X Inactivation, Female Mosaicism, and Sex Differences in Renal Diseases

Total Page:16

File Type:pdf, Size:1020Kb

X Inactivation, Female Mosaicism, and Sex Differences in Renal Diseases BRIEF REVIEW www.jasn.org X Inactivation, Female Mosaicism, and Sex Differences in Renal Diseases Barbara R. Migeon McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University, Baltimore Maryland ABSTRACT A good deal of sex differences in kidney disease is attributable to sex differences expressed only in the testes, they have to do in the function of genes on the X chromosome. Males are uniquely vulnerable to with testicular function and fertility. With mutations in their single copy of X-linked genes, whereas females are often mosaic, one X chromosome, males have only a sin- having a mixture of cells expressing different sets of X-linked genes. This cellular gle copy of their X-linked genes. mosaicism created by X inactivation in females is most often advantageous, pro- On the other hand, even though fe- tecting carriers of X-linked mutations from the severe clinical manifestations seen males have two copies of these genes, in males. Even subtle differences in expression of many of the 1100 X-linked genes both are not expressed in the same cell. may contribute to sex differences in the clinical expression of renal diseases. Only one X is programmed to work in each diploid somatic cell. All of the other J Am Soc Nephrol 19: 2052–2059, 2008. doi: 10.1681/ASN.2008020198 X chromosomes in the cell become inac- tive during fetal development. Briefly, compensation for X dosage in our spe- Although being female conveys a protec- with normal kidney function. This re- cies is accomplished by a process that en- tive effect on the progression of chronic view addresses the genetic and epigenetic sures only a single X is active in both renal disease, the basis for this sex differ- programs that contribute to the sex dif- sexes. In cells with more than two X ence is not well understood. Little is ferences in renal diseases. chromosomes, all X chromosomes but known about the effects of sex on the de- Without doubt, the clinical manifes- one are silenced. velopment of the kidney. The numbers tations of renal diseases are influenced by In human females, the choice of the of glomeruli are the same for men and X inactivation, the developmental pro- active X chromosome is random so that women, and the greater glomerular vol- gram that equalizes the transcriptional the X inherited from the father has the ume in males is related to the larger size output of X–linked genes in males and same possibility of being active as the X of their kidneys and body surface area.1 females.4 X inactivation is an obligatory inherited from the mother. Silencing of In the absence of structural differences to program, driven by the sex difference in the other X or Xs is mediated by the syn- account for the accelerated progression the numbers of X chromosomes that thesis of a special type of noncoding RNA of renal injury in males, hormonal differ- arose during mammalian evolution. The molecule emanating from the X inactive ences have been implicated. Animal human Y chromosome was created by transcript (XIST) locus on the X chromo- models support the protective effect of destroying one member of the chromo- some.6 Spreading along the chromosome, estrogen on glomerulonephritis and the some pair that evolved into our sex chro- these molecules modify the underlying nephrotoxic effects of testosterone,2 yet a mosomes. As a result, XX females have chromosome and induce transcriptional great deal of evidence implicates events two X chromosomes, whereas XY males silence. Once silenced, most genes on the occurring during embryonic develop- have only one. The DNA sequence of the ment. The effect of poor nutrition and human X chromosome reveals about other maternal factors leading to low 1100 genes, an eclectic group, encoding Published online ahead of print. Publication date birth weight can reduce the numbers of proteins needed for almost all of our available at www.jasn.org. nephrons in the developing kidney,3 but body functions, some having to do with Correspondence: Dr. Barbara R. Migeon, McKu- the effect is the same for males and fe- sex but most involving nonsexual activi- sick-Nathans Institute of Genetic Medicine, 459 5 Broadway Research Building, 733 N. Broadway, Bal- males. What is generally ignored in any ties. In contrast, the genes on the Y chro- timore, MD 21205. Phone: 410-955-3049; Fax: 410- discussion of sex differences in renal dis- mosome are far less diverse. Although a 614-8600; E-mail: [email protected] ease are the relevant genes on the X chro- few share functions with their X-linked Copyright ᮊ 2008 by the American Society of mosome, which when mutated interfere counterpart, most are unique to the Y; Nephrology 2052 ISSN : 1046-6673/1911-2052 J Am Soc Nephrol 19: 2052–2059, 2008 www.jasn.org BRIEF REVIEW inactive X usually remain mute in all when