Genetic Diseases of Connective Tissues: Cellular and Extracellular Effects of ECM Mutations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Joint Hypermobility Syndromes
10/17/2017 Hereditary Disorders of Connective Tissue: Overview CLAIR A. FRANCOMANO, M.D. HARVEY INSTITUTE FOR HUMAN GENETICS BALTIMORE, MD Disclosures I have no conflicts to disclose 1 10/17/2017 Joint Hypermobility Seen in over 140 clinical syndromes listed in Online Mendelian Inheritance in Man (OMIM) Congenital anomaly syndromes Short stature syndromes Hereditary disorders of connective tissue Connective Tissue Supports and Protects Bones Collagen Fibers Cartilage Elastic Fibers Tendons Mucopolysaccharides Ligaments 2 10/17/2017 Fibrillar Collagens Major structural components of the extracellular matrix Include collagen types I, II, III, V, IX, and XI Trimeric molecules (three chains) May be made up of three identical or genetically distinct chains, called alpha chains Fibrillar Collagens Biochemical Society Transactions (1999) , - - www.biochemsoctrans.org 3 10/17/2017 Hereditary Disorders of Connective Tissue Marfan syndrome Loeys-Dietz syndrome Stickler syndrome Osteogenesis Imperfecta Ehlers-Danlos syndromes Marfan Syndrome Aneurysmal dilation of the ascending aorta Dislocation of the ocular lenses Tall stature Scoliosis Pectus deformity Arachnodactyly (long, narrow fingers and toes) Dolicostenomelia (tall, thin body habitus) Caused by mutations in Fibrillin-1 4 10/17/2017 Marfan Syndrome Loeys-Dietz Syndrome Aortic dilation with dissection Tortuous blood vessels Craniofacial features Hypertelorism Malar hypoplasia Cleft palate or bifid uvula Caused by mutations in TGFBR1 and TGFBR2 as well as -
Supplemental Figure 1. Vimentin
Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672 -
The Counsyl Foresight™ Carrier Screen
The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia............................................................................................................................................................................................................................................................. -
Identi Cation of Three Novel Homozygous Variants in COL9A3
Identication of three novel homozygous variants in COL9A3 causing autosomal-recessive Stickler Syndrome Aboulfazl Rad University of Tübingen: Eberhard Karls Universitat Tubingen Maryam Naja Universitätsklinikum Freiburg: Universitatsklinikum Freiburg Fatemeh Suri Shahid Beheshti University Soheila Abedini Mashhad University of Medical Sciences Stephen Loum Eberhard Karls Universitat Tubingen Ehsan Ghayoor Karimiani Mashhad University of Medical Sciences Narsis Daftarian Shahid Beheshti University David Murphy UCL: University College London Mohammad Doosti Mashhad University of Medical Sciences Afrooz Moghaddasi Shahid Beheshti University Hamid Ahmadieh Shahid Beheshti University Hamideh Sabbaghi Shahid Beheshti University Mohsen Rajati Mashhad University of Medical Sciences Ghaem Hospital Narges Hashemi Mashhad University of Medical Sciences Barbara Vona Eberhard Karls Universitat Tubingen Miriam Schmidts ( [email protected] ) Universitatsklinikum Freiburg https://orcid.org/0000-0002-1714-6749 Research Article Keywords: autosomal recessive Stickler syndrome, COL9A3, collagen, hearing loss, retinal detachment Posted Date: May 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-526117/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/10 Abstract Background: Stickler syndrome (STL) is a rare, clinically and molecularly heterogeneous connective tissue disorder. Pathogenic variants occurring in a variety of genes cause STL, mainly inherited in an autosomal -
Whole Exome Sequencing Gene Package Vision Disorders, Version 6.1, 31-1-2020
Whole Exome Sequencing Gene package Vision disorders, version 6.1, 31-1-2020 Technical information DNA was enriched using Agilent SureSelect DNA + SureSelect OneSeq 300kb CNV Backbone + Human All Exon V7 capture and paired-end sequenced on the Illumina platform (outsourced). The aim is to obtain 10 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate and non-unique reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA-MEM algorithm (reference: http://bio-bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x ABCA4 Cone-rod dystrophy 3, 604116 601691 94 100 100 97 Fundus flavimaculatus, 248200 {Macular degeneration, age-related, 2}, 153800 Retinal dystrophy, early-onset severe, 248200 Retinitis pigmentosa 19, 601718 Stargardt disease -
A Study of the Clinical and Radiological Features in a Cohort of 93 Patients with a COL2A1 Mutation Causing Spondyloepiphyseal D
