 26.52 Sillago robusta Zoobenthivore 3.3 Fusiform 30 17.55 22.85 32.8 24 Sphyraena obtusata Piscivore 4.5 Sagittiform 55 13.38 27.41 43.45 17.26 Sphyraena putnamae Piscivore 4.5 Sagittiform 90 13.15 27.11 49.1 17.37 Species Functional Group Trophic level Body shape Max. Body depth Head length Pre-orbital Eye diameter Total (% of Max (% of Max length (% of (% of Head length length) length) Head length) length) Terapon jarbua Zoobenthivore 3.52 Compressiform 36 30.03 24.85 20.49 28.62 Tetractenos glaber Zoobenthivore 3.3 Globiform 15 20.9 25.4 34.9 25.3 Tetractenos hamiltoni Zoobenthivore 3.3 Globiform 14 20.9 25.4 34.9 25.3 pleurogramma Zoobenthivore 3.4 Globiform 21 20.87 25.39 34.93 25.34 Torquigener squamicauda Zoobenthivore 3.3 Globiform 15 20.9 25.4 34.9 25.3 Toxotes jaculatrix Omnivore 2.62 Compressiform 30 36.94 27.93 23.23 24.52 Tripodichthys angustifrons Zoobenthivore 3.5 Globiform 20 34.55 23.64 53.08 28.46 Trygonoptera testaceous Zoobenthivore 3.8 Depressiform 47 10 15.5 45.3 14.6 Trygonorrhina fasciata Zoobenthivore 3.6 Depressiform 126 24.63 50 10.67 Tylosurus gavialoides Piscivore 4.4 Sagittiform 75 4.84 29.88 63.69 10.61