one of the X-linked alleles is mutant ized regions of the ureteric bud by small daughter cells, so that the inactivation pat- and the other is normal. However, in fact, groups of cells that communicate with ad- tern is clonally inherited.7 the comingling of cells synthesizing differ- jacent groups of cells, all of this under the As a consequence of clonal inheritance ent X-linked proteins, whether normal or control of a variety of transcription and of the inactive X, human females are mo- abnormal proteins, is responsible for a other signaling factors. And the develop- saics, a composite of two populations of functional diversity not seen with most au- ment of glomeruli requires interactions be- cells that differ as to which X chromosome tosomal genes. Males with only a single tween epithelial cells and infiltrating endo- is expressed. This mosaicism would be copy of their X-linked genes are at a disad- thelial cells. What is not known is the meaningless if the alleles on maternal and vantage as they have less diversity and are nature of the sex differences in this process. paternal X chromosomes were identical as vulnerable to the effects of mutations at a There are bound to be sex differences be- they are in inbred laboratory mice; how- large number of loci, including those cause of the cellular mosaicism resulting ever, we, as a species, are so heterozygous shown in Table 1. It is this cellular mosa- from X inactivation. Also not known is the that females are indeed mosaic for a good icism that provides biologic advantage to mosaic composition of the kidney. Do the number of their X-linked alleles. The size females carrying mutations responsible for different cells that communicate to induce of the mosaic patch differs from tissue to kidney disease in males. the kidney express the same or different pa- tissue.8 It is very large in the placenta where rental X chromosomes? The onset of X in- all of the cells within a chorionic villus have Sex Differences in Renal activation is timed with the differentiation the same active X, and very small in the Development events that give rise to the various tis- brain with a great deal of comingling of the The development of the kidney is intricate sues11,12; therefore, in the kidney, it might two types of cells. The phenotype of any cell because of its architectural complexity. coincide with the earliest events in renal is determined not only by the allele it ex- The entire urinary collecting system starts differentiation. Clearly, the time when X presses, but also by the interactions with as an outgrowth of the Wolffian duct and inactivation occurs precedes the time when those neighbors, expressing the other al- forms by a complex process of branching the kidney is completely formed in hu- lele. Such interactions are best seen and remodeling.9,10 According to Costan- mans. From what is known about develop- through the window of disease, that is, tini,10 branching may be initiated in local- ment of the mouse kidney, most nephro- Table 1. Sex differences in renal manifestations of X-linked diseases affecting the kidney Mutated Male Renal Disease OMIM# X Mapa Female Renal Phenotypeb Gene Phenotypeb Alport syndrome 301050 Xq22.3 COL4A5 Nephritis; glomerulitis; Some hematuria; rarely ESRD Leiomyomatosis with 308940 Xq22.3 COL4A5 & hematuria; ESRD nephropathologyc COL4A6 Dent disease 1 300009 Xp11.22 CLCN5 Progressive proximal tubular Usually asymptomatic; Nephrolithiasis 310468 Xp11.22 CLCN5 disease; ESRD; hypercalciuria; occasionally proteinuria and Hypophosphatemic rickets 300554 Xp11.22 CLCN5 nephrolithiasis; proteinuria; hypercalcinuria recessive hypophosphatemic rickets Low molecular weight 308990 Xp11.22 CLCN5 proteinuria Dent disease 2 300555 Xq26.1 OCRL Proteinuria; aminoaciduria; Usually asymptomatic; some Lowe’s syndrome 309000 Xq26.1 OCRL phosphaturia aminoaciduria Fabry disease 301500 Xq22 GLA Cytoplasmic inclusions, Less severe inclusions; proteinuria, ESRD occasionally ESRD Hypophosphatemic rickets 307800 Xp22.1–2 PHEX Hypophosphatemia; More variable and less severe dominant (vitamin D nephrocalcinosis resistant) Lesch-Nyhan syndrome 300322 Xq26–27.2 HPRT Uric acid stones, nephropathy, Usually none and renal obstruction Nephrogenic diabetes 304800 Xq28 AVPR2Ϫ Excessive diuresis Milder symptoms if any insipidus Syndrome of inappropriate 300539 Xq28 AVPR2ϩ Gain of function: hyponatremia, Variable, but usually less severe antidiuresis systolic hypertension Oral facial digital 311200 Xp22.2 OFD1 Fetal death Polycystic disease, ESRD syndrome 1 ESRD, End-stage renal disease. aLocation of the gene on the X chromosome. bHemizygous male and heterozygous female. cContiguous gene syndrome with large deletions. J Am Soc Nephrol 19: 2052–2059, 2008 Sex Differences in Renal Diseases 2053 BRIEF REVIEW www.jasn.org genic and glomerular development occurs cells. Usually, the distribution of the two bolic cooperation through gap junctions, after the onset of X inactivation.
