Site Characterization for Biscayne National Park: Assessment of Fisheries Resources and Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Site Characterization for Biscayne National Park: Assessment of Fisheries Resources and Habitats NOAA Technical Memorandum NMFS-SEFSC-468 Site Characterization for Biscayne National Park: Assessment of Fisheries Resources and Habitats Jerald S. Ault, Steven G. Smith, Geoffrey A. Meester, Jiangang Luo, and James A. Bohnsack U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 October 2001 NOAA Technical Memorandum NMFS-SEFSC-468 Site Characterization for Biscayne National Park: Assessment of Fisheries Resources and Habitats Jerald S. Ault 1, Steven G. Smith 1, Geoffrey A. Meester 1, Jiangang Luo 1, and James A. Bohnsack 2 U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Scott B. Gudes, Acting Under Secretary for Oceans and Atmosphere National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries October 2001 This technical memorandum series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work. 1 University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 2 NOAA/NMFS Southeast Fisheries Science Center, Miami, FL NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend, or endorse any proprietary product or material mentioned in this publication. No reference shall be made to the NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein or which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchased because of NMFS publication. This report should be cited as follows: Ault, J.S., S.G. Smith, G.A. Meester, J Juo, and J.A. Bohnsack. 2001. Site Characterization for Biscayne National Park: Assessment of Fisheries Resources and Habitats. NOAA Technical Memorandum NMFS-SEFSC-468. 156 pp. This report will be posted on the NMFS Southeast Fisheries Science Center website at URL – http://www.sefsc.noaa.gov/ Copies may be obtained by writing: National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 or National Technical Information Service 5258 Port Royal Road Springfield, Virginia 22161 (800) 553-6847 or (703) 605-6000 <http://www.ntis.gov/numbers.htm> ii Executive Summary Biscayne National Park (BNP) in southeastern Florida is a unique tropical marine environment of national significance, renown for its productive coral reef ecosystem, diverse natural resources, important fishing opportunities, and spectacular scenic beauty. BNP’s coastal bay and coral reef habitats play a critical role in the function and dynamics of the larger Florida Keys coral reef ecosystem and contribute substantially to the multibillion dollar tourism and fishing industry. Park waters provide critical nursery habitats and food web links for many important commercial and recreational fishery resources including: bonefish, snook, tarpon, permit, pink shrimp, spotted seatrout, oysters, clams, blue crabs and stone crabs, baitfishes; and, numerous coral reef fishes that include snappers, groupers, grunts, barracuda, spadefish, spiny lobster, parrotfish, surgeonfish and triggerfish. The production dynamics of these valuable natural resources are inextricably linked not only to fishing and rates of exploitation but also to the spatial distribution and quality of bay waters and habitats, themselves greatly affected by growing human uses and management practices. Since BNP’s natural resources are intimately related to the broader regional ecosystem through water movements and animal migrations, any Park degradation will have consequences well beyond its boundaries. Fishery management strategies now being proposed for BNP require precise spatial data and estimates of resource distribution and status prior to implementation of any spatial management policy. These data will facilitate concise and unambiguous baseline estimation of the Park resource status, provide critical inputs for models used to forecast potential impacts of policy changes, and enable design of an efficient sampling program to monitor future performance of a given management policy. In a proactive movement towards development of strategic planning, this report takes the first steps in establishing the quantitative characterization and assessment of fisheries resources and habitats in BNP. The site characterization was based on an extensive overview and analysis of pertinent scientific and technical literature and biological, fishery, and physical databases relevant to the status and dynamics of fishery resources in Biscayne National Park, Florida. The estimation and simulation