The Counsyl Foresight™ Carrier Screen

Total Page:16

File Type:pdf, Size:1020Kb

The Counsyl Foresight™ Carrier Screen The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................. 18 Alpha-mannosidosis........................................................................................................................................................................................................................................................... 20 Alpha-sarcoglycanopathy................................................................................................................................................................................................................................................... 22 Alstrom Syndrome.............................................................................................................................................................................................................................................................. 24 AMT-related Glycine Encephalopathy .............................................................................................................................................................................................................................. 26 Andermann Syndrome....................................................................................................................................................................................................................................................... 28 Argininemia ......................................................................................................................................................................................................................................................................... 30 Argininosuccinic Aciduria................................................................................................................................................................................................................................................... 32 ARSACS................................................................................................................................................................................................................................................................................. 34 Aspartylglycosaminuria...................................................................................................................................................................................................................................................... 36 Ataxia with Vitamin E Deficiency ....................................................................................................................................................................................................................................... 38 Ataxia-telangiectasia........................................................................................................................................................................................................................................................... 40 ATP7A-related Disorders.................................................................................................................................................................................................................................................... 42 Autosomal Recessive Osteopetrosis Type 1.................................................................................................................................................................................................................... 44 Bardet-Biedl Syndrome, BBS1-related ............................................................................................................................................................................................................................. 46 Bardet-Biedl Syndrome, BBS10-related ........................................................................................................................................................................................................................... 48 Bardet-Biedl Syndrome, BBS12-related ........................................................................................................................................................................................................................... 50 Bardet-Biedl Syndrome, BBS2-related ............................................................................................................................................................................................................................. 52 Beta-sarcoglycanopathy..................................................................................................................................................................................................................................................... 54 Biotinidase Deficiency ........................................................................................................................................................................................................................................................ 56 Bloom Syndrome ................................................................................................................................................................................................................................................................ 58 Calpainopathy ..................................................................................................................................................................................................................................................................... 60 Canavan Disease................................................................................................................................................................................................................................................................. 62 Carbamoylphosphate Synthetase I Deficiency ............................................................................................................................................................................................................... 64 Carnitine Palmitoyltransferase IA Deficiency .................................................................................................................................................................................................................. 66 Carnitine Palmitoyltransferase II Deficiency ................................................................................................................................................................................................................... 68 Cartilage-hair Hypoplasia................................................................................................................................................................................................................................................... 70 Cerebrotendinous Xanthomatosis ................................................................................................................................................................................................................................... 72 Citrullinemia Type 1............................................................................................................................................................................................................................................................ 74 CLN3-related Neuronal Ceroid Lipofuscinosis ................................................................................................................................................................................................................ 76 CLN5-related Neuronal Ceroid Lipofuscinosis ...............................................................................................................................................................................................................