Recommended publications
  • Thursday 23 June 2016 – Morning A2 GCE HUMAN BIOLOGY F225/01 Genetics, Control and Ageing *5884237032* Candidates Answer on the Question Paper
    Oxford Cambridge and RSA Thursday 23 June 2016 – Morning A2 GCE HUMAN BIOLOGY F225/01 Genetics, Control and Ageing *5884237032* Candidates answer on the Question Paper. OCR supplied materials: Duration: 2 hours None Other materials required: • Electronic calculator • Ruler (cm/mm) *F22501* INSTRUCTIONS TO CANDIDATES • Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters. • Use black ink. HB pencil may be used for graphs and diagrams only. • Answer all the questions. • Read each question carefully. Make sure you know what you have to do before starting your answer. • Write your answer to each question in the space provided. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown. • Do not write in the bar codes. INFORMATION FOR CANDIDATES • The number of marks is given in brackets [ ] at the end of each question or part question. • The total number of marks for this paper is 100. • Where you see this icon you will be awarded marks for the quality of written communication in your answer. • You may use an electronic calculator. • You are advised to show all the steps in any calculations. • This document consists of 24 pages. Any blank pages are indicated. © OCR 2016 [K/500/8502] OCR is an exempt Charity DC (NH/SW) 119808/4 Turn over 2 Answer all the questions. 1 Excretion is the removal of metabolic waste products from the body. The kidney is one of the organs involved in excretion.
    [Show full text]
  • Prenatal Growth Restriction, Retinal Dystrophy, Diabetes Insipidus and White Matter Disease: Expanding the Spectrum of PRPS1-Related Disorders
    European Journal of Human Genetics (2015) 23, 310–316 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg ARTICLE Prenatal growth restriction, retinal dystrophy, diabetes insipidus and white matter disease: expanding the spectrum of PRPS1-related disorders Almundher Al-Maawali1,2, Lucie Dupuis1, Susan Blaser3, Elise Heon4, Mark Tarnopolsky5, Fathiya Al-Murshedi2, Christian R Marshall6,7, Tara Paton6,7, Stephen W Scherer6,7 for the FORGE Canada Consortium9, Jeroen Roelofsen8, Andre´ BP van Kuilenburg8 and Roberto Mendoza-Londono*,1 PRPS1 codes for the enzyme phosphoribosyl pyrophosphate synthetase-1 (PRS-1). The spectrum of PRPS1-related disorders associated with reduced activity includes Arts syndrome, Charcot–Marie–Tooth disease-5 (CMTX5) and X-linked non-syndromic sensorineural deafness (DFN2). We describe a novel phenotype associated with decreased PRS-1 function in two affected male siblings. Using whole exome and Sanger sequencing techniques, we identified a novel missense mutation in PRPS1. The clinical phenotype in our patients is characterized by high prenatal maternal a-fetoprotein, intrauterine growth restriction, dysmorphic facial features, severe intellectual disability and spastic quadraparesis. Additional phenotypic features include macular coloboma-like lesions with retinal dystrophy, severe short stature and diabetes insipidus. Exome sequencing of the two affected male siblings identified a shared putative pathogenic mutation c.586C4T p.(Arg196Trp) in the PRPS1 gene that was maternally inherited. Follow-up testing showed normal levels of hypoxanthine in urine samples and uric acid levels in blood serum. The PRS activity was significantly reduced in erythrocytes of the two patients. Nucleotide analysis in erythrocytes revealed abnormally low guanosine triphosphate and guanosine diphosphate.
