974-Form.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

974-Form.Pdf California Association for Medical Laboratory Technology Distance Learning Program ANAEROBIC BACTERIOLOGY FOR THE CLINICAL LABORATORY by James I. Mangels, MA, CLS, MT(ASCP) Consultant Microbiology Consulting Services Santa Rosa, CA Course Number: DL-974 3.0 CE/Contact Hour Level of Difficulty: Intermediate © California Association for Medical Laboratory Technology. Permission to reprint any part of these materials, other than for credit from CAMLT, must be obtained in writing from the CAMLT Executive Office. CAMLT is approved by the California Department of Health Services as a CA CLS Accrediting Agency (#0021) and this course is is approved by ASCLS for the P.A.C.E. ® Program (#519) 1895 Mowry Ave, Suite 112 Fremont, CA 94538-1766 Phone: 510-792-4441 FAX: 510-792-3045 Notification of Distance Learning Deadline All continuing education units required to renew your license must be earned no later than the expiration date printed on your license. If some of your units are made up of Distance Learning courses, please allow yourself enough time to retake the test in the event you do not pass on the first attempt. CAMLT urges you to earn your CE units early!. CAMLT Distance Learning Course # DL-974 1 © California Association for Medical Laboratory Technology Outline A. Introduction B. What are anaerobic bacteria? Concepts of anaerobic bacteriology C. Why do we need to identify anaerobes? D. Normal indigenous anaerobic flora; the incidence of anaerobes at various body sites E. Anaerobic infections; most common anaerobic infections F. Specimen collection and transport; acceptance and rejection criteria G. Processing of clinical specimens 1. Microscopic examination 2. Media: primary, selective, differential 3. Incubation systems H. Isolation and identification 1. Provide identification to level needed by physician 2. Role of Gram stain and plate morphology 3. Presumptive grouping and identification using cost effective rapid tests I. Anaerobic bacteriology cost containment concepts Measurable Course Objectives Upon completion of this course, the participant will be able to: • Recognize the most important genera and species of clinically important anaerobes and the infections they may cause • Describe the normal anaerobic indigenous flora • List appropriate techniques for specimen selection, collection and transport • Describe initial processing techniques and the media employed • Identify laboratory methods used for initial grouping, presumptive identification, and definitive identification, and determine when each level is appropriate • Identify techniques used for cost-effective clinical anaerobic bacteriology CAMLT Distance Learning Course # DL-974 2 © California Association for Medical Laboratory Technology A. INTRODUCTION Anaerobic bacteria cause a variety of infections in humans, including appendicitis, cholecystitis, otitis media, dental and oral infections, endocarditis, endometritis, brain abscess, myonecrosis, osteomyelitis, peritonitis, empyema, salpingitis, septic arthritis, liver abscess, sinusitis, wound infections following bowel surgery and trauma, perirectal and tuboovarian abscesses, and bacteremia (1). Many reports associate an incidence of at least 50% to 60% of important infections due to anaerobic bacteria (Table 1). Anaerobic bacteria are often overlooked or missed unless the specimen is properly collected and transported to the laboratory. Next, the specimen must be subjected to appropriate procedures for isolation, including the use of specialized media supplemented with growth factors and the use of proper incubation methods. Anaerobes vary in their nutritional requirements, but most isolates require vitamin K and hemin for growth. Anaerobes also vary in their sensitivity to oxygen: a brief exposure (10 min.) to atmospheric oxygen is enough to kill some organisms. This course will discuss procedures for proper collection and transport of anaerobes; appropriate specimen types for culture, processing, incubation, and isolation; and methods of characterization of anaerobes from properly collected specimens. Practical schemes for isolating the majority of clinically important anaerobes will be described, including their salient features and cost-effective