modeling “process” involved database assimilation, visualization and mapping of fish-habitat linkages, and multispecies assessments. In the process, we developed a new approach to stock assessment of multispecies coral reef fisheries that compare status of stocks relative to Federal fishery management guidelines. Our assessment research focused on 3 data sets containing more than 25 years of fishery-dependent (1976-1999 via BNP recreational creel survey) and fishery-independent (1979-2000 via SCUBA diver visual census and rollerframe trawls) survey sampling in BNP. Digital maps were created for a variety of spatial “habitats” including bathymetry, benthic substrates, salinity and other water quality parameters that relate to fishery resource distributions and abundances. Biological data were separated into 4 life-stage phases in terms of length for analysis: juveniles; pre-exploited; mature; and, exploited. Habitat data were co-plotted with species life-stage abundance and community diversity distributions to assess the spatial distribution and dynamics of fisheries and their dependence on habitats found in BNP. We noted: C Biscayne Bay plays an important role as primary nursery area for many coastal bay and coral reef fishes and macroinvertebrates (i.e., gray, mutton, lane, schoolmaster and yellowtail snappers; bonefish, tarpon, permit, sharks, molluscs, sponges, snook, seatrout, and pink shrimp, blue crabs, and spiny lobsters). Therefore, we conducted our analyses with respect to the relevant life stages of each species partitioned into four phases: iii juvenile (from length of recruitment to size of sexual maturity); pre-exploited (recruitment length to minimum legal harvest size); mature (length of sexual maturity to maximum size); and, exploited (minimum legal to maximum size). We found that thirty- five (35) species of fish (about 11% of total BNP fishes) were present in all three survey types (TRAWL, CREEL, RVC), suggesting that there is use of habitats amongst lifestage phases. Fish diversity was lowest on the western fringe of Biscayne Bay (particularly at areas proximal to SFWMD canal outfalls and attendant freshwater influxes), increased moving seaward, and was highest in eastern BNP (areas on the barrier coral reef system open towards the Straits of Florida). The diverse spatial patterning of many species distributions reflects specialized ontogenetic use of certain habitats across the seascape. This suggests that a critical mosaic of interconnected habitats may be essential for sustaining fishery resources and ecosystem productivity. We used a systems science approach to conduct a new multispecies assessment on exploited fishery resources found in BNP. The analyses used both fishery-independent and fishery- dependent data sources. We also acquired extensive biological and fishery information on population dynamics including age-growth, age (size) class distribution, and natural mortality rates. We estimated new fishery indicator variables developed from fishery-independent diver visual census data and fishery-dependent creel survey for 91 exploited species to assess the current status of the stocks. However, the reliability of population dynamic parameter datasets for a number of these species were suspect, or unavailable. As a result, this study focused on 35 important reef fish species that reflected the predominance of species and reliable population dynamics data. Commercial fisheries data were also acquired, but were deemed generally unreliable. Combining population-dynamic parameters and estimates of fisheries indices with the LBAR and REEFS assessment models facilitated evaluation of a series of fishery management benchmarks and estimated exploitation levels. We compared these estimates of current stock biomass and fishing mortality levels to the Federal standards. The following points summarize our findings: C For all of the harvested species analyzed, the average sized fish within the exploited phase of these populations for the last 25 years has remained relatively constant and is very close to minimum harvest sizes, not natural historical unfished population size. Many species with extremely low average length in the past have had very little change in average length even though new minimum size limits were imposed. The average size of black grouper is now 40% of what it was in 1940 and the spawning stock is now less than 5% of its historical unfished maximum. C Overall, 77% of the 35 individual stocks that could be analyzed are overfished.