    [Show full text]
  • The Counsyl Foresight™ Carrier Screen
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]
  • Disease Reference Book
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]
  • Alport Syndrome of the European Dialysis Population Suffers from AS [26], and Simi- Lar Figures Have Been Found in Other Series
    DOCTOR OF MEDICAL SCIENCE Patients with AS constitute 2.3% (11/476) of the renal transplant population at the Mayo Clinic [24], and 1.3% of 1,000 consecutive kidney transplant patients from Sweden [25]. Approximately 0.56% Alport syndrome of the European dialysis population suffers from AS [26], and simi- lar figures have been found in other series. AS accounts for 18% of Molecular genetic aspects the patients undergoing dialysis or having received a kidney graft in 2003 in French Polynesia [27]. A common founder mutation was in Jens Michael Hertz this area. In Denmark, the percentage of patients with AS among all patients starting treatment for ESRD ranges from 0 to 1.21% (mean: 0.42%) in a twelve year period from 1990 to 2001 (Danish National This review has been accepted as a thesis together with nine previously pub- Registry. Report on Dialysis and Transplantation in Denmark 2001). lished papers by the University of Aarhus, February 5, 2009, and defended on This is probably an underestimate due to the difficulties of establish- May 15, 2009. ing the diagnosis. Department of Clinical Genetics, Aarhus University Hospital, and Faculty of Health Sciences, Aarhus University, Denmark. 1.3 CLINICAL FEATURES OF X-LINKED AS Correspondence: Klinisk Genetisk Afdeling, Århus Sygehus, Århus Univer- 1.3.1 Renal features sitetshospital, Nørrebrogade 44, 8000 Århus C, Denmark. AS in its classic form is a hereditary nephropathy associated with E-mail: [email protected] sensorineural hearing loss and ocular manifestations. The charac- Official opponents: Lisbeth Tranebjærg, Allan Meldgaard Lund, and Torben teristic renal features in AS are persistent microscopic hematuria ap- F.
    [Show full text]
  • Endocrinology Test List Endocrinology Test List
    For Endocrinologists Endocrinology Test List Endocrinology Test List Extensive Capabilities Managing patients with endocrine disorders is complex. Having access to the right test for the right patient is key. With a legacy of expertise in endocrine laboratory diagnostics, Quest Diagnostics offers an extensive menu of laboratory tests across the spectrum of endocrine disorders. This test list highlights the extensive menu of laboratory diagnostic tests we offer, including highly specialized tests and those performed using highly specific and sensitive mass spectrometry detection. It is conveniently organized by glandular function or common endocrine disorder, making it easy for you to identify the tests you need to care for the patients you treat. Comprehensive Care Quest Diagnostics Nichols Institute has been pioneering state-of-the-art endocrine testing for over four decades. Our commitment to innovative diagnostics and our dedication to quality and service means we deliver solutions that enable you to make informed clinical decisions for comprehensive patient management. We strive to remain at the forefront of innovation in endocrine testing so you can deliver the highest level of patient care. Abbreviations and Footnotes NDM, neonatal diabetes mellitus; MODY, maturity-onset diabetes of the young; CH, congenital hyperinsulinism; MSUD, maple syrup urine disease; IHH, idiopathic hypogonadotropic hypogonadism; BBS, Bardet-Biedl syndrome; OI, osteogenesis imperfecta; PKD, polycystic kidney disease; OPPG, osteoporosis-pseudoglioma syndrome; CPHD, combined pituitary hormone deficiency; GHD, growth hormone deficiency. The tests highlighted in green are performed using highly specific and sensitive mass spectrometry detection. Panels that include a test(s) performed using mass spectrometry are highlighted in yellow. For tests highlighted in blue, refer to the Athena Diagnostics website (athenadiagnostics.com/content/test-catalog) for test information.
    [Show full text]
  • Diabetes Insipidus
    Your feelings about Infertility conditions series: › Diabetes insipidus The Pituitary Foundation Information Booklets Working to support pituitary patients, their carers & families The Pituitary Foundation is a charity working About this booklet in the United Kingdom and Republic of The aim of this booklet is to provide information Ireland supporting patients with pituitary about diabetes insipidus. conditions, their carers, family and friends. You may find that not all of the information Our aims are to offer support through the applies to you in particular, but we hope it helps pituitary journey, provide information to the you to understand your condition better and community, and act as the patient voice to raise offers you a basis for discussion with your GP awareness and improve services. and endocrinologist. What is diabetes insipidus and why do we get it? 3 The two forms of diabetes insipidus 5 How is DI diagnosed and treated? 7 How is DI diagnosed? 7 What tests are carried out and how will they feel? 7 How is DI treated? 7 Aftercare 9 How will diabetes insipidus affect my life? 10 Prescriptions 10 Driving 10 Employment problems 10 Insurance & pensions 10 Personal medical identification 11 Toilet facilities card 11 National key scheme 11 Common questions 12-13 What DI means to me - a patient's story 14 Membership & donation information 15 2 Diabetes insipidus What is diabetes insipidus (DI) and why do we get it? Diabetes insipidus (DI) is caused by a problem with either the production, or action, of the hormone vasopressin (AVP). If you have DI your kidneys are unable to retain water.