procedures for their work-up and identification. Many laboratorians believe that the isolation and identification of anaerobes is difficult, expensive, and time consuming. This course will present methods that will permit rapid, yet cost-effective procedures for the recovery and identification of clinically significant anaerobes for any clinical laboratory. B. WHAT ARE ANAEROBIC BACTERIA? Anaerobes are microorganisms that do not require oxygen for metabolism, reproduction or growth. Most anaerobes are actually inhibited by oxygen or oxygen by-products, however they vary as a group in their sensitivity to oxygen. An obligate or strict anaerobe (e.g., Porphyromonas spp., Fusobacterium spp., or Peptostreptococcus spp.) will grow only in an absolute anaerobic environment (zero % O2). They are killed by exposure to air after only a few minutes. A moderate anaerobe (e.g., Bacteroides fragilis grp.) can tolerate more exposure to air, but damage can occur after 15-20 minutes of exposure to air. A microaerotolerant anaerobe (e.g., Clostridium tertium) is an organism that is capable of growing in both an anaerobic and a microaerophilic atmosphere. A microaerotolerant anaerobe may marginally grow when exposed to air or in a CO2 incubator on a chocolate blood agar medium, but growth is best under anaerobic conditions. Molecular oxygen itself can be lethal to some anaerobes, however even more toxic substances are produced when oxygen becomes chemically reduced. Initially, molecular oxygen - is reduced to superoxide anion (O2 ), a highly reactive free radical capable of causing severe damage to components of media, bacterial enzyme systems, proteins, lipids, and cell walls. Further reduction of oxygen leads to the production of other toxic compounds of oxygen - (hydrogen peroxide {H2O2}, and hydroxyl radicals {OH }) that can damage microorganisms or the components of media on which they are to grow. Thus, oxygen, superoxide anions, hydroxyl radicals, and hydrogen peroxides inhibit the growth of anaerobes and should be avoided to permit their recovery in culture. CAMLT Distance Learning Course # DL-974 3 © California Association for Medical Laboratory Technology All living creatures that use oxygen for metabolism have one or more enzymes to provide protection from superoxide anions and their toxic derivates. These enzymes are known as superoxide dismutases (SODs). Anaerobes have various amounts of SOD, ranging from none to some, that presumably allow some anaerobes to tolerate oxygen. However, there is not a direct correlation between levels of SOD and the anaerobe’s ability to tolerate oxygen. There are other factors, such as the presence of catalase, which may play a role in the inability of anaerobic organisms to tolerate oxygen (2). C. WHY ISOLATE AND IDENTIFY ANAEROBES? The recovery of anaerobes is very important because they are commonly resistant to empiric antibiotic therapy (antibiotics that may be used prior to isolation of any organism), and many anaerobes (including Bacteroides fragilis grp., the most commonly recovered anaerobe) contain virulence factors that lead to abscess formation and chronic disease if not treated correctly. The recovery of anaerobes aids the physician in making a specific diagnosis and may provide the clinician with the potential source of the infection. Further, in this era of concern about antibiotic resistance, the isolation and identification of anaerobes allows the clinician to use appropriate antibiotic therapy instead of the “big gun”—the antibiotic with the broadest spectrum which will inhibit both aerobes and anaerobes, but may also contribute to antibiotic resistance. It has been shown that correctly employed specific therapy against anaerobes can reduce mortality and morbidity, and reduce hospitalization (1). There are some general concepts regarding anaerobic infections that are important to mention now, but will be discussed in greater detail in this course. • First, most anaerobic infections derive from our own indigenous microflora, so specimen selection and collection are essential for quality results and to reduce contamination. • Second, anaerobic infections are often mixed, containing both aerobic and anaerobic organisms. Employing an enriched primary medium as well as using differential and selective media