Anaerobic Bacteria DEBORAH M

Total Page:16

File Type:pdf, Size:1020Kb

Anaerobic Bacteria DEBORAH M JOURNAL OF CLINICAL MICROBIOLOGY, Mar. 1991, p. 457-462 Vol. 29, No. 3 0095-1137/91/030457-06$02.00/0 Copyright ©D 1991, American Society for Microbiology Clinical Evaluation of the RapID-ANA II Panel for Identification of Anaerobic Bacteria DEBORAH M. CELIG1* AND PAUL C. SCHRECKENBERGER" 2 Clinical Microbiology Laboratories, University of Illinois Hospital,' and Department of Pathology,2 University of Illinois at Chicago, Chicago, Illinois 60612 Received 17 October 1990/Accepted 11 December 1990 The accuracy of the RapID-ANA II system (Innovative Diagnostic Systems, Inc., Atlanta, Ga.) was evaluated by comparing the results obtained with that system with results obtained by the methods described by the Virginia Polytechnic Institute and State University. Three hundred anaerobic bacteria were tested, including 259 clinical isolates and 41 stock strains of anaerobic microorganisms representing 16 genera and 48 species. When identifications to the genus level only were included, 96% of the anaerobic gram-negative bacilli, 94% of the Clostridium species, 83% of the anaerobic, nonsporeforming, gram-positive bacilli, and 97% of the anaerobic cocci were correctly identified. When correct identifications to the genus and species levels were compared, 86% of 152 anaerobic gram-negative bacilli, 76% of 34 Clostridium species, 81% of 41 anaerobic, nonsporeforming, gram-positive bacilli, and 97% of 73 anaerobic cocci were correctly identified. Eight isolates (3%) produced inadequate identifications in which the correct identification was listed with one or two other possible choices and extra tests were required for separation. A total of 9 isolates (3%) were misidentified by the RapID-ANA II panel. Overall, the system was able to correctly identify 94% of all the isolates to the genus level and 87% of the isolates to the species level in 4 h by using aerobic incubation. Time-consuming biochemical testing under strict anaero- The purpose of this study was to evaluate the accuracy of bic conditions and gas-liquid chromatographic analysis of the RapID-ANA II for the identification of clinically signif- short-chain fatty acid metabolites of glucose fermentation icant anaerobic bacteria. Results obtained with the RapID- have traditionally marked the methods for the identification ANA II panel were compared with those obtained by the of anaerobic bacteria (13, 19). These conventional methods methods described by the Virginia Polytechnic Institute and are labor intensive, time consuming, expensive, and beyond State University, Blacksburg (13). the means of most clinical microbiology laboratories. Many (Part of this work was presented at the 90th Annual of the original commercial kit systems were dependent upon Meeting of the American Society for Microbiology [7].) the growth of the anaerobic organisms and therefore re- quired 24 to 48 h or more of anaerobic incubation before test results were generated (2). MATERIALS AND METHODS In recent years, kit systems have been developed for the RapID-ANA II panel. The RapID-ANA II panel has 10 identification of clinically relevant anaerobic bacteria that reaction wells molded into the periphery of a plastic dispos- are not growth dependent and that do not require anaerobic able tray with eight bifunctional wells to allow for a total of incubation. These systems are based on the detection of 18 biochemical reactions. The panel contains 16 chromoge- preformed bacterial enzymes (23) and include the RapID- nic substrate tests and 2 modified conventional tests. There ANA (Innovative Diagnostic Systems, Inc., Atlanta, Ga.) (1, are nine nitrophenyl carbohydrate or phosphoester deriva- 3, 4, 6, 8-12, 15, 17, 20, 21, 28), the AN-Ident system tives which, when cleaved by enzymatic hydrolysis, release (Analytab Products) (4, 6, 12, 21, 27, 29), the Anaerobe yellow o- or p-nitrophenol. There are seven P-naphthylam- Identification card (Vitek Systems, Hazelwood, Mo.) (24), ide derivatives of amino acids which, upon enzymatic hy- the 2-h ABL system (Austin Biological Systems, Austin, drolysis, release free P-naphthylamine detected by the pres- Tex. [22]), the ATB 32A system (API System SA, La Balme ence of a purple color after addition of the RapID-ANA II les Grottes, Montalieu-Vercieu, France) (18), and the Micro- reagent. The RapID-ANA II reagent is a modified cinnamal- Scan system (American