    [Show full text]
  • Its Place Among Other Genetic Causes of Renal Disease
    J Am Soc Nephrol 13: S126–S129, 2002 Anderson-Fabry Disease: Its Place among Other Genetic Causes of Renal Disease JEAN-PIERRE GRU¨ NFELD,* DOMINIQUE CHAUVEAU,* and MICHELINE LE´ VY† *Service of Nephrology, Hoˆpital Necker, Paris, France; †INSERM U 535, Baˆtiment Gregory Pincus, Kremlin- Biceˆtre, France. In the last two decades, decisive advances have been made in Nephropathic cystinosis, first described in 1903, is an auto- the field of human genetics, including renal genetics. The somal recessive disorder characterized by the intra-lysosomal responsible genes have been mapped and then identified in accumulation of cystine. It is caused by a defect in the transport most monogenic renal disorders by using positional cloning of cystine out of the lysosome, a process mediated by a carrier and/or candidate gene approaches. These approaches have that remained unidentified for several decades. However, an been extremely efficient since the number of identified genetic important management step was devised in 1976, before the diseases has increased exponentially over the last 5 years. The biochemical defect was characterized in 1982. Indeed cysteam- data derived from the Human Genome Project will enable a ine, an aminothiol, reacts with cystine to form cysteine-cys- more rapid identification of the genes involved in the remain- teamine mixed disulfide that can readily exit the cystinotic ing “orphan” inherited renal diseases, provided their pheno- lysosome. This drug, if used early and in high doses, retards the types are well characterized. We have entered the post-gene progression of cystinosis in affected subjects by reducing intra- era. What is/are the function(s) of these genes? What are the lysosomal cystine concentrations.
    [Show full text]
  • Genetic Disorder
    Genetic disorder Single gene disorder Prevalence of some single gene disorders[citation needed] A single gene disorder is the result of a single mutated gene. Disorder Prevalence (approximate) There are estimated to be over 4000 human diseases caused Autosomal dominant by single gene defects. Single gene disorders can be passed Familial hypercholesterolemia 1 in 500 on to subsequent generations in several ways. Genomic Polycystic kidney disease 1 in 1250 imprinting and uniparental disomy, however, may affect Hereditary spherocytosis 1 in 5,000 inheritance patterns. The divisions between recessive [2] Marfan syndrome 1 in 4,000 and dominant types are not "hard and fast" although the [3] Huntington disease 1 in 15,000 divisions between autosomal and X-linked types are (since Autosomal recessive the latter types are distinguished purely based on 1 in 625 the chromosomal location of Sickle cell anemia the gene). For example, (African Americans) achondroplasia is typically 1 in 2,000 considered a dominant Cystic fibrosis disorder, but children with two (Caucasians) genes for achondroplasia have a severe skeletal disorder that 1 in 3,000 Tay-Sachs disease achondroplasics could be (American Jews) viewed as carriers of. Sickle- cell anemia is also considered a Phenylketonuria 1 in 12,000 recessive condition, but heterozygous carriers have Mucopolysaccharidoses 1 in 25,000 increased immunity to malaria in early childhood, which could Glycogen storage diseases 1 in 50,000 be described as a related [citation needed] dominant condition. Galactosemia
    [Show full text]
  • Soonerstart Automatic Qualifying Syndromes and Conditions