is essential to rapidly recover anaerobes from specimens that contain a mixture of organisms. • Third, despite the diversity of our normal indigenous flora (1, 2, 3, 4), most infections are due to a relatively limited number of anaerobic isolates (Table 2): almost 35% are members of B. fragilis group; 28% are Peptostreptococcus spp. or other genera of anaerobic Gram-positive cocci; 6 % are pigmented Gram-negative rods; and 8% are Fusobacterium spp. The recovery of Clostridium spp. is only about 2%. These three concepts of anaerobic bacteriology have a profound effect on how we isolate and identify anaerobes and should be part of your thought process during this course. D. NORMAL INDIGENOUS ANAEROBIC FLORA Almost all surfaces of the human body are colonized by microorganisms referred to as normal or indigenous microflora. These organisms normally inhabit the skin, mouth, nose, throat, lower intestine, vagina, and outer portion of the urethra. Anaerobes colonizing these regions are present in high numbers. For example,
Recommended publications
  • The Syntrophy Hypothesis for the Origin of Eukaryotes Revisited Purificación López-García, David Moreira
    The Syntrophy hypothesis for the origin of eukaryotes revisited Purificación López-García, David Moreira To cite this version: Purificación López-García, David Moreira. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature Microbiology, Nature Publishing Group, 2020, 5 (5), pp.655-667. 10.1038/s41564- 020-0710-4. hal-02988531 HAL Id: hal-02988531 https://hal.archives-ouvertes.fr/hal-02988531 Submitted on 3 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 2 Perspectives 3 4 5 6 The Syntrophy hypothesis for the origin of eukaryotes revisited 7 8 Purificación López-García1 and David Moreira1 9 10 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France 11 12 13 14 *Correspondence to: [email protected] 15 16 17 18 19 1 20 The discovery of Asgard archaea, phylogenetically closer to eukaryotes than other archaea, together with 21 improved knowledge of microbial ecology impose new constraints on emerging models for the origin of the 22 eukaryotic cell (eukaryogenesis). Long-held views are metamorphosing in favor of symbiogenetic models 23 based on metabolic interactions between archaea and bacteria. These include the classical Searcy’s and 24 hydrogen hypothesis, and the more recent Reverse Flow and Entangle-Engulf-Enslave (E3) models.
    [Show full text]
  • Genomic and Evolutionary Insights
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Apollo GBE Preterm Infant-Associated Clostridium tertium, Clostridium cadaveris,andClostridium paraputrificum Strains: Genomic and Evolutionary Insights Raymond Kiu1,2, Shabhonam Caim1, Cristina Alcon-Giner1, Gusztav Belteki3,PaulClarke4, Derek Pickard5, Gordon Dougan5,andLindsayJ.Hall1,* 1The Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom 2Norwich Medical School, Norwich Research Park, University of East Anglia, Norwich, United Kingdom 3Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, United Kingdom 4Neonatal Intensive Care Unit, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom 5Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom *Corresponding author: E-mail: [email protected]. Accepted: September 28, 2017 Data deposition: This project has been deposited at European Nucleotide Archive (EMBL-EBI) under the accession PRJEB22142. Bacterial strain deposition: Newly sequenced strains are deposited at National Collection of Type Cultures (NCTC; a culture depository of Public Health England). Abstract Clostridium species (particularly Clostridium difficile, Clostridium botulinum, Clostridium tetani and Clostridium perfringens)are associated with a range of human and animal diseases. Several other species including Clostridium tertium, Clostridium cadaveris, and Clostridium paraputrificum have also been linked with sporadic human infections, however there is very limited, or in some cases, no genomic information publicly available. Thus, we isolated one C. tertium strain, one C. cadaveris strain and three C. paraputrificum strains from preterm infants residing within neonatal intensive care units and performed Whole Genome Sequencing (WGS) using Illumina HiSeq. In this report, we announce the open availability of the draft genomes: C.