MicroScan, Sacramento, Calif.). dehyde reagent for detection of the amine. Modified conven- Innovative Diagnostic Systems, Inc., has revised the tional tests include urea hydrolysis and the formation of original RapID-ANA panel through the deletion of triphenyl indole. The Innova reagent for the detection of indole uses a tetrazolium reduction, rapid arginine dihydrolase, and modification of the spot indole reagent (1% p-dimethylami- trehalose. Three new substrates, namely, urea, p-nitrophe- nocinnamaldehyde with 10% hydrochloric acid). nyl-,3-D-disaccharide (BLTS), and p-nitrophenyl-a-L-arabi- The panel was inoculated by using a pure culture bacterial noside (aARA), have been added to the panel. The RapID- suspension, equivalent to that of a no. 3 McFarland turbidity ANA II panel and worksheets have been reconfigured for standard, prepared in the RapID inoculation fluid from 18 to ease of use, and the RapID-ANA II Code Compendium has 72 h of growth on an anaerobic blood plate. The panel was been revised with updated nomenclature and codes to coin- inoculated according to the directions of the manufacturer cide with the new panel. Evaluations of the newly configured and incubated aerobically at 35°C for 4 h. After 4 h, the first RapID-ANA II panels have been presented recently (5, 26). set of reactions was scored, followed by the addition of the RapID-ANA II reagent and the Innova spot indole reagent to the appropriate wells. A comparator card is available with * Corresponding author. the kit to facilitate test interpretation. Reactions were re- 457 458 CELIG AND SCHRECKENBERGER J. CLIN. MICROBIOL. corded, and a six-digit profile number was generated. Iden- isms. Stock organisms were subcultured onto agar media at tifications were obtained by using the RapID-ANA II Code least three times prior to testing with the RapID-ANA II Compendium (16) together with knowledge of the Gram stain panel and by conventional identification procedures. reaction, organism morphology, and the profile number. Conventional identification procedures included Gram The RapID-ANA II Code Compendium (16) is divided into staining, aerotolerance, growth on selective and differential three major sections: (i) gram-negative anaerobic bacilli, (ii) media (e.g., kanamycin-vancomycin-laked blood agar, Bac- gram-positive anaerobic bacilli, and (iii) anaerobic cocci. teroides bile esculin agar, egg yolk agar, peptone-yeast The compendium provides an organism identification or extract-glucose broth with bile), and gas-liquid chromatog- several possible identifications, along with the correspond- raphy. Biochemical tests and carbohydrate fermentation ing probability, biotype, and contraindicated test results. reactions were performed with prereduced, anaerobically Additional comments associated with the microcode or sterilized media (Carr-Scarborough Microbiologicals, Stone identification are printed beneath the differential informa- Mountain, Ga.) by methods described in the Virginia Poly- tion. Identification to the species level is associated with the technic Institute's Anaerobe Laboratory Manual (13) and in following levels of confidence. An "implicit" confidence the latest edition of Bergey's manual (14). Identifications by level indicates that the probability of the first choice is both conventional tests and with the RapID-ANA II panel >99.9% and that there are no contraindicated tests. "Satis- were performed in a blinded manner. factory" indicates a >95.0% probability and only minor contraindicated tests, while an "adequate" confidence level RESULTS indicates >95.0% probability of the first choice but contrain- dicated tests resulting in a fair degree of variation from the Table 1 shows the RapID-ANA II panel results for the ideal data base pattern. A "presumptive" identification anaerobic gram-negative bacilli. Of the 65 Bacteroides fra- indicates that there is a single major contraindicated test and gilis group isolates tested, the RapID-ANA II panel cor- the choice should be evaluated to confirm the identification. rectly identified 53 isolates (81%); all 25 Bacteroides fragilis "Questionable" indicates that the identification is inconsis- isolates were identified correctly. Nine B. fragilis group tent and a probability value is therefore not printed. "Inad- isolates (14%), including seven Bacteroides ovatus and two equate" identifications are generated when probability over- Bacteroides uniformis isolates, were identified to the genus