Recommended publications
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • Evaluation of the Status of the Recreational Fishery for Ulua in Hawai‘I, and Recommendations for Future Management
    Department of Land and Natural Resources Division of Aquatic Resources Technical Report 20-02 Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management October 2000 Benjamin J. Cayetano Governor DIVISION OF AQUATIC RESOURCES Department of Land and Natural Resources 1151 Punchbowl Street, Room 330 Honolulu, HI 96813 November 2000 Cover photo by Kit Hinhumpetch Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management DAR Technical Report 20-02 “Ka ulua kapapa o ke kai loa” The ulua fish is a strong warrior. Hawaiian proverb “Kayden, once you get da taste fo’ ulua fishing’, you no can tink of anyting else!” From Ulua: The Musical, by Lee Cataluna Rick Gaffney and Associates, Inc. 73-1062 Ahikawa Street Kailua-Kona, Hawaii 96740 Phone: (808) 325-5000 Fax: (808) 325-7023 Email: [email protected] 3 4 Contents Introduction . 1 Background . 2 The ulua in Hawaiian culture . 2 Coastal fishery history since 1900 . 5 Ulua landings . 6 The ulua sportfishery in Hawai‘i . 6 Biology . 8 White ulua . 9 Other ulua . 9 Bluefin trevally movement study . 12 Economics . 12 Management options . 14 Overview . 14 Harvest refugia . 15 Essential fish habitat approach . 27 Community based management . 28 Recommendations . 29 Appendix . .32 Bibliography . .33 5 5 6 Introduction Unique marine resources, like Hawai‘i’s ulua/papio, have cultural, scientific, ecological, aes- thetic and functional values that are not generally expressed in commercial catch statistics and/or the market place. Where their populations have not been depleted, the various ulua pop- ular in Hawai‘i’s fisheries are often quite abundant and are thought to play the role of a signifi- cant predator in the ecology of nearshore marine ecosystems.
    [Show full text]
  • Socan Monitoring Workshop
    SOCAN MONITORING WORKSHOP Image credit: Lauren Valentino, NOAA/AOML 2/28/17 WorksHop Report SOCAN MONITORING WORKSHOP SOCAN MONITORING WORKSHOP IDENTIFYING PRIORITY LOCATIONS FOR OCEAN ACIDIFICATION MONITORING IN THE U.S. SOUTHEAST SUMMARY The Southeast Ocean and Coastal Acidification Network (SOCAN) held a worksHop in CHarleston, SoutH Carolina to facilitate discussion on priority locations for ocean acidification monitoring in tHe SoutHeast. The discussion included identification of key gradients in physical, chemical and biological parameters along tHe SoutHeast coast, a review of current monitoring efforts, and an assessment of stakeHolder needs. Sixteen monitoring locations were identified as potential acidification monitoring locations (see page 12). The following three monitoring locations were HigHligHted as priority sites tHat would furtHer our understanding of the chemistry and regional drivers of ocean acidification and address stakeholder needs: (1) Sapelo Island, GA (2) Gulf Stream, offsHore of Gray’s Reef, GA (3) Biscayne National Park, FL The workshop concluded witH a discussion of logistics and opportunities to pursue monitoring at tHe recommended locations. A copy of tHe agenda is included in Appendix 1. PROCEEDINGS Approximately 16 experts gatHered for tHe SOCAN Monitoring Workshop to outline recommendations for priority ocean acidification monitoring locations in tHe SoutHeast (Attendee List, Appendix 2). The worksHop began witH introductory remarks regarding tHe structure and responsibilities of SOCAN and SECOORA. Following the introductory remarks, participants reviewed the proposed agenda; no modifications were made. The first half-day was spent reviewing tHe state of ocean acidification science and regional response. Kim Yates sHared a syntHesis of tHe 2016 SOCAN State of the Science meeting, wHicH included a review of webinars and key findings related to OA chemistry, modeling and organismal response.
    [Show full text]
  • Long-Range Interpretive Plan, Dry Tortugas National Park
    LONG-RANGE INTERPRETIVE PLAN Dry Tortugas National Park 2003 Cover Photograph: Aerial view of Fort Jefferson on Garden Key (fore- ground) and Bush Key (background). COMPREHENSIVE INTERPRETIVE PLAN Dry Tortugas National Park 2003 LONG-RANGE INTERPRETIVE PLAN Dry Tortugas National Park 2003 Prepared by: Department of Interpretive Planning Harpers Ferry Design Center and the Interpretive Staff of Dry Tortugas National Park and Everglades National Park INTRODUCTION About 70 miles west of Key West, Florida, lies a string of seven islands called the Dry Tortugas. These sand and coral reef islands, or keys, along with 100 square miles of shallow waters and shoals that surround them, make up Dry Tortugas National Park. Here, clear views of water and sky extend to the horizon, broken only by an occasional island. Below and above the horizon line are natural and historical treasures that continue to beckon and amaze those visitors who venture here. Warm, clear, shallow, and well-lit waters around these tropical islands provide ideal conditions for coral reefs. Tiny, primitive animals called polyps live in colonies under these waters and form skeletons from cal- cium carbonate which, over centuries, create coral reefs. These reef ecosystems support a wealth of marine life such as sea anemones, sea fans, lobsters, and many other animal and plant species. Throughout these fragile habitats, colorful fishes swim, feed, court, and thrive. Sea turtles−−once so numerous they inspired Spanish explorer Ponce de León to name these islands “Las Tortugas” in 1513−−still live in these waters. Loggerhead and Green sea turtles crawl onto sand beaches here to lay hundreds of eggs.