Table A2. Summary and definitions of catchment land use and estuarine habitat variables that were included in statistical models. GIS layers for land use classes and estuarine habitats were sourced from local government (source Queensland Government 2018). Factor Description Underlying hypothesis Catchment land use Urban land (Range 34 The area of land in each catchment Large areas of urban land correlates with an increase in the extent of shoreline armouring (Olds km2 – 1274 km2, Average which has been transformed with et al. 2018a), increased nutrients in runoff (Dauer et al. 2000) and increased turbidity in 357 km2) the installation of hard impervious estuaries. Increased urban land is predicted to correlate with reduced functional diversity in surfaces. estuaries. Agricultural land used The area of land in each catchment Large areas of grazing land correlates with increased channel erosion in catchments, and result for grazing (Range 156 which is used for grazing. in increased levels of turbidity within estuaries (Wilkinson et al. 2013). Increased levels of km2 – 110,708 km2, sedimentation and channel erosion is predicted to correlate with reduced functional diversity in Average 14,448 km2) estuaries. Agricultural land used The area of land in each catchment Large areas of agricultural land correlates with increased levels of nutrients in estuaries (Dauer for cropping (Range 43 which is used for cropping, et al. 2000). Increased levels of nutrients are predicted to correlate with reduced functional km2 – 5681 km2, Average plantations and forestry. diversity in estuaries. 489 km2) Natural land (Range 162 The area of land in each catchment Large areas of natural land correlates with reduced nutrients, turbidity and less shoreline km2 – 2094 km2, Average that is covered with remnant armouring in estuaries (Hamilton et al. 2017). Decreased levels of nutrients, sedimentation and 703 km2) terrestrial vegetation. shoreline armouring is predicted to correlate with increased functional diversity in estuaries. Estuarine habitat extent Mangrove forest (Range The extent of mangrove forests in A large area of mangroves in an estuary provides an increase in habitat quality and an increase 0 km2 – 51 km2, Average the sampled stretch of each estuary. in structurally complex habitat for (Faunce and Serafy 2006). Increased extent of natural 4 km2) habitats is predicted to correlate with increased functional diversity in estuaries. Rock bars (Range 0 km2 – The extent of rock bars in the A large area of rock bars in an estuary provides an increase in habitat quality and an increase in 0.2 km2, Average 0.02 sampled stretch of each estuary. structurally complex habitat for fish (Bradley et al. 2017). Increased extent of natural habitats is km2) predicted to correlate with increased functional diversity in estuaries. Seagrass meadows The extent of seagrass meadows in An large area of seagrass meadows in an estuary provides an increase in habitat quality and an (Range 0 km2 – 0.02 km2, the sampled stretch of each estuary. increase in structurally complex habitat for fish (Gilby et al. 2018). Increased extent of natural Average 0.002 km2) habitats is predicted to correlate with increased functional diversity in estuaries. Armoured shoreline The proportion of shoreline in the An increased area of modified or hardened shoreline has negative effects for fish diversity in (Range 0% – 98%, sampled stretch of the estuary that estuaries (Bishop et al. 2017, Strain et al. 2018). Increased extent of armoured shoreline in Average 12%) has been hardened with artificial estuaries is predicted to correlate with decreased functional diversity in estuaries. structures. Table A3. List of traits included in functional diversity analysis, and the justification for their inclusion. All information sourced from Froese and Pauly (2018a). Trait Justification Feeding ecology Functional group The trophic categories described for estuarine by Elliott et al. (2007). Trophic level Provides information on the level at which a species feeds in a food web (Carscallen et al. 2012). Morphology Body shape The shape of the fish species, is important in determining their prey items and where the species resides within an estuary (Wainwright and Richard 1995). Total length The maximum size (TL) of the species. An indicator of the prey items a fish might feed on (Layman et al. 2005). Head length Measured as the distance from the tip of the snout to the to the rear of the gill operculum, as a percentage of the total length. An indicator of the types of habitats, and prey items, a fish might feed on (Wainwright and Richard 1995). Pre-orbital length Measured as the distance between the tip of the snout and the start of the eye, as a percentage of the head length. An indicator of the types of habitats, and prey items, a fish might feed on (Wainwright and Richard 1995). Body depth Measured as the height of the body of the fish (not including any fins) at its deepest point. of the types of habitats, and prey items, a fish might feed on (Wainwright and Richard 1995). Eye diameter Measured as the size of the eye as a proportion of the length of the head. An indicator of the types of habitats, and prey items, a fish might feed on (Goatley and Bellwood 2009). Table A4. Summary of traits for taxa in each functional group and trophic category. Mean values are provided for numerical traits and common descriptions are used for categorical traits. Empirical trait data were obtained from FishBase (Froese and Pauly 2018). Functional Trophic Feeding type Body shape Trophic Max. Total Body depth Head length Pre-orbital Eye diameter group category level length (cm) (% of Max (% of Max length (% of (% of Head (see Fig S2) length) length) Head length) length) Piscivores Compressiform A Piscivore Compressiform 3.91 116.17 28.81 27.60 27.42 19.40 Fusiform B Piscivore Fusiform 4.16 136.25 23.97 24.27 20.56 17.98 Other C Piscivore Depressiform 4.22 77.56 15.60 23.86 34.87 12.80 Zoobenthivores Depressiform D Zoobenthivore Depressiform 3.72 126.15 13.23 19.12 37.84 11.16 Taeniform E Zoobenthivore Taeniform 3.17 10.17 17.04 21.72 19.94 28.56 Compressiform F Zoobenthivore Compressiform 3.67 69.64 29.84 24.08 25.74 27.55 Globiform G Zoobenthivore Globiform 3.42 31.68 26.47 25.45 35.44 24.83 Fusiform H Zoobenthivore Fusiform 3.37 41.67 19.75 23.28 34.68 22.28 Zooplanktivores All zooplanktivores I Zooplanktivore Compressiform 3.25 15.67 24.63 22.13 21.83 35.57 Herbivores All herbivores J Herbivore Compressiform 2.53 60.33 34.43 19.85 30.89 27.16 Omnivores Compressiform K Omnivore Compressiform 3.02 44.14 42.81 24.51 27.12 28.50 Sagitiform L Omnivore Sagitiform 2.79 65.55 14.89 21.43 42.03 16.90

Figure A1. The three measures of urbanisation (i.e. area of urban land in catchments, proportion of catchments converted to urban infrastructure, and proportion of shoreline armoured with artificial structure) were correlated for estuaries across the study area: (a) relationship between the area of urban land in catchments and the proportion of catchments converted to urban infrastructure; (b) relationship between the area of urban land in catchments and the proportion of shoreline armoured with artificial structure; and (c) relationship between the proportion of catchments converted to urban infrastructure and the proportion of shoreline armoured with artificial structure.

Figure A2. Associations between latitude and functional richness, and the four significant factors found in GAM models.

Figure A3. Dendrogram displaying similarities in the functional traits of estuarine fish species. Letters, and functional group names, are assigned to prominent divisions in the tree, where the species in one functional group are separated from all other functional groups by at least two major divisions (Gagic et al. 2015). Empirical data on traits were obtained from FishBase (Froese and Pauly 2018b), data on species abundance were obtained from this study.

Figure A4. Correlations between functional diversity metrics and significant environmental variables (i.e. catchment land-use types and estuarine habitats).

Figure A5. Generalised additive models (GAMs) illustrating correlations between fish functional groups and significant environmental variables (i.e. catchment land-use types and estuarine habitat metrics). Shaded areas indicate the 95% confidence interval.