laps occur. "Probability overlap" indicates that more than level only as Bacteroides fragilis group. Two isolates of one choice demonstrates a significant probability of at least Bacteroides ovatus were misidentified as Bacteroides theta- 5.0% and may be designated as being among the first two or iotaomicron, and one strain of Bacteroides uniformis gener- three choices listed. If the organisms are from the same ated an inadequate identification without the correct species genus, often a genus- or group-level identification is offered. included in the identification. When organisms correctly Taxa contained in the RapID-ANA II Code Compendium identified to the species or genus level only were included, 62 (16) include
Recommended publications
  • Potential Role of Microbiome in Oncogenesis, Outcome Prediction
    Oral Oncology 99 (2019) 104453 Contents lists available at ScienceDirect Oral Oncology journal homepage: www.elsevier.com/locate/oraloncology Review Potential role of microbiome in oncogenesis, outcome prediction and therapeutic targeting for head and neck cancer T ⁎ Ester Orlandia,b, , Nicola Alessandro Iacovellib, Vincenzo Tombolinic, Tiziana Rancatid, Antonella Polimenie, Loris De Ceccof, Riccardo Valdagnia,d,g, Francesca De Felicec a Department of Radiotherapy 1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy b Department of Radiotherapy 2, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy c Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy d Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy e Department of Oral and Maxillo Facial Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Italy f Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy g Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy ARTICLE INFO ABSTRACT Keywords: In the last decade, human microbiome research is rapidly growing involving several fields of clinical medicine Head and neck cancer and population health. Although the microbiome seems to be linked to all sorts of diseases, cancer has the Biomarkers biggest potential to be investigated. Microbiome Following the publication of the National Institute of Health - Human Microbiome Project (NIH-HMP), the Microbiota link between Head and Neck Cancer (HNC) and microbiome seems to be a fast-moving field in research area. Oncogenesis However, robust evidence-based literature is still quite scarce. Nevertheless the relationship between oral mi- Radiotherapy Immunotherapy crobiome and HNC could have important consequences for prevention and early detection of this type of tumors.
    [Show full text]
  • 3. Jedna Z Krvných Skupín Systému AB0; 4. Skr. Bukálny. B – Symbo
    B – 1. symbol pre bel; 2. chem. značka prvku →bór; 3. jedna z krvných skupín systému AB0; 4. skr. bukálny. B – symbol pre hustotu magnetického toku. B. – skr. pre →Bacillus. B-ALP – skr. angl. bone alcalic phosphatase kostná alkalická fosfatáza. B-bunky – 1. syn. -bunky Langerhansových ostrovčekov; →pankreas; 2. syn. B-lymfocyty; →lymfocyty. B-komplex – multivitamínový prípravok vitamínov B. B-lymfocyty – [B podľa Fabriciovej burzy, imunol. orgánu vtákov] B bunky, druh lymfocytov, kt. sa zúčastňuje na humorálnej imunite (tvorbe protilátok) a niekt. ďalších imunitných funkciách. Povrchové molekuly sú CD 19,20. Receptorom pre antigén je membránový imunoglobulín. B-reťazec – jeden z polypeptidových reťazcov →inzulínu. B-vírus – 1. vírus →hepatitídy B.; 2. vírus zo skupiny Cercopithecine herpes virus 1. B-vlákna →nerv. b – skr. 1. pre barn; 2. skr. angl. born narodený; 3. skr. báza (genet. označenie dĺţky sekvencie nukleotidov, napr. 50 b = sekvencia 50 nukleotidov). b-vlna – pozit. kmit s vyskou amplitúdou v →elektroretinograme nasledujúci po vlne a, prejav komplexnej aktivity vrstvy bipolárnych buniek. – - – predpona označujúca 1. staršie označenie druhého atómu uhlíka v reťazci, na kt. sa pripája hlavná funkčná skupina, napr. kys. -hydroxymaslová správ. kys. 3-hydroxymaslová; 2. špecifická rotácia opticky aktívnej látky, napr. -D-glukóza; 3. orientácia exocyklického atómu al. skupiny, napr. cholest-5-en-3--ol; 4. plazmatický proteín, kt. migruje v elektroforéze v pruhu - lipoproteín; 5. člen série príbuzných chem. látok, najmä série stereoizomérov, izomérov, polymérov al. alotroických foriem, napr. -karotén; 6. -lúč. B2 – staršie označenie pre CD21. B4 – staršie označenie pre CD 19. B19 virus – ľudský parvovírus z čeľade Parvoviridae, značne rozšírený, vyvolávajúci obvykle inaparentné infekcie.