RESEARCH ARTICLE A Study of the Clinical and Radiological Features in a Cohort of 93 Patients with a COL2A1 Mutation Causing Spondyloepiphyseal Dysplasia Congenita or a Related Phenotype Paulien A. Terhal,1* Rutger Jan A. J. Nievelstein,2 Eva J. J. Verver,3 Vedat Topsakal,3 Paula van Dommelen,4 Kristien Hoornaert,5 Martine Le Merrer,6 Andreas Zankl,7 Marleen E. H. Simon,8 Sarah F. Smithson,9 Carlo Marcelis,10 Bronwyn Kerr,11 Jill Clayton-Smith,11 Esther Kinning,12 Sahar Mansour,13 Frances Elmslie,13 Linda Goodwin,14 Annemarie H. van der Hout,15 Hermine E. Veenstra-Knol,15 Johanna C. Herkert,15 Allan M. Lund,16 Raoul C. M. Hennekam,17 Andre´ Me´garbane´,18 Melissa M. Lees,19 Louise C. Wilson,19 Alison Male,19 Jane Hurst,19,20 Yasemin Alanay,21 Go¨ran Annere´n,22 Regina C. Betz,23 Ernie M. H. F. Bongers,10 Valerie Cormier-Daire,6 Anne Dieux,24 Albert David,25 Mariet W. Elting,26 Jenneke van den Ende,27 Andrew Green,28 Johanna M. van Hagen,26 Niels Thomas Hertel,29 Muriel Holder-Espinasse,24,30 Nicolette den Hollander,31 Tessa Homfray, Hanne D. Hove,32 Susan Price,20 Annick Raas-Rothschild,33 Marianne Rohrbach,34 Barbara Schroeter,35 Mohnish Suri,36 Elizabeth M. Thompson,37 Edward S. Tobias,38 Annick Toutain,39 Maaike Vreeburg,40 Emma Wakeling,41 Nine V. Knoers,1 Paul Coucke,42,43 and Geert R. Mortier27,43 1Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands 2Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands 3Department of Otorhinolaryngology and Head and Neck Surgery, -
Serum Or Plasma Cartilage Oligomeric Matrix Protein Concentration As a Diagnostic Marker in Pseudoachondroplasia: Differential Diagnosis of a Family
European Journal of Human Genetics (2007) 15, 1023–1028 & 2007 Nature Publishing Group All rights reserved 1018-4813/07 $30.00 www.nature.com/ejhg ARTICLE Serum or plasma cartilage oligomeric matrix protein concentration as a diagnostic marker in pseudoachondroplasia: differential diagnosis of a family A Cevik Tufan*,1,2,7, N Lale Satiroglu-Tufan2,3,7, Gail C Jackson4, C Nur Semerci3, Savas Solak5 and Baki Yagci6 1Department of Histology and Embryology, School of Medicine, Pamukkale University, Denizli, Turkey; 2Pamukkale University Research Center for Genetic Engineering and Biotechnology, Denizli, Turkey; 3Molecular Genetics Laboratory, Department of Medical Biology, Center for Genetic Diagnosis, School of Medicine, Pamukkale University, Denizli, Turkey; 4NGRL, St Mary’s Hospital, Manchester, UK; 5Birgi Medical Center, Republic of Turkey Ministry of Health, Izmir, Turkey; 6Department of Radiology, School of Medicine, Pamukkale University, Denizli, Turkey Pseudoachondroplasia (PSACH) is an autosomal-dominant osteochondrodysplasia due to mutations in the gene encoding cartilage oligomeric matrix protein (COMP). Clinical diagnosis of PSACH is based primarily on family history, physical examination, and radiographic evaluation, and is sometimes extremely difficult, particularly in adult patients. Genetic diagnosis based on DNA sequencing, on the other hand, can be expensive, time-consuming, and intensive because COMP mutations may be scattered throughout the gene. However, there is evidence that decreased plasma COMP concentration may serve as a diagnostic marker in PSACH, particularly in adult patients. Here, we report the serum and/or plasma COMP concentration-based differential diagnosis of a family with affected adult members. The mean serum and/or plasma COMP concentrations of the three affected family members alive (0.6970.15 and/or 0.8170.08 lg/ml, respectively) were significantly lower than those of an age-compatible control group of 21 adults (1.5270.37 and/or 1.3770.36 lg/ml, respectively; Po0.0001). -
Disease Reference Book
The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia............................................................................................................................................................................................................................................................. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Alport Syndrome of the European Dialysis Population Suffers from AS [26], and Simi- Lar Figures Have Been Found in Other Series