Recommended publications
  • Oral Ambroxol Increases Brain Glucocerebrosidase Activity in a Nonhuman Primate
    Received: 17 November 2016 | Revised: 24 January 2017 | Accepted: 12 February 2017 DOI 10.1002/syn.21967 SHORT COMMUNICATION Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate Anna Migdalska-Richards1 | Wai Kin D. Ko2 | Qin Li2,3 | Erwan Bezard2,3,4,5 | Anthony H. V. Schapira1 1Department of Clinical Neurosciences, Institute of Neurology, University College Abstract London, NW3 2PF, United Kingdom Mutations in the glucocerebrosidase 1 (GBA1) gene are related to both Parkinson disease (PD) and 2Motac Neuroscience, Manchester, United Gaucher disease (GD). In both cases, the condition is associated with deficiency of glucocerebrosi- Kingdom dase (GCase), the enzyme encoded by GBA1. Ambroxol is a small molecule chaperone that has 3 Institute of Laboratory Animal Sciences, been shown in mice to cross the blood-brain barrier, increase GCase activity and reduce alpha- China Academy of Medical Sciences, Beijing synuclein protein levels. In this study, we analyze the effect of ambroxol treatment on GCase City, People’s Republic of China activity in healthy nonhuman primates. We show that daily administration of ambroxol results in 4University de Bordeaux, Institut des Maladies Neurodeg en eratives, UMR 5293, increased brain GCase activity. Our work further indicates that ambroxol should be investigated as Bordeaux F-33000, France a novel therapy for both PD and neuronopathic GD in humans. 5CNRS, Institut des Maladies Neurodeg en eratives, UMR 5293, Bordeaux F-33000, France KEYWORDS Correspondence ambroxol, glucocerebrosidase,
    [Show full text]
  • Assessment of a Targeted Gene Panel for Identification of Genes Associated with Movement Disorders
    Supplementary Online Content Montaut S, Tranchant C, Drouot N, et al; French Parkinson’s and Movement Disorders Consortium. Assessment of a targeted gene panel for identification of genes associated with movement disorders. JAMA Neurol. Published online June 18, 2018. doi:10.1001/jamaneurol.2018.1478 eMethods. Supplemental methods. eTable 1. Name, phenotype and inheritance of the genes included in the panel. eTable 2. Probable pathogenic variants identified in a cohort of 23 patients with cerebellar ataxia using WES analysis. eTable 3. Negative cases in a cohort of 23 patients with cerebellar ataxia studied using WES analysis. eTable 4. Variants of unknown significance (VUSs) identified in the cohort. eFigure 1. Examples of pedigrees of cases with identified causative variants. eFigure 2. Pedigrees suggesting mendelian inheritance in negative cases. eFigure 3. Examples of pedigrees of cases with identified VUSs. eResults. Supplemental results. This supplementary material has been provided by the authors to give readers additional information about their work. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 eMethods. Supplemental methods Patients selection In the multicentric, prospective study, patients were selected from 25 French, 1 Luxembourg and 1 Algerian tertiary MDs centers between September 2014 and July 2016. Inclusion criteria were patients (1) who had developed one or several chronic MDs (2) with an age of onset below 40 years and/or presence of a family history of MDs. Patients suffering from essential tremor, tic or Gilles de la Tourette syndrome, pure cerebellar ataxia or with clinical/paraclinical findings suggestive of an acquired cause were excluded.
    [Show full text]
  • Screening for Galactosemia: Is There a Place for It?
    International Journal of General Medicine Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Screening for galactosemia: is there a place for it? This article was published in the following Dove Press journal: International Journal of General Medicine Magd A Kotb Abstract: Galactose is a hexose essential for production of energy, which has a prebiotic Lobna Mansour role and is essential for galactosylation of endogenous and exogenous proteins, cera- Radwa A Shamma mides, myelin sheath metabolism and others. The inability to metabolize galactose results in galactosemia. Galactosemia is an autosomal recessive disorder that affects newborns Pediatrics Department, Faculty of Medicine, Kasr Al Ainy, Cairo University, who are born asymptomatic, apparently well and healthy, then develop serious morbidity Cairo, Egypt and mortality upon consuming milk that contains galactose. Those with galactosemia have a deficiency of an enzyme: classic galactosemia (type 1) results from severe deficiency of galactose-1-uridylyltransferase, while galactosemia type II results from galactokinase deficiency and type III results from galactose epimerase deficiency. Many countries include neonatal screening for galactosemia in their national newborn screening program; however, others do not, as the condition is rather rare, with an incidence of 1:30,000–1:100,000, and screening may be seen as not cost-effective and logistically demanding. Early detection and intervention by restricting galactose is not curative but is very rewarding, as it prevents deaths, mental retardation, liver cell failure, renal tubular acidosis and neurological sequelae, and may lead to resolution of cataract formation. Hence, national newborn screening for galactosemia prevents serious potential life-long suffering, morbidity and mortality.
    [Show full text]
  • Disease Reference Book
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]
  • Galactosemia
    Galactosemia Classic galactosemia (G/G) is an autosomal recessive disor- ii. Compound heterozygotes (D/G or N314D/Q188R) der of galactose metabolism, caused by a deficiency of galac- a) Relatively benign in most infants tose-L-phosphate uridyl transferase. The incidence is estimated b) May or may not require dietary intervention to be 1 in 30,000 births, based on the results of newborn c. Los Angels (LA) variant with identical N314D mis- screening programs. sense mutation but has normal erythrocyte GALT activity GENETICS/BASIC DEFECTS d. S135L allele 1. Inheritance: autosomal recessive i. Prevalent in Africa 2. Cause: deficiency of galactose-L-phosphate uridyl ii. A good prognosis if therapy is initiated in the transferase (GALT) neonatal period without neonatal hepatotoxicity 3. Galactose-L-phosphate uridyl transferase and chronic problems a. The gene for GALT is mapped on chromosome 9p13 e. K285N allele b. GALT is second enzyme in the Leloir pathway, cat- i. Prevalent in Southern Germany, Austria, and alyzing conversion of galactose-L-phosphate and UDP Croatia glucose to UDP galactose and glucose-L-phosphate ii. A poor prognosis for neurological and cognitive c. Essential in human infants who consume lactose as dysfunction in either the homozygous state or their primary carbohydrate source compound heterozygous state with Q188R d. Near total absence of GALT activity in infants with classical galactosemia CLINICAL FEATURES e. A deficiency causes elevated levels of galactose- L-phosphate and galactitol in body tissues 1. Onset of symptoms 4. Endogenous production of galactose may be responsible a. May present by the end of the first week of life for the long-term effects, such as cognitive dysfunction b.