Figure S6. Generalised additive models (GAMs) illustrating correlations between fish functional groups and significant environmental variables (i.e. catchment land-use types and estuarine habitat metrics). Shaded areas indicate the 95% confidence interval.

Figure A7. Generalised additive models (GAMs) illustrating associations between average fish trophic level and the area of urban land in the catchment. Shaded areas indicate the 95% confidence interval. References

Bishop, M. J., M. Mayer-Pinto, L. Airoldi, L. B. Firth, R. L. Morris, L. H. L. Loke, S. J.

Hawkins, L. A. Naylor, R. A. Coleman, S. Y. Chee, and K. A. Dafforn. 2017. Effects

of sprawl on ecological connectivity: impacts and solutions. Journal of

Experimental Marine Biology and Ecology 492:7-30.

Bradley, M., R. Baker, and M. Sheaves. 2017. Hidden components in tropical seascapes:

deep-estuary habitats support unique fish assemblages. Estuaries and 40:1195-

1206.

Carscallen, W. M. A., K. Vandenberg, J. M. Lawson, N. D. Martinez, and T. N. Romanuk.

2012. Estimating trophic position in marine and estuarine food webs. Ecosphere 3.

Dauer, D. M., J. A. Ranasinghe, and S. B. Weisberg. 2000. Relationships between benthic

community condition, water quality, sediment quality, nutrient loads, and land use

patterns in Chesapeake Bay. Estuaries 23:80-96.

Elliott, M., A. K. Whitfield, I. C. Potter, S. J. M. Blaber, D. P. Cyrus, F. G. Nordlie, and T. D.

Harrison. 2007. The guild approach to categorizing estuarine fish assemblages: a

global review. Fish and 8:241-268.

Faunce, C. H., and J. E. Serafy. 2006. Mangroves as fish habitat: 50 years of field studies.

Marine Ecology Progress Series 318:1-18.

Froese, R., and D. Pauly. 2018a. Fishbase. www.fishbase.org.

Froese, R., and D. Pauly. 2018b. FishBase 2000: concepts, design and datasources. Los

Baños, Laguna.

Gagic, V., I. Bartomeus, T. Jonsson, A. Taylor, C. Winqvist, C. Fischer, E. M. Slade, I.

Steffan-Dewenter, M. Emmerson, and S. G. Potts. 2015. Functional identity and

diversity of predict ecosystem functioning better than species-based indices.

Proceedings of the Royal Society of London B: Biological Sciences 282:20142620. Gilby, B. L., A. D. Olds, R. M. Connolly, P. S. Maxwell, C. J. Henderson, and T. A.

Schlacher. 2018. Seagrass meadows shape fish assemblages across estuarine

seascapes. Marine Ecology Progress Series 588:179-189.

Goatley, C., and D. R. Bellwood. 2009. Morphological structure in a reef fish assemblage.

Coral reefs 28:449-457.

Government, Q. 2018. Regional ecosystem mapping.in Queensland Government, editor.,

Brisbane, Australia.

Hamilton, R. J., G. R. Almany, C. J. Brown, J. Pita, N. A. Peterson, and J. H. Choat. 2017.

Logging degrades nursery habitat for an iconic coral reef fish. Biological

Conservation 210:273-280.

Layman, C. A., K. O. Winemiller, D. A. Arrington, and D. B. Jepsen. 2005. Body size and

trophic position in a diverse tropical food web. Ecology 86:2530-2535.

Olds, A. D., B. A. Frohloff, B. L. Gilby, R. M. Connolly, N. A. Yabsley, P. S. Maxwell, C. J.

Henderson, and T. A. Schlacher. 2018. Urbanisation supplements ecosystem

functioning in disturbed estuaries. Ecography 0.

Strain, E. M. A., C. Olabarria, M. Mayer-Pinto, V. Cumbo, R. L. Morris, A. B. Bugnot, K. A.

Dafforn, E. Heery, L. B. Firth, P. R. Brooks, and M. J. Bishop. 2018. Eco-engineering

urban infrastructure for marine and coastal biodiversity: Which interventions have the

greatest ecological benefit? Journal of Applied Ecology 55:426-441.

Wainwright, P. C., and B. A. Richard. 1995. Predicting patterns of prey use from morphology

of fishes. Environmental Biology of Fishes 44:97-113.

Wilkinson, S. N., G. J. Hancock, R. Bartley, A. A. Hawdon, and R. J. Keen. 2013. Using

sediment tracing to assess processes and spatial patterns of erosion in grazed

rangelands, Burdekin River basin, Australia. Agriculture, Ecosystems & Environment

180:90-102.