    [Show full text]
  • Fish Assemblage of the Mamanguape Environmental Protection Area, NE Brazil: Abundance, Composition and Microhabitat Availability Along the Mangrove-Reef Gradient
    Neotropical Ichthyology, 10(1): 109-122, 2012 Copyright © 2012 Sociedade Brasileira de Ictiologia Fish assemblage of the Mamanguape Environmental Protection Area, NE Brazil: abundance, composition and microhabitat availability along the mangrove-reef gradient Josias Henrique de Amorim Xavier1, Cesar Augusto Marcelino Mendes Cordeiro2, Gabrielle Dantas Tenório1, Aline de Farias Diniz1, Eugenio Pacelli Nunes Paulo Júnior1, Ricardo S. Rosa1 and Ierecê Lucena Rosa1 Reefs, mangroves and seagrass biotopes often occur in close association, forming a complex and highly productive ecosystem that provide significant ecologic and economic goods and services. Different anthropogenic disturbances are increasingly affecting these tropical coastal habitats leading to growing conservation concern. In this field-based study, we used a visual census technique (belt transects 50 m x 2 m) to investigate the interactions between fishes and microhabitats at the Mamanguape Mangrove-Reef system, NE Brazil. Overall, 144 belt transects were performed from October 2007 to September 2008 to assess the structure of the fish assemblage. Fish trophic groups and life stage (juveniles and adults) were recorded according to literature, the percent cover of the substrate was estimated using the point contact method. Our results revealed that fish composition gradually changed from the Estuarine to the Reef zone, and that fish assemblage was strongly related to the microhabitat availability, as suggested by the predominance of carnivores at the Estuarine zone and presence of herbivores at the Reef zone. Fish abundance and diversity were higher in the Reef zone and estuary margins, highlighting the importance of structural complexity. A pattern of nursery area utilization, with larger specimens at the Transition and Reef Zone and smaller individuals at the Estuarine zone, was recorded for Abudefduf saxatilis, Anisotremus surinamensis, Lutjanus alexandrei, and Lutjanus jocu.
    [Show full text]
  • Size Composition, Growth, Mortality and Yield of Alectis Alexandrinus (Geoffory Saint-Hilaire) in Bonny River, Niger Delta, Nigeria
    African Journal of Biotechnology Vol. 8 (23), pp. 6721-6723, 1 December, 2009 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2009 Academic Journals Short Communication Size composition, growth, mortality and yield of Alectis alexandrinus (Geoffory Saint-Hilaire) in Bonny River, Niger Delta, Nigeria S. N. Deekae1, K. O. Chukwu1 and A. J. Gbulubo2 1Department of Fisheries and Aquatic Environment, Rivers State University of Science and Technology, Port-Harcourt Rivers State, Nigeria. 2African Regional Aquaculture Centre, Port Harcourt, Nigeria. Institute for Oceanography and Marine Research, P.M.B.5122, Port Harcourt, Nigeria. Accepted 3 November, 2008 A twelve month study on the size composition, growth, mortality and yield of Alectis alexandrinus revealed a length range of 11.5 - 33.8 cm (standard length). Employing the length frequency method in the FISAT II package gave the following results for the Von Bertanlanffy growth parameters: L = 35.23, K = 0.680, to = 0.3214 and = 2.926. The total mortality (Z) was 2.47, natural mortality (M) 1.39 and fishing mortality (F) 1.08.The relative biomass per recruit (knife edge selection) was Lc/ L = 0.05, E10 = 0.355 and E50 = 0.278. Although the exploitation rate (E) was 0.44 the Emax was 0.421 indicating moderate exploitation of the fish in Bonny River. There is room for increased effort in the fisheries. Key word: Size, growth, mortality, yield, Alectis alexandrinus. INTRODUCTION Alectics alexandrinus is one of the commercially valuable tions or species into categories of high, medium low and fishes in the gulf of Guinea, which could be relevant in very low resilience or productivity have been suggested sport fishing as obtainable in places like Hawaii (Pamela et al., 2001; Musick, 1999).