    [Show full text]
  • Alport Syndrome of the European Dialysis Population Suffers from AS [26], and Simi- Lar Figures Have Been Found in Other Series
    DOCTOR OF MEDICAL SCIENCE Patients with AS constitute 2.3% (11/476) of the renal transplant population at the Mayo Clinic [24], and 1.3% of 1,000 consecutive kidney transplant patients from Sweden [25]. Approximately 0.56% Alport syndrome of the European dialysis population suffers from AS [26], and simi- lar figures have been found in other series. AS accounts for 18% of Molecular genetic aspects the patients undergoing dialysis or having received a kidney graft in 2003 in French Polynesia [27]. A common founder mutation was in Jens Michael Hertz this area. In Denmark, the percentage of patients with AS among all patients starting treatment for ESRD ranges from 0 to 1.21% (mean: 0.42%) in a twelve year period from 1990 to 2001 (Danish National This review has been accepted as a thesis together with nine previously pub- Registry. Report on Dialysis and Transplantation in Denmark 2001). lished papers by the University of Aarhus, February 5, 2009, and defended on This is probably an underestimate due to the difficulties of establish- May 15, 2009. ing the diagnosis. Department of Clinical Genetics, Aarhus University Hospital, and Faculty of Health Sciences, Aarhus University, Denmark. 1.3 CLINICAL FEATURES OF X-LINKED AS Correspondence: Klinisk Genetisk Afdeling, Århus Sygehus, Århus Univer- 1.3.1 Renal features sitetshospital, Nørrebrogade 44, 8000 Århus C, Denmark. AS in its classic form is a hereditary nephropathy associated with E-mail: [email protected] sensorineural hearing loss and ocular manifestations. The charac- Official opponents: Lisbeth Tranebjærg, Allan Meldgaard Lund, and Torben teristic renal features in AS are persistent microscopic hematuria ap- F.
    [Show full text]
  • Iowa Newborn Screening Program Annual Report
    Fiscal Year 2016 Blood Spot Newborn Screening Follow Up Report Short Term and Long Term Follow Up Activities The Iowa Newborn Screening Program (INSP) is administered by the Iowa Department of Health (IDPH) in collaboration with the University of Iowa State Hygienic Laboratory (SHL) to provide testing and the Stead Department of Pediatrics at the University of Iowa Stead Family Children’s Hospital to provide follow up services. Iowa Newborn Screening Dried Blood Spot Program Report Short Term and Long Term Follow Up Activities The following report describes the purpose, processes and activities of the short term and long term follow up program component of the Iowa Newborn Screening Program. There is an appendix listing terms and definitions that readers may wish to refer to while reviewing this document. Program staff members are willing to answer any questions the reader might have. Contact information is provided at the end of the report. Why Do Blood Spot Newborn Screening? Blood spot newborn screening can detect disorders that are life threatening or life changing before an untoward event occurs. Babies can look and act perfectly healthy but still have one of these disorders. Sometimes, it’s literally a matter of a few hours to a few days before tragedy can occur without newborn screening. It is estimated that 12,000 babies are positively impacted by newborn screening efforts in the United States each year. Newborn blood spot screening saves babies lives – it’s as simple as that. An Overview of the Laboratory and Clinical Process of Newborn Screening in Iowa Local Hospital - At 24-48 hours of age, a few drops of blood are taken from a baby’s heel to perform the newborn screening test.
    [Show full text]
  • Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases.