    [Show full text]
  • 974-Form.Pdf
    California Association for Medical Laboratory Technology Distance Learning Program ANAEROBIC BACTERIOLOGY FOR THE CLINICAL LABORATORY by James I. Mangels, MA, CLS, MT(ASCP) Consultant Microbiology Consulting Services Santa Rosa, CA Course Number: DL-974 3.0 CE/Contact Hour Level of Difficulty: Intermediate © California Association for Medical Laboratory Technology. Permission to reprint any part of these materials, other than for credit from CAMLT, must be obtained in writing from the CAMLT Executive Office. CAMLT is approved by the California Department of Health Services as a CA CLS Accrediting Agency (#0021) and this course is is approved by ASCLS for the P.A.C.E. ® Program (#519) 1895 Mowry Ave, Suite 112 Fremont, CA 94538-1766 Phone: 510-792-4441 FAX: 510-792-3045 Notification of Distance Learning Deadline All continuing education units required to renew your license must be earned no later than the expiration date printed on your license. If some of your units are made up of Distance Learning courses, please allow yourself enough time to retake the test in the event you do not pass on the first attempt. CAMLT urges you to earn your CE units early!. CAMLT Distance Learning Course # DL-974 1 © California Association for Medical Laboratory Technology Outline A. Introduction B. What are anaerobic bacteria? Concepts of anaerobic bacteriology C. Why do we need to identify anaerobes? D. Normal indigenous anaerobic flora; the incidence of anaerobes at various body sites E. Anaerobic infections; most common anaerobic infections F. Specimen collection and transport; acceptance and rejection criteria G. Processing of clinical specimens 1. Microscopic examination 2.
    [Show full text]
  • Susceptibility and Resistance Data
    toku-e logo For a complete list of references, please visit antibiotics.toku-e.com Levofloxacin Microorganism Genus, Species, and Strain (if shown) Concentration Range (μg/ml)Susceptibility and Aeromonas spp. 0.0625 Minimum Inhibitory Alcaligenes faecalis 0.39 - 25 Bacillus circulans Concentration0.25 - 8 (MIC) Data Bacillus subtilis (ATCC 6051) 6.25 Issue date 01/06/2020 Bacteroides capillosus ≤0.06 - >8 Bacteroides distasonis 0.5 - 128 Bacteroides eggerthii 4 Bacteroides fragilis 0.5 - 128 Bacteroides merdae 0.25 - >32 Bacteroides ovatus 0.25 - 256 Bacteroides thetaiotaomicron 1 - 256 Bacteroides uniformis 4 - 128 Bacteroides ureolyticus ≤0.06 - >8 Bacteroides vulgatus 1 - 256 Bifidobacterium adolescentis 0.25 - >32 Bifidobacterium bifidum 8 Bifidobacterium breve 0.25 - 8 Bifidobacterium longum 0.25 - 8 Bifidobacterium pseudolongum 8 Bifidobacterium sp. 0.25 - >32 Bilophila wadsworthia 0.25 - 16 Brevibacterium spp. 0.12 - 8 Brucella melitensis 0.5 Burkholderia cepacia 0.25 - 512 Campylobacter coli 0.015 - 128 Campylobacter concisus ≤0.06 - >8 Campylobacter gracilis ≤0.06 - >8 Campylobacter jejuni 0.015 - 128 Campylobacter mucosalis ≤0.06 - >8 Campylobacter rectus ≤0.06 - >8 Campylobacter showae ≤0.06 - >8 Campylobacter spp. 0.25 Campylobacter sputorum ≤0.06 - >8 Capnocytophaga ochracea ≤0.06 - >8 Capnocytophaga spp. 0.006 - 2 Chlamydia pneumonia 0.125 - 1 Chlamydia psittaci 0.5 Chlamydia trachomatis 0.12 - 1 Chlamydophila pneumonia 0.5 Citrobacter diversus 0.015 - 0.125 Citrobacter freundii ≤0.00625 - >64 Citrobacter koseri 0.015 -