    [Show full text]
  • The Endosymbiotic Theory
    Origin of Life The Endosymbiotic Theory Cleodie Swire The King's School, Canterbury, E-mail: [email protected] DOI: 10.4103/0974-6102.92200 Definitions Carbon dioxide + Water (with sunlight and chlorophyll) → Carbohydrate + Oxygen Prokaryote – Organism with cells without a true nucleus or other membrane-bound organelles Figure 2 shows that mitochondria and chloroplasts are very similar to prokaryotic cells; these observations Eukaryote – Organism whose cell(s) contain(s) a lead to The Endosymbiotic Theory. distinct, membrane-bound nucleus Theory Autotroph – An organism that can make its own food Researchers comparing the structures of prokaryotes Heterotroph – An organism that must obtain ready- and cell organelles, as shown in Figure 2, came to made food the conclusion that organelles such as mitochondria and chloroplasts had originally been bacteria that Endocytosis – A process in which a cell takes in were taken into larger bacteria by endocytosis and not materials by engulfing them and fusing them with its digested. The cells would have had a mutually beneficial membrane, as shown in Figure 1 (symbiotic) relationship. The ingested cells developed Aerobic – Organism that requires oxygen for survival Anaerobic – Organism that can function without oxygen Symbiosis – Two different organisms benefit from living and working together Endosymbiosis – One organism lives inside another Mitochondrion – Organelle where aerobic respiration occurs within the cell Carbohydrate + Oxygen → Carbon dioxide + Water + Energy Chloroplast – Organelle
    [Show full text]
  • Clostridium Amazonitimonense, Clostridium Me
    ORIGINAL ARTICLE Taxonogenomic description of four new Clostridium species isolated from human gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’ M. T. Alou1, S. Ndongo1, L. Frégère1, N. Labas1, C. Andrieu1, M. Richez1, C. Couderc1, J.-P. Baudoin1, J. Abrahão2, S. Brah3, A. Diallo1,4, C. Sokhna1,4, N. Cassir1, B. La Scola1, F. Cadoret1 and D. Raoult1,5 1) Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France, 2) Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 3) Hopital National de Niamey, BP 247, Niamey, Niger, 4) Campus Commun UCAD-IRD of Hann, Route des pères Maristes, Hann Maristes, BP 1386, CP 18524, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation. © 2017 Published by Elsevier Ltd. Keywords: ‘Clostridium amazonitimonense’, ‘Clostridium massilidielmoense’, ‘Clostridium merdae’, ‘Clostridium nigeriense’, culturomics, emerging bacteria, human microbiota, taxonogenomics Original Submission: 18 August 2017; Revised Submission: 9 November 2017; Accepted: 16 November 2017 Article published online: 22 November 2017 intestine [1,4–6].
    [Show full text]
  • Potential Role of Microbiome in Oncogenesis, Outcome Prediction
    Oral Oncology 99 (2019) 104453 Contents lists available at ScienceDirect Oral Oncology journal homepage: www.elsevier.com/locate/oraloncology Review Potential role of microbiome in oncogenesis, outcome prediction and therapeutic targeting for head and neck cancer T ⁎ Ester Orlandia,b, , Nicola Alessandro Iacovellib, Vincenzo Tombolinic, Tiziana Rancatid, Antonella Polimenie, Loris De Ceccof, Riccardo Valdagnia,d,g, Francesca De Felicec a Department of Radiotherapy 1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy b Department of Radiotherapy 2, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy c Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy d Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy e Department of Oral and Maxillo Facial Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Italy f Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy g Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy ARTICLE INFO ABSTRACT Keywords: In the last decade, human microbiome research is rapidly growing involving several fields of clinical medicine Head and neck cancer and population health. Although the microbiome seems to be linked to all sorts of diseases, cancer has the Biomarkers biggest potential to be investigated. Microbiome Following the publication of the National Institute of Health - Human Microbiome Project (NIH-HMP), the Microbiota link between Head and Neck Cancer (HNC) and microbiome seems to be a fast-moving field in research area. Oncogenesis However, robust evidence-based literature is still quite scarce. Nevertheless the relationship between oral mi- Radiotherapy Immunotherapy crobiome and HNC could have important consequences for prevention and early detection of this type of tumors.