DOCTOR OF MEDICAL SCIENCE Patients with AS constitute 2.3% (11/476) of the renal transplant population at the Mayo Clinic [24], and 1.3% of 1,000 consecutive kidney transplant patients from Sweden [25]. Approximately 0.56% Alport syndrome of the European dialysis population suffers from AS [26], and simi- lar figures have been found in other series. AS accounts for 18% of Molecular genetic aspects the patients undergoing dialysis or having received a kidney graft in 2003 in French Polynesia [27]. A common founder mutation was in Jens Michael Hertz this area. In Denmark, the percentage of patients with AS among all patients starting treatment for ESRD ranges from 0 to 1.21% (mean: 0.42%) in a twelve year period from 1990 to 2001 (Danish National This review has been accepted as a thesis together with nine previously pub- Registry. Report on Dialysis and Transplantation in Denmark 2001). lished papers by the University of Aarhus, February 5, 2009, and defended on This is probably an underestimate due to the difficulties of establish- May 15, 2009. ing the diagnosis. Department of Clinical Genetics, Aarhus University Hospital, and Faculty of Health Sciences, Aarhus University, Denmark. 1.3 CLINICAL FEATURES OF X-LINKED AS Correspondence: Klinisk Genetisk Afdeling, Århus Sygehus, Århus Univer- 1.3.1 Renal features sitetshospital, Nørrebrogade 44, 8000 Århus C, Denmark. AS in its classic form is a hereditary nephropathy associated with E-mail: [email protected] sensorineural hearing loss and ocular manifestations. The charac- Official opponents: Lisbeth Tranebjærg, Allan Meldgaard Lund, and Torben teristic renal features in AS are persistent microscopic hematuria ap- F. -
Human Oxygen Sensing May Have Origins in Prokaryotic Elongation Factor Tu Prolyl-Hydroxylation
Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation John S. Scottia, Ivanhoe K. H. Leunga,1,2, Wei Gea,b,1, Michael A. Bentleyc, Jordi Papsd, Holger B. Kramere, Joongoo Leea, WeiShen Aika, Hwanho Choia, Steinar M. Paulsenc,3, Lesley A. H. Bowmanf, Nikita D. Loika,4, Shoichiro Horitaa,e, Chia-hua Hoa,5, Nadia J. Kershawa,6, Christoph M. Tangf, Timothy D. W. Claridgea, Gail M. Prestonc, Michael A. McDonougha, and Christopher J. Schofielda,7 aChemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; bChinese Academy of Medical Sciences, Beijing 100005, China; cDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; dDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; eDepartment of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom; and fDepartment of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom Edited by Gregg L. Semenza, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved August 5, 2014 (received for review May 30, 2014) The roles of 2-oxoglutarate (2OG)-dependent prolyl-hydroxylases Results in eukaryotes include collagen stabilization, hypoxia sensing, and Pseudomonas spp. Contain a Functional PHD. To investigate the role translational regulation. The hypoxia-inducible factor (HIF) sensing of a putative PHD homolog in Pseudomonas aeruginosa (PPHD), system is conserved in animals, but not in other organisms. How- we initially characterized a PPHD insertional mutant strain. ever, bioinformatics imply that 2OG-dependent prolyl-hydroxy- Metabolic screening studies revealed that the PPHD mutant strain lases (PHDs) homologous to those acting as sensing components displays impaired growth in the presence of iron chelators (e.g., for the HIF system in animals occur in prokaryotes. -
Kniest Dysplasia Natural History
Richard M. Pauli, M.D., Ph.D., Midwest Regional Bone Dysplasia Clinics revised 8/2009 KNIEST DYSPLASIA NATURAL HISTORY INTRODUCTION: The following summary of the medical expectations in Kniest Dysplasia is neither exhaustive nor cited. It is based upon the available literature as well as personal experience in the Midwest Regional Bone Dysplasia Clinics (MRBDC). It is meant to provide a guideline for the kinds of problems that may arise in children with this disorder, and particularly to help clinicians caring for a recently diagnosed child. For specific questions or more detailed discussions, feel free to contact MRBDC at the University of Wisconsin – Madison [phone – 608 262 6228; fax – 608 263 3496; email – [email protected]]. Kniest Dysplasia is an infrequent bone dysplasia, which is particularly characterized by progressive stiffness and enlargement of various joints. In addition, it shares many other medical risks with other disorders of type II collagen (such as Spondyloepiphyseal Dysplasia, Congenita). Individuals will typically have both a short trunk and a constricted chest from birth and arms and legs that appear to be disproportionately long. MEDICAL ISSUES AND PARENTAL CONCERNS TO BE ANTICIPATED PROBLEM: GROWTH EXPECTATIONS: Marked short stature is typical; ultimate adult height is usually between 100 and 140 cm (about 39 in to 55 in). MONITORING: No diagnosis-specific growth grid is available. INTERVENTION: No known treatment is effective. Growth hormone is not likely to be effective since this disorder is secondary to intrinsic abnormality of bone growth. Limb lengthening, suggested but controversial in other short stature syndromes, is probably not an option since much of the effects of this disorder is on spine growth not primarily the limbs.