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,501,463 B2 Cox Et Al
    USOO85O1463B2 (12) United States Patent (10) Patent No.: US 8,501,463 B2 Cox et al. (45) Date of Patent: Aug. 6, 2013 (54) ANAEROBC PRODUCTION OF HYDROGEN (56) References Cited AND OTHER CHEMICAL PRODUCTS U.S. PATENT DOCUMENTS (75) Inventors: Marion E. Cox, Morgan Hill, CA (US); 5,350,685 A 9/1994 Taguchi et al. Laura M. Nondorf, Morgan Hill, CA 5,464,539 A 11/1995 Ueno et al. 6,090,266 A 7/2000 Roychowdhury (US); Steven M. Cox, Morgan Hill, CA 6,251,643 B1 6/2001 Hansen et al. (US) 6,299,774 B1 * 10/2001 Ainsworth et al. ........... 210,603 6,342,378 B1 1/2002 Zhang et al. (73) Assignee: Anaerobe Systems, Morgan Hill, CA 6,569,332 B2 * 5/2003 Ainsworth et al. ........... 210,603 2004/0050778 A1 3/2004 Noike et al. (US) 2004/O115782 A1 6/2004 Paterek (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 WO WO-2006-119052 A2 11/2006 U.S.C. 154(b) by 1347 days. OTHER PUBLICATIONS (21) Appl. No.: 11/912,881 Liu et al., 2004. Effects of Culture and Medium Conditions on Hydro gen Production from Starch Using Anaerobic Bacteria. Journal of (22) PCT Fled: Apr. 27, 2006 Bioscience and Bioengineering, vol. 98, No. 4, pp. 251-256.* Zhang et al., Distributed Computer Control of Penicillin Fermenta (86) PCT NO.: PCT/US2OO6/O16332 tion Industrial Production. Proceedings of the IEEE International Conference on Industrial Technology, 1996, pp. 52-56.* S371 (c)(1), New Brunswick, an eppenforf Company, pp.
    [Show full text]
  • Investigation of Infectious Agents Associated with Arthritis by Reverse Transcription PCR of Bacterial Rrna Charles J Cox1, Karen E Kempsell2 and J S Hill Gaston1
    Available online http://arthritis-research.com/content/5/1/R1 Research article Open Access Investigation of infectious agents associated with arthritis by reverse transcription PCR of bacterial rRNA Charles J Cox1, Karen E Kempsell2 and J S Hill Gaston1 1Department of Rheumatology, University of Cambridge, Cambridge 2GlaxoSmithKline Medicines Research Centre, Stevenage, UK Corresponding author: J S Hill Gaston (e-mail: [email protected]) Received: 18 July 2002 Revisions received: 11 September 2002 Accepted: 13 September 2002 Published: 11 October 2002 Arthritis Res Ther 2003, 5:R1-R8 (DOI 10.1186/ar602) © 2003 Cox et al., licensee BioMed Central Ltd (Print ISSN 1478-6354; Online ISSN 1478-6362). This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any non-commercial purpose, provided this notice is preserved along with the article's original URL. Abstract In reactive and postinfectious arthritis the joints are generally sequencing the products obtained using universal primers, but sterile but the presence of bacterial antigens and nucleic acids could in some cases be shown to be present by amplifying with has been reported. To investigate whether organisms traffic to species specific primers. This was the case for Yersinia affected joints in these conditions, we performed reverse pseudotuberculosis and Chlamydia trachomatis. However, in transcription PCR using universal primers to amplify any arthritis thought to be related to Campylobacter infection the bacterial 16S rRNA sequences present in synovial fluid. sequences obtained were not from Campylobacter jejuni or Bacterial sequences were detected in most cases, even after C. coli, but from other Campylobacter spp.