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • Two Lithuanian Cases of Classical Galactosemia with a Literature Review: a Novel GALT Gene Mutation Identified
    medicina Case Report Two Lithuanian Cases of Classical Galactosemia with a Literature Review: A Novel GALT Gene Mutation Identified Ruta¯ Rokaite˙ 1,*, Rasa Traberg 2, Mindaugas Dženkaitis 3,Ruta¯ Kuˇcinskiene˙ 1 and Liutauras Labanauskas 1 1 Department of Pediatrics, Medical Academy, Lithuanian University of Health Sciences, LT 44307 Kaunas, Lithuania; [email protected] (P.K.); [email protected] (L.L.) 2 Department of Genetics and Molecular Medicine, Medical Academy, Lithuanian University of Health Sciences, LT 44307 Kaunas, Lithuania; [email protected] 3 School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK; [email protected] * Correspondence: [email protected] Received: 27 September 2020; Accepted: 22 October 2020; Published: 25 October 2020 Abstract: Galactosemia is a rare autosomal recessive genetic disorder that causes impaired metabolism of the carbohydrate galactose. This leads to severe liver and kidney insufficiency, central nervous system damage and long-term complications in newborns. We present two clinical cases of classical galactosemia diagnosed at the Lithuanian University of Health Sciences (LUHS) Kaunas Clinics hospital and we compare these cases in terms of clinical symptoms and genetic variation in the GALT gene. The main clinical symptoms were jaundice and hepatomegaly, significant weight loss, and lethargy. The clinical presentation of the disease in Patient 1 was more severe than that in Patient 2 due to liver failure and E. coli-induced sepsis. A novel, likely pathogenic GALT variant NM_000155.4:c.305T>C (p.Leu102Pro) was identified and we believe it could be responsible for a more severe course of the disease, although further study is needed to confirm this.
    [Show full text]
  • DNA Sequence Analysis of Spontaneous Mutagenesis in Saccharomyces Cerevisiae
    Copyright 1998 by the Genetics Society of America DNA Sequence Analysis of Spontaneous Mutagenesis in Saccharomyces cerevisiae Bernard A. Kunz, Karthikeyan Ramachandran and Edward J. Vonarx School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, 3217, Australia ABSTRACT To help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects in genes whose products are necessary for spontaneous mutagenesis. In this article, we survey and discuss the mutational speci®cities conferred by mutator and antimutator genes in the budding yeast Saccharomyces cerevisiae. The implications of selected aspects of the data are considered with respect to the mechanisms of spontaneous mutagenesis. PONTANEOUS mutations play a fundamental role in the production of single and multiple base pair alter- S in evolution and have been implicated in aging, ations (Ripley and Glickman 1983; Kunkel 1990). In- carcinogenesis, and human genetic disease (Harmon sertions of transposable elements generally constitute 1981; Kirkwood 1989; Cooper and Krawczak 1990; larger sequence changes in DNA. Although transposon Arber 1991; Drake 1991a; Loeb 1991, 1994; Win- movement can be a relatively infrequent event, transpo- tersberger 1991; Caskey et al. 1992; Strauss 1992). sition rates may be increased by the presence of DNA They are thought to originate as a consequence of intra- damage, including that which occurs spontaneously cellular events, including the formation of DNA lesions, (Bradshaw and McEntee 1989; Kunz et al.
    [Show full text]
  • Diagnostic Methods for Lysosomal Storage Disease
    Reports of Biochemistry & Molecular Biology Vol.7, No.2, Jan 2019 Review article www.RBMB.net Diagnostic methods for Lysosomal Storage Disease Armin Mokhtariye1,3, Lida Hagh-Nazari1, Abdol-Reza Varasteh2, Fatemeh Keyfi*3 Abstract Lysosomal storage disorders (LSD) are a class of metabolic disturbance in which manifested by the accumulation of large molecules (complex lipids, glycoproteins, glycosaminoglycans, etc.) in lysosomes. LSDs have a wide range of clinical symptoms that may contain organ dysfunction, neurological and skeletal disorders. The first stage of diagnosis is clinically suspected by a physician. Next stage is enzyme activity assays including Fluorometry and MS/MS methods. These methods usually placed in newborn program screening. The second laboratory diagnostic stage is molecular examination (RFLP-PCR and ARMS-PCR, Mutations Scanning Methods, DNA sequencing, MLPA and NGS methods) that is confirmation of the enzyme assays. In this article, routine diagnostic methods for LSDs were discussed. The gold standard for enzyme activity assay and molecular diagnosis is TMS and NGS, respectively. Keywords: Diagnostic methods, Enzyme activity, Lysosomal storage disease, Molecular assay. Introduction Pompe disease is a rare and neuromuscular The last operators in the endocytic process are disorder due to a lack or decrease of the acid alpha lysosomes that cleavage the large molecules into glucosidase (GAA) that leads to a deposit of simpler component (1). Hydrolytic enzymes are glycogen in lysosomes of many tissues, particularly proprietary for multiple substrates in the lysosomes- heart and skeletal muscle (6, 7). This enzyme is which are activated in the acidic pH (between 4.5 coded by GAA gene, located on chromosome 17 and 5.0) in the organelles' intracellular (1).
    [Show full text]