    [Show full text]
  • Citric Acid Wastewater As Electron Donor for Biological Sulfate Reduction
    Appl Microbiol Biotechnol (2009) 83:957–963 DOI 10.1007/s00253-009-1995-7 ENVIRONMENTAL BIOTECHNOLOGY Citric acid wastewater as electron donor for biological sulfate reduction Alfons J. M. Stams & Jacco Huisman & Pedro A. Garcia Encina & Gerard Muyzer Received: 4 March 2009 /Revised: 31 March 2009 /Accepted: 31 March 2009 /Published online: 28 April 2009 # The Author(s) 2009. This article is published with open access at Springerlink.com Abstract Citrate-containing wastewater is used as electron Keywords Desulfurization . Sulfate reduction . donor for sulfate reduction in a biological treatment plant Citrate fermentation . Trichococcus . Veillonella for the removal of sulfate. The pathway of citrate conversion coupled to sulfate reduction and the microorganisms involved were investigated. Citrate was not a direct electron Introduction donor for the sulfate-reducing bacteria. Instead, citrate was fermented to mainly acetate and formate. These fermentation The biological sulfur cycle plays an important role in products served as electron donors for the sulfate-reducing nature. In addition, the biological sulfur cycle can be bacteria. Sulfate reduction activities of the reactor biomass applied in biotechnology to remove and recover sulfur from with acetate and formate were sufficiently high to explain the wastewater and gas (Buisman et al. 1989; Janssen et al. sulfate reduction rates that are required for the process. Two 1995a, 2001; Lens et al. 1998; Muyzer and Stams 2008). citrate-fermenting bacteria were isolated. Strain R210 was Chemolithotrophic sulfide-oxidizing bacteria oxidize sulfide closest related to Trichococcus pasteurii (99.5% ribosomal to sulfate, but under oxygen-limiting conditions, mainly RNA (rRNA) gene sequence similarity). The closest relative elemental sulfur is formed (Janssen et al.
    [Show full text]
  • 3. Jedna Z Krvných Skupín Systému AB0; 4. Skr. Bukálny. B – Symbo
    B – 1. symbol pre bel; 2. chem. značka prvku →bór; 3. jedna z krvných skupín systému AB0; 4. skr. bukálny. B – symbol pre hustotu magnetického toku. B. – skr. pre →Bacillus. B-ALP – skr. angl. bone alcalic phosphatase kostná alkalická fosfatáza. B-bunky – 1. syn. -bunky Langerhansových ostrovčekov; →pankreas; 2. syn. B-lymfocyty; →lymfocyty. B-komplex – multivitamínový prípravok vitamínov B. B-lymfocyty – [B podľa Fabriciovej burzy, imunol. orgánu vtákov] B bunky, druh lymfocytov, kt. sa zúčastňuje na humorálnej imunite (tvorbe protilátok) a niekt. ďalších imunitných funkciách. Povrchové molekuly sú CD 19,20. Receptorom pre antigén je membránový imunoglobulín. B-reťazec – jeden z polypeptidových reťazcov →inzulínu. B-vírus – 1. vírus →hepatitídy B.; 2. vírus zo skupiny Cercopithecine herpes virus 1. B-vlákna →nerv. b – skr. 1. pre barn; 2. skr. angl. born narodený; 3. skr. báza (genet. označenie dĺţky sekvencie nukleotidov, napr. 50 b = sekvencia 50 nukleotidov). b-vlna – pozit. kmit s vyskou amplitúdou v →elektroretinograme nasledujúci po vlne a, prejav komplexnej aktivity vrstvy bipolárnych buniek. – - – predpona označujúca 1. staršie označenie druhého atómu uhlíka v reťazci, na kt. sa pripája hlavná funkčná skupina, napr. kys. -hydroxymaslová správ. kys. 3-hydroxymaslová; 2. špecifická rotácia opticky aktívnej látky, napr. -D-glukóza; 3. orientácia exocyklického atómu al. skupiny, napr. cholest-5-en-3--ol; 4. plazmatický proteín, kt. migruje v elektroforéze v pruhu - lipoproteín; 5. člen série príbuzných chem. látok, najmä série stereoizomérov, izomérov, polymérov al. alotroických foriem, napr. -karotén; 6. -lúč. B2 – staršie označenie pre CD21. B4 – staršie označenie pre CD 19. B19 virus – ľudský parvovírus z čeľade Parvoviridae, značne rozšírený, vyvolávajúci obvykle inaparentné infekcie.