    [Show full text]
  • Susceptibility and Resistance Data
    toku-e logo For a complete list of references, please visit antibiotics.toku-e.com Norfloxacin Microorganism Genus, Species, and Strain (if shown) Concentration Range (μg/ml)Susceptibility and Bacillus spp. (MTCC 297) ≤1 Minimum Inhibitory Bacillus subtilis 0.049 - 10 Bacteroides bivius Concentration≥1.56 (MIC) Data Bacteroides distasonis ≥12.5 Issue date 01/06/2020 Bacteroides fragilis 16 - 25 Bacteroides intermedius 3.13 Bacteroides oralis 3.13 Bacteroides oris (ATCC 33573) 3.13 Bacteroides ovatus ≥100 Bacteroides thetaiotaomicron ≥200 Bacteroides uniformis ≥50 Bacteroides ureolyticus ≥0.2 Bacteroides vulgatus ≥100 Bifidobacterium adolescentis ≤0.025 Bordetella bronchiseptica 1 - 8 Borrelia burgdorferi S.L. 1 - 16 Burkholderia mallei 2 - 4 Capnocytophaga ochracea ≤0.025 Chlamydia pneumonia ≥16 Chlamydia psittaci ≥16 Chlamydia trachomatis 25 Citrobacter freundii 0.39 - 1 Clostridium difficile ≥50 Clostridium perfringens ≥3.13 Clostridium septicum ≥0.78 Clostridium spiroforme 8 - 64 Corynebacterium <1 Corynebacterium diphtheriae ≥0.39 Enterobacter aerogenes 0.2 - 256 Enterobacter cloacae 0.125 - >256 Enterococcus faecalis 1.56 - 66 Escherichia coli 0.016 - >128 Eubacterium lentum ≥6.25 Fusobacterium mortiferum ≥6.25 Fusobacterium varium ≥50 Hafnia alvei ≥0.1 Helicobacter pylori 0.05 - 25 Klebsiella pneumonia 0.049 - 43 Klebsiella spp. ≤1 Lactobacillus acidophilus 500 - >1000 Lactobacillus gasseri >1000 Lactobacillus johnsonii ≥750 Lactobacillus paracasei ≥1000 Lactobacillus reuteri ≥1000 Lactobacillus salivarius ≥250 Micrococcus luteus ≥12.5 Morganella morganii ≥0.2 Mycobacterium africanum ≥2 Mycobacterium bovis ≥4 Mycobacterium tuberculosis 2 - 31.2 Neisseria meningitidis ≥0.025 Peptostreptococcus anaerobius ≥6.25 Peptostreptococcus asaccharolyticus ≥6.25 Peptostreptococcus magnus ≥0.78 Peptostreptococcus prevotii ≥6.25 Proteus mirabilis ≥0.1 Proteus spp.