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • (<I>Anisotremus Virginicus,</I> Haemulidae) And
    BULLETIN OF MARINE SCIENCE, 34(1): 21-59,1984 DESCRIPTION OF PORKFISH LARVAE (ANISOTREMUS VIRGINICUS, HAEMULIDAE) AND THEIR OSTEOLOGICAL DEVELOPMENT Thomas Potthoff, Sharon Kelley, Martin Moe and Forrest Young ABSTRACT Wild-caught adult porkfish (Anisotremus virginicus, Haemulidae) were spawned in the laboratory and their larvae reared. A series of 35 larvae 2.4 mm NL to 21.5 mm SL from 2 to 30 days old or older (larvae of unknown age) was studied for pigmentation characteristics. Cleared and stained specimens were examined for meristic and osteological development. Cartilaginous neural and haemal arches develop first anteriorly, at the center, and posteriorly, above and below the notochord, but ossification of the vertebral column is from anterior in a posterior direction. Epipleural rib pairs develop from bone, but pleural rib pairs develop from cartilage first and then ossify. The second dorsal, anal and caudal fins develop rays first and simultaneously, followed by first dorsal fin spine development. The pectoral and pelvic fins are the last of all fins to develop rays. All bones basic to a perciform pectoral girdle develop with cartilaginous radials present between the pectoral fin ray bases. Development and structure of pre dorsal bones and dorsal and anal fin pterygiophores were studied. All bones basic to a perciform caudal complex developed and no fusion of any of these bones was observed in the adults. Radial cartilages developed ventrad in the hypural complex. The hyoid arches originated from cartilage but the branchiostegal rays formed from bone. The development and anatomy of the branchial skeleton were studied. Spines develop on the four bones of the opercular series in larvae and juveniles but are absent in the adults.
    [Show full text]
  • Satellite Monitoring of Coastal Marine Ecosystems a Case from the Dominican Republic
    Satellite Monitoring of Coastal Marine Ecosystems: A Case from the Dominican Republic Item Type Report Authors Stoffle, Richard W.; Halmo, David Publisher University of Arizona Download date 04/10/2021 02:16:03 Link to Item http://hdl.handle.net/10150/272833 SATELLITE MONITORING OF COASTAL MARINE ECOSYSTEMS A CASE FROM THE DOMINICAN REPUBLIC Edited By Richard W. Stoffle David B. Halmo Submitted To CIESIN Consortium for International Earth Science Information Network Saginaw, Michigan Submitted From University of Arizona Environmental Research Institute of Michigan (ERIM) University of Michigan East Carolina University December, 1991 TABLE OF CONTENTS List of Tables vi List of Figures vii List of Viewgraphs viii Acknowledgments ix CHAPTER ONE EXECUTIVE SUMMARY 1 The Human Dimensions of Global Change 1 Global Change Research 3 Global Change Theory 4 Application of Global Change Information 4 CIESIN And Pilot Research 5 The Dominican Republic Pilot Project 5 The Site 5 The Research Team 7 Key Findings 7 CAPÍTULO UNO RESUMEN GENERAL 9 Las Dimensiones Humanas en el Cambio Global 9 La Investigación del Cambio Global 11 Teoría del Cambio Global 12 Aplicaciones de la Información del Cambio Global 13 CIESIN y la Investigación Piloto 13 El Proyecto Piloto en la República Dominicana 14 El Lugar 14 El Equipo de Investigación 15 Principales Resultados 15 CHAPTER TWO REMOTE SENSING APPLICATIONS IN THE COASTAL ZONE 17 Coastal Surveys with Remote Sensing 17 A Human Analogy 18 Remote Sensing Data 19 Aerial Photography 19 Landsat Data 20 GPS Data 22 Sonar