    SoonerStart Automatic Qualifying Syndromes and Conditions - Appendix O Abetalipoproteinemia Acanthocytosis (see Abetalipoproteinemia) Accutane, Fetal Effects of (see Fetal Retinoid Syndrome) Acidemia, 2-Oxoglutaric Acidemia, Glutaric I Acidemia, Isovaleric Acidemia, Methylmalonic Acidemia, Propionic Aciduria, 3-Methylglutaconic Type II Aciduria, Argininosuccinic Acoustic-Cervico-Oculo Syndrome (see Cervico-Oculo-Acoustic Syndrome) Acrocephalopolysyndactyly Type II Acrocephalosyndactyly Type I Acrodysostosis Acrofacial Dysostosis, Nager Type Adams-Oliver Syndrome (see Limb and Scalp Defects, Adams-Oliver Type) Adrenoleukodystrophy, Neonatal (see Cerebro-Hepato-Renal Syndrome) Aglossia Congenita (see Hypoglossia-Hypodactylia) Aicardi Syndrome AIDS Infection (see Fetal Acquired Immune Deficiency Syndrome) Alaninuria (see Pyruvate Dehydrogenase Deficiency) Albers-Schonberg Disease (see Osteopetrosis, Malignant Recessive) Albinism, Ocular (includes Autosomal Recessive Type) Albinism, Oculocutaneous, Brown Type (Type IV) Albinism, Oculocutaneous, Tyrosinase Negative (Type IA) Albinism, Oculocutaneous, Tyrosinase Positive (Type II) Albinism, Oculocutaneous, Yellow Mutant (Type IB) Albinism-Black Locks-Deafness Albright Hereditary Osteodystrophy (see Parathyroid Hormone Resistance) Alexander Disease Alopecia - Mental Retardation Alpers Disease Alpha 1,4 - Glucosidase Deficiency (see Glycogenosis, Type IIA) Alpha-L-Fucosidase Deficiency (see Fucosidosis) Alport Syndrome (see Nephritis-Deafness, Hereditary Type) Amaurosis (see Blindness) Amaurosis
    [Show full text]
  • Distal Renal Tubular Acidosis and Diabetes Insipidus Leading to the Diagnosis of Sjögren's Syndrome
    The Medicine Forum Volume 17 Article 15 2016 Distal Renal Tubular Acidosis and Diabetes Insipidus Leading to the Diagnosis Of Sjögren's Syndrome Loheetha Ragupathi, MD Thomas Jefferson University, [email protected] Elijah Grillo, MD Thomas Jefferson University, [email protected] Jonathan Yadlosky, MD Thomas Jefferson University, [email protected] Ravi Sunderkrishnan, MD Thomas Jefferson University, [email protected] Follow this and additional works at: https://jdc.jefferson.edu/tmf Part of the Internal Medicine Commons, and the Nephrology Commons Let us know how access to this document benefits ouy Recommended Citation Ragupathi, MD, Loheetha; Grillo, MD, Elijah; Yadlosky, MD, Jonathan; and Sunderkrishnan, MD, Ravi (2016) "Distal Renal Tubular Acidosis and Diabetes Insipidus Leading to the Diagnosis Of Sjögren's Syndrome," The Medicine Forum: Vol. 17 , Article 15. DOI: https://doi.org/10.29046/TMF.017.1.016 Available at: https://jdc.jefferson.edu/tmf/vol17/iss1/15 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in The Medicine Forum by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected].
    [Show full text]
  • Congenital Nephrogenic Diabetes Insipidus Presenting After Acute Pyelonephritis
    IJCRI 201 2;3(11 ):25–27. Castillo et al. 25 www.ijcasereportsandimages.com CASE REPORT OPEN ACCESS Congenital nephrogenic diabetes insipidus presenting after acute pyelonephritis Christian Castillo, Poonam Bherwani, Evelyn Erickson, Gerard Prosper ABSTRACT of neurological and developmental complications associated with NDI. Introduction: Diabetes insipidus (DI) is characterized by the inability to concentrate Keywords: Congenital Diabetes Insipidus, urine. While central DI is caused by failure to Nephrogenic Diabetes Insipidus, Acute release enough functional vasopressin, Pyelonephritis nephrogenic DI (NDI) is due to the insensitivity of the distal nephron to the effect of antidiuretic ********* hormone (ADH). Case Report: A 5­day­old newborn male was admitted for isolated fever Castillo C, Bherwani P, Erickson E, Prosper G. and a questionable early right upper lobe Congenital nephrogenic diabetes insipidus presenting infiltrate. He gradually developed after acute pyelonephritis. International Journal of Case hypernatremia and increased osmolality. As Reports and Images 2012;3(11):25–27. part of his work up for fever, he had a urine culture of 30K colonies of Enterococcus faecalis. ********* His vasopressin test was negative. Conclusion: The polyuria and polydipsia associated with doi:10.5348/ijcri­2012­11­215­CR­8 genetic NDI usually presents within the first several weeks of life but may only become apparent after weaning or with longer periods of nighttime fasting. The acute pyelonephritis of this newborn may have been the initial trigger INTRODUCTION for the congenital NDI. Accurate diagnosis of this patient helped to also diagnose his maternal Diabetes insipidus is characterized by the inability to uncle and provide clues to the current condition concentrate urine.
    [Show full text]