    [Show full text]
  • Fatal Bacteremia Caused by Campylobacter Gracilis, United States
    LETTERS nosocomial transmission during that period (9). However, 9. Anderson LF, Tamne S, Brown T, Watson JP, Mullarkey C, the emergence of MDR TB in regions of high HIV prev- Zenner D, et al. Transmission of multidrug-resistant tuberculosis in the UK: a cross-sectional molecular and epidemiological study of alence is relatively recent (10), and the cases described clustering and contact tracing. Lancet Infect Dis. 2014;14:406–15. here suggest that increased vigilance for TB and MDR TB http://dx.doi.org/10.1016/S1473-3099(14)70022-2 among migrating health care workers might be required. 10. Abdool Karim SS, Churchyard GJ, Karim QA, Lawn SD. HIV infection and tuberculosis in South Africa: an urgent need to escalate the public health response. Lancet. 2009;374:921–33. Acknowledgments http://dx.doi.org/10.1016/S0140-6736(09)60916-8 We thank the families of patients who gave permission for this study and all those involved in data collection. We also thank Address for correspondence: Graham S. Cooke, Imperial College, Tim Brown, Vladyslav Nikolayevskyy, and Madeline Stone for Jefferiss Laboratories, St. Mary’s Campus, Praed St, London W21NY, the VNTR analysis and helpful comments and the staff of Public UK; email: [email protected] Health England National Mycobacterium Reference Laboratory for their assistance. This study was supported in part by the Imperial College NHS Fatal Bacteremia Caused by Trust Biomedical Research Centre, National Institute for Health Campylobacter gracilis, Research Health Protection Research Units (NIHR HPRU) in Healthcare Associated Infection and Antimicrobial Resistance United States and the NIHR HPRU in Respiratory Infections, both at Impe- rial College London in partnership with Public Health England.
    [Show full text]
  • Bacteroides Gracilis, an Important Anaerobic Bacterial Pathogen CAROLINE C
    JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 1985, p. 799-802 Vol. 22, No. 5 0095-1137/85/110799-04$02.00/0 Copyright (C 1985, American Society for Microbiology Bacteroides gracilis, an Important Anaerobic Bacterial Pathogen CAROLINE C. JOHNSON,'* JOHN F. REINHARDT,' MARTHA A. C. EDELSTEIN,"2 MAURY E. MULLIGAN,"3 W. LANCE GEORGE,'13'4 AND SYDNEY M. FINEGOLD" 2'3'5 Medical,1 Research,2 and Pathology4 Services, Infectious Disease Section, Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073, and Departments of Medicine3 and Microbiology and Immunology,5 University of California Los Angeles School of Medicine, Los Angeles, California 90024 Received 31 May 1985/Accepted 31 July 1985 Clinical isolates of agar-pitting, formate-fumarate-requiring, anaerobic gram-negative bacilli were recharacterized in consideration of the species descriptions of Bacteroides ureolyticus and the newly described B. gracilis, Campylobacter concisus, and Wolinella sp. During an 11-year period, 7.5% (101 of 1,341) of all specimens yielding anaerobes were found to contain an organism in this group. Of the 71 isolates that were available for study, 43 were B. ureolyticus, 23 were B. gracilis, and 5 were in the Wolinella-C. concisus group. The role in infection and patterns of antimicrobial susceptibility for B. ureolyticus and B. gracilis were studied. Review of the clinical data indicated that 83% of B. gracilis strains were recovered from patients with serious visceral or head and neck infection, whereas 73% of B. ureolyticus isolates were recovered from superficial soft-tissue or bone infections. The strains of B. ureolyticus were uniformly susceptible to the tested antimicrobial agents.