    [Show full text]
  • Bookletchart™ Intracoastal Waterway – Bahia Honda Key to Sugarloaf Key NOAA Chart 11445
    BookletChart™ Intracoastal Waterway – Bahia Honda Key to Sugarloaf Key NOAA Chart 11445 A reduced-scale NOAA nautical chart for small boaters When possible, use the full-size NOAA chart for navigation. Published by the The tidal current at the bridge has a velocity of about 1.4 to 1.8 knots. Wind effects modify the current velocity considerably at times; easterly National Oceanic and Atmospheric Administration winds tend to increase the northward flow and westerly winds the National Ocean Service southward flow. Overfalls that may swamp a small boat are said to occur Office of Coast Survey near the bridge at times of large tides. (For predictions, see the Tidal Current Tables.) www.NauticalCharts.NOAA.gov Route.–A route with a reported controlling depth of 8 feet, in July 1975, 888-990-NOAA from the Straits of Florida via the Moser Channel to the Gulf of Mexico is as follows: From a point 0.5 mile 336° from the center of the bridge, What are Nautical Charts? pass 200 yards west of the light on Red Bay Bank, thence 0.4 mile east of the light on Bullard Bank, thence to a position 3 miles west of Northwest Nautical charts are a fundamental tool of marine navigation. They show Cape of Cape Sable (chart 11431), thence to destination. water depths, obstructions, buoys, other aids to navigation, and much Bahia Honda Channel (Bahia Honda), 10 miles northwestward of more. The information is shown in a way that promotes safe and Sombrero Key and between Bahia Honda Key on the east and Scout efficient navigation.
    [Show full text]
  • Table S1.Xlsx
    Bone type Bone type Taxonomy Order/series Family Valid binomial Outdated binomial Notes Reference(s) (skeletal bone) (scales) Actinopterygii Incertae sedis Incertae sedis Incertae sedis †Birgeria stensioei cellular this study †Birgeria groenlandica cellular Ørvig, 1978 †Eurynotus crenatus cellular Goodrich, 1907; Schultze, 2016 †Mimipiscis toombsi †Mimia toombsi cellular Richter & Smith, 1995 †Moythomasia sp. cellular cellular Sire et al., 2009; Schultze, 2016 †Cheirolepidiformes †Cheirolepididae †Cheirolepis canadensis cellular cellular Goodrich, 1907; Sire et al., 2009; Zylberberg et al., 2016; Meunier et al. 2018a; this study Cladistia Polypteriformes Polypteridae †Bawitius sp. cellular Meunier et al., 2016 †Dajetella sudamericana cellular cellular Gayet & Meunier, 1992 Erpetoichthys calabaricus Calamoichthys sp. cellular Moss, 1961a; this study †Pollia suarezi cellular cellular Meunier & Gayet, 1996 Polypterus bichir cellular cellular Kölliker, 1859; Stéphan, 1900; Goodrich, 1907; Ørvig, 1978 Polypterus delhezi cellular this study Polypterus ornatipinnis cellular Totland et al., 2011 Polypterus senegalus cellular Sire et al., 2009 Polypterus sp. cellular Moss, 1961a †Scanilepis sp. cellular Sire et al., 2009 †Scanilepis dubia cellular cellular Ørvig, 1978 †Saurichthyiformes †Saurichthyidae †Saurichthys sp. cellular Scheyer et al., 2014 Chondrostei †Chondrosteiformes †Chondrosteidae †Chondrosteus acipenseroides cellular this study Acipenseriformes Acipenseridae Acipenser baerii cellular Leprévost et al., 2017 Acipenser gueldenstaedtii
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]