    [Show full text]
  • Clostridium Tertium Isolated from Gas Gangrene Wound; Misidentified As Lactobacillus Spp Initially Due to Aerotolerant Feature
    ARTICLE IN PRESS Anaerobe 13 (2007) 161–165 www.elsevier.com/locate/anaerobe Short communication — Anaerobiosis: Molecular Biology, Genetics and Other Aspects Clostridium tertium isolated from gas gangrene wound; misidentified as Lactobacillus spp initially due to aerotolerant feature Shigeki Fujitania,Ã, Chengxu X. Liua, Sydney M. Finegolda, Yuli L. Songa, Glenn E. Mathisenb aInfectious Diseases Section, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA bInfectious Disease Service, UCLA-Olive View Medical Center, 14445 Olive View Dr., Sylmar, CA 91342, USA Received 19 January 2007; received in revised form 24 February 2007; accepted 5 March 2007 Available online 12 March 2007 Abstract Clostridium tertium has been increasingly reported as a human pathogen. This organism is an aerotolerant Gram-positive rod that is often mistaken for other organisms, such as Lactobacillus or Bacillus species. We describe a case of a patient with a history of intravenous drug use presenting to UCLA-Olive View Medical Center with gas gangrene of both upper extremities. The organism was initially misidentified as a Lactobacillus species on aerobic culture plates. However, terminal spore formation was detected in this isolate on a sub- cultured anaerobic culture plate and this isolate was confirmed as C. tertium biochemically and genetically by 16S rDNA sequencing. Additional DNA cloning libraries made from the formalin-fixed specimen revealed Peptoniphilus species and an uncultured Clostridium clone, but not C. tertium. C. tertium might be a causative organism of gas-producing myonecrosis but such an association has never been described. Clinicians should be aware of the phenomenon of aerotolerance of some anaerobes and need to clarify the identification of organisms if the clinical picture does not fit the isolated organism.
    [Show full text]
  • Facultative Anerobe and Obligate Anaerobe Meaning
    Facultative Anerobe And Obligate Anaerobe Meaning Interocular Bill always exsect his reen if Hammad is stagier or react shily. Is Mustafa Gallic or overnice when disport some cuteness affiliates balletically? When Grace dulcify his Adriatic segues not revivably enough, is Alberto snobby? Desert soil conditions, including the analysis suggestions: aerobic and obligate anaerobes and fermentation This, combined with the diffusion of jeopardy from green top hence the broth produces a horizon of oxygen concentrations in the media along a depth. MM, originally designed to enrich methanogenic archaea. How do facultative meaning that means mainly included classifications: these products characteristic of versatile biocatalysts for facultatively anaerobic. This means that facultative anaerobe, mean less is related to combat drug dosage set are facultatively anaerobic. Can recover depend by the results of the collection if money from a swab of the access the discover? Which means to ensure that. Amazon region of Brazil. This you first smudge on harmful epiphytic interactions between Chlamydomonas species has red ceramiaceaen algae. The obligate anaerobes and facultative anaerobe is required for example, facultative anerobe and obligate anaerobe meaning in. Many species, including the pea aphid, also show variation in their reproductive mode squeeze the population level, were some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. In input, a savings of genomic features that effectively predicts the environmental preference of a bench of organisms would aid scientific researchers in gaining a mechanistic understanding of the requirements a wicked environment imposes on its microbial inhabitants. You mean that facultative meaning and facultatively anaerobic bacteria can cells were classified into contaminants that.
    [Show full text]
  • How Do Pesticides Influence Gut Microbiota? a Review
    International Journal of Environmental Research and Public Health Review Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review Federica Giambò 1,†, Michele Teodoro 1,† , Chiara Costa 2,* and Concettina Fenga 1 1 Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; [email protected] (F.G.); [email protected] (M.T.); [email protected] (C.F.) 2 Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy * Correspondence: [email protected]; Tel.: +39-090-2212052 † Equally contributed. Abstract: In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function. Keywords: gut microbiota; microbial community; pesticides; occupational exposure; dysbiosis Citation: Giambò, F.; Teodoro, M.; Costa, C.; Fenga, C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. 1. Introduction Int. J. Environ. Res. Public Health 2021, 18, 5510. https://doi.org/10.3390/ In recent years, the demand for food has risen significantly in relation to the world ijerph18115510 population’s increase.