    [Show full text]
  • Meropenem Meropenem Was Administered to Dams from Gestation Day 17 Until Lactation Day 21 at 83 to 140) for the 1 Gram Dose
    HIGHLIGHTS OF PRESCRIBING INFORMATION Pediatric patients less than 3 months of age 2.3 Use in Pediatric Patients Pediatric Patients 3 Months of Age and Older Close adherence to the recommended dosage regimens is urged, especially in patients Complicated Skin and Skin Structure Infections · For pediatric patients 3 months of age and older, the Meropenem for injection (I.V.) dose with known factors that predispose to convulsive activity. Continue anti-convulsant In a study of complicated skin and skin structure infections, the adverse reactions were These highlights do not include all the information needed to use Meropenem for Recommended Meropenem for injection (I.V.) Dosage Schedule for Pediatric Patients is 10 mg/kg, 20 mg/kg or 40 mg/kg every 8 hours (maximum dose is 2 grams every therapy in patients with known seizure disorders. If focal tremors, myoclonus, or seizures similar to those listed above. The most common adverse events occurring in greater than injection (I.V.) safely and effectively. See full prescribing information for Meropenem Less than 3 Months of Age with Complicated Intra-Abdominal Infections and Normal 8 hours), depending on the type of infection (cSSSI, cIAI, intra-abdominal infection or occur, evaluate neurologically, placed on anti-convulsant therapy if not already instituted, 5% of the patients were: headache (7.8%), nausea (7.8%), constipation (7%), diarrhea for injection (I.V.) Renal Function (2.3) meningitis). See dosing table 2 below. and re-examine the dosage of Meropenem for injection (I.V.) to determine whether it (7%), anemia (5.5%), and pain (5.1%). Adverse events with an incidence of greater than · For pediatric patients weighing over 50 kg administer Meropenem for injection (I.V.) at should be decreased or discontinued.
    [Show full text]
  • Bacteroides Ureolyticus, a New Species to Accommodate Strains Previously Identified As “Bacteroides Corrodens, Anaerobic”
    INTERNATIONAL JOURNALOF SYSTEMATIC BACTERIOLOGY, Apr. 1978, p. 197-200 Vol. 28, No. 2 0020-7713/78/0028-0197$02.00/0 Copyright 0 1978 International Association of Microbiological Societies Printed in U.S. A. Bacteroides ureolyticus, a New Species to Accommodate Strains Previously Identified as “Bacteroides corrodens, Anaerobic” FRANCIS L. JACKSON AND YVONNE E. GOODMAN Department of Medical Bacteriology, University of Alberta, Edmonton, Alberta, Canada The name Bacteroides ureolyticus is proposed for a species to accommodate strains of gram-negative, urease-positive, anaerobic, corroding rods previously incorrectly referred to as Bacteroides corrodens. The organisms are catalase negative and reduce nitrate. In peptone-yeast-glucose medium, growth is en- hanced by the addition of fumarate and formate, and succinate is the major end product. Conventional carbohydrate fermentation tests are negative. The oxidase test is positive and is markedly inhibited by azide. Absorption bands of reduced cytochromes are seen by visual spectroscopy at 550 nm (cytochrome c) and 555-560 nm (b-type cytochrome); no cytochrome a band was detected. Most strains hydrolyze gelatin and casein. Strains with very weak proteolytic activity are also encountered. The cells are nonflagellated but may show “twitching motility.” Electron micrographs of five of seven strains reveal polar pili. Strains that lack pili do not produce spreading colonies or show twitching motility. The guanine-plus-cytosine content of the deoxyribonucleic acid is in the range of 28.0 to 30.0 mol%. Strain NCTC 10941 is designated as the type strain. Eiken (2) applied the name Bacteroides cor- MATERIALS AND METHODS rodens to certain gram-negative rods that Bacterial strains.
    [Show full text]
  • Original Article the Human Oral Microbiome Database: a Web Accessible Resource for Investigating Oral Microbe Taxonomic and Genomic Information
    Database, Vol. 2010, Article ID baq013, doi:10.1093/database/baq013 ............................................................................................................................................................................................................................................................................................. Original article The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information Tsute Chen1,2,*, Wen-Han Yu1, Jacques Izard1,2, Oxana V. Baranova1, Abirami Lakshmanan1 and Floyd E. Dewhirst1,2 1The Forsyth Institute, Boston, MA 02115, USA and 2Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA *Corresponding author: Tel: +1 617 892 8359; Fax: +1 617 262 5200; Email: [email protected] Submitted 25 January 2010; Revised 28 May 2010; Accepted 20 June 2010 ............................................................................................................................................................................................................................................................................................. The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement,
    [Show full text]