    [Show full text]
  • Intra-Abdominal Granulomas Caused by Clostridium Tertium in an American Fuzzy Lop Rabbit
    Ciência Rural, SantaIntra-abdominal Maria, v.49:01, granulomas e20180777, caused by 2019 Clostridium tertium in an American http://dx.doi.org/10.1590/0103-8478cr20180777 Fuzzy Lop rabbit 1 ISSNe 1678-4596 PATHOLOGY Intra-abdominal granulomas caused by Clostridium tertium in an American Fuzzy Lop rabbit Mirella Lauria D’Elia¹ Alice Barroso Santos¹ Beatriz Novaes Telles Ribeiro¹ Renato Cesar Sacchetto Torres¹ Renato de Lima Santos¹ Rodrigo Otávio Silveira Silva¹ Anelise Carvalho Nepomuceno¹ ¹Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, 31270-901, Belo Horizonte, MG, Brasil. E-mail: [email protected]. *Corresponding author. ABSTRACT: A 6-year-old Fuzzy Lop rabbit was referred to a veterinary hospital with a complaint of lameness. In addition to a vertebral subluxation, two radiopaque and well-defined structures were revealed by radiographic evaluation. Ultrasonographically, the masses were characterized as parenchymal structures with diffuse mineralization and formation of reverberation artifacts, suggesting presence of gas. These two structures were excised during a laparotomy and Clostridium tertium was isolated. To the best of our knowledge, this is the first report of C. tertium infection in a pet animal. Key words: Clostridia, granuloma, diagnostic imaging. Granulomas intra-abdominais causados por Clostridium tertium em um coelho American Fuzzy Lop RESUMO: Um coelho de seis anos de idade da raça Fuzzy Lop foi encaminhado a um hospital veterinário devido a uma queixa de claudicação. Além de uma subluxação vertebral, duas estruturas radiopacas e bem delimitadas foram identificadas pela avaliação radiográfica. Em um exame ultrassonográfico, as massas foram caracterizadas como formações parenquimatosas e heterogêneas, apresentando mineralização difusa e com formação de artefatos de reverberação, sugerindo a presença de gás.
    [Show full text]
  • Susceptibility and Resistance Data
    toku-e logo For a complete list of references, please visit antibiotics.toku-e.com Levofloxacin Microorganism Genus, Species, and Strain (if shown) Concentration Range (μg/ml)Susceptibility and Aeromonas spp. 0.0625 Minimum Inhibitory Alcaligenes faecalis 0.39 - 25 Bacillus circulans Concentration0.25 - 8 (MIC) Data Bacillus subtilis (ATCC 6051) 6.25 Issue date 01/06/2020 Bacteroides capillosus ≤0.06 - >8 Bacteroides distasonis 0.5 - 128 Bacteroides eggerthii 4 Bacteroides fragilis 0.5 - 128 Bacteroides merdae 0.25 - >32 Bacteroides ovatus 0.25 - 256 Bacteroides thetaiotaomicron 1 - 256 Bacteroides uniformis 4 - 128 Bacteroides ureolyticus ≤0.06 - >8 Bacteroides vulgatus 1 - 256 Bifidobacterium adolescentis 0.25 - >32 Bifidobacterium bifidum 8 Bifidobacterium breve 0.25 - 8 Bifidobacterium longum 0.25 - 8 Bifidobacterium pseudolongum 8 Bifidobacterium sp. 0.25 - >32 Bilophila wadsworthia 0.25 - 16 Brevibacterium spp. 0.12 - 8 Brucella melitensis 0.5 Burkholderia cepacia 0.25 - 512 Campylobacter coli 0.015 - 128 Campylobacter concisus ≤0.06 - >8 Campylobacter gracilis ≤0.06 - >8 Campylobacter jejuni 0.015 - 128 Campylobacter mucosalis ≤0.06 - >8 Campylobacter rectus ≤0.06 - >8 Campylobacter showae ≤0.06 - >8 Campylobacter spp. 0.25 Campylobacter sputorum ≤0.06 - >8 Capnocytophaga ochracea ≤0.06 - >8 Capnocytophaga spp. 0.006 - 2 Chlamydia pneumonia 0.125 - 1 Chlamydia psittaci 0.5 Chlamydia trachomatis 0.12 - 1 Chlamydophila pneumonia 0.5 Citrobacter diversus 0.015 - 0.125 Citrobacter freundii ≤0.00625 - >64 Citrobacter koseri 0.015 -
    [Show full text]