Recommended publications
  • Next Generation Sequencing Panels for Disorders of Sex Development
    Next Generation Sequencing Panels for Disorders of Sex Development Disorders of Sex Development – Overview Disorders of sex development (DSDs) occur when sex development does not follow the course of typical male or female patterning. Types of DSDs include congenital development of ambiguous genitalia, disjunction between the internal and external sex anatomy, incomplete development of the sex anatomy, and abnormalities of the development of gonads (such as ovotestes or streak ovaries) (1). Sex chromosome anomalies including Turner syndrome and Klinefelter syndrome as well as sex chromosome mosaicism are also considered to be DSDs. DSDs can be caused by a wide range of genetic abnormalities (2). Determining the etiology of a patient’s DSD can assist in deciding gender assignment, provide recurrence risk information for future pregnancies, and can identify potential health problems such as adrenal crisis or gonadoblastoma (1, 3). Sex chromosome aneuploidy and copy number variation are common genetic causes of DSDs. For this reason, chromosome analysis and/or microarray analysis typically should be the first genetic analysis in the case of a patient with ambiguous genitalia or other suspected disorder of sex development. Identifying whether a patient has a 46,XY or 46,XX karyotype can also be helpful in determining appropriate additional genetic testing. Abnormal/Ambiguous Genitalia Panel Our Abnormal/Ambiguous Genitalia Panel includes mutation analysis of 72 genes associated with both syndromic and non-syndromic DSDs. This comprehensive panel evaluates a broad range of genetic causes of ambiguous or abnormal genitalia, including conditions in which abnormal genitalia are the primary physical finding as well as syndromic conditions that involve abnormal genitalia in addition to other congenital anomalies.
    [Show full text]
  • Oral Health in Prevalent Types of Ehlers–Danlos Syndromes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography J Oral Pathol Med (2005) 34: 298–307 ª Blackwell Munksgaard 2005 Æ All rights reserved www.blackwellmunksgaard.com/jopm Oral health in prevalent types of Ehlers–Danlos syndromes Peter J. De Coster1, Luc C. Martens1, Anne De Paepe2 1Department of Paediatric Dentistry, Centre for Special Care, Paecamed Research, Ghent University, Ghent; 2Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium BACKGROUND: The Ehlers–Danlos syndromes (EDS) Introduction comprise a heterogenous group of heritable disorders of connective tissue, characterized by joint hypermobility, The Ehlers–Danlos syndromes (EDS) comprise a het- skin hyperextensibility and tissue fragility. Most EDS erogenous group of heritable disorders of connective types are caused by mutations in genes encoding different tissue, largely characterized by joint hypermobility, skin types of collagen or enzymes, essential for normal pro- hyperextensibility and tissue fragility (1) (Fig. 1). The cessing of collagen. clinical features, modes of inheritance and molecular METHODS: Oral health was assessed in 31 subjects with bases differ according to the type. EDS are caused by a EDS (16 with hypermobility EDS, nine with classical EDS genetic defect causing an error in the synthesis or and six with vascular EDS), including signs and symptoms processing of collagen types I, III or V. The distribution of temporomandibular disorders (TMD), alterations of and function of these collagen types are displayed in dental hard tissues, oral mucosa and periodontium, and Table 1. At present, two classifications of EDS are was compared with matched controls.
    [Show full text]
  • Moderate the MAOA-L Allele Expression with CRISPR/Cas9 System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 April 2018 doi:10.20944/preprints201804.0275.v1 1 Review 2 Moderate the MAOA-L Allele Expression with CRISPR/Cas9 System 3 Martin L. Nelwan 4 Department of Animal Science – Other 5 Nelwan Institution for Human Resource Development 6 Jl. A. Yani No. 24 7 Palu, Sulawesi Tengah, Indonesia 8 Email: [email protected] 9 Abstract: Antisocial behavior is a behavior disorder inherited according to the inheritance of X-linked 10 chromosome. Mutations in the MAOA gene can cause different behaviors in humans. These can comprise 11 violent behavior or antisocial behavior. Low MAOA (MAOA-L) allele activity can cause antisocial 12 behavior in both healthy and unhealthy people. Antisocial from healthy males can originate from 13 maltreatment during childhood. There are no drugs for the treatment of antisocial behavior permanently 14 at this time. MAOA inhibitor can reverse antisocial behavior in animal models. To cure antisocial 15 behavior in the future, the CRISPR/Cas9 system in combination with iPSCs or ssODN methods for 16 instance can be used. This system has succeeded to correct erroneous segments in the F8 gene and F9 17 gene. Both genes occupy the X chromosome. The MAOA gene also occupies the X chromosome. It seems 18 that CRISPR/Cas9 system may be a beneficial tool to edit erroneous segments in the MAOA gene to treat 19 antisocial behavior. 20 Keywords: advanced therapy, aggressive, antisocial, behavior, MAOA. 21 22 1. Introduction 23 Antisocial behavior is a hereditary disorder inherited through an X-linked recessive inheritance 24 pattern.
    [Show full text]
  • Open Full Page
    CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders.
    [Show full text]
  • CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Surveillance for Children with Leukemia-Predisposing Conditions Christopher C
    CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Surveillance for Children with Leukemia-Predisposing Conditions Christopher C. Porter1, Todd E. Druley2, Ayelet Erez3, Roland P. Kuiper4, Kenan Onel5, Joshua D. Schiffman6, Kami Wolfe Schneider7, Sarah R. Scollon8, Hamish S. Scott9, Louise C. Strong10, Michael F. Walsh11, and Kim E. Nichols12 Abstract Leukemia, the most common childhood cancer, has long been patients. The panel recognized that for several conditions, recognized to occasionally run in families. The first clues about routine monitoring with complete blood counts and bone the genetic mechanisms underlying familial leukemia emerged marrow evaluations is essential to identify disease evolution in 1990 when Li-Fraumeni syndrome was linked to TP53 muta- and enable early intervention with allogeneic hematopoietic tions. Since this discovery, many other genes associated with stem cell transplantation. However, for others, less intensive hereditary predisposition to leukemia have been identified. surveillance may be considered. Because few reports describ- Although several of these disorders also predispose individuals ing the efficacy of surveillance exist, the recommendations to solid tumors, certain conditions exist in which individuals are derived by this panel are based on opinion, and local expe- specifically at increased risk to develop myelodysplastic syn- rience and will need to be revised over time. The development drome (MDS) and/or acute leukemia. The increasing identifica- of registries and clinical trials is urgently needed to enhance tion of affected individuals and families has raised questions understanding of the natural history of the leukemia-predis- around the efficacy, timing, and optimal methods of surveil- posing conditions, such that these surveillance recommenda- lance.
    [Show full text]
  • The Counsyl Foresight™ Carrier Screen
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]
  • The Genetic Basis for Skeletal Diseases
    insight review articles The genetic basis for skeletal diseases Elazar Zelzer & Bjorn R. Olsen Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA (e-mail: [email protected]) We walk, run, work and play, paying little attention to our bones, their joints and their muscle connections, because the system works. Evolution has refined robust genetic mechanisms for skeletal development and growth that are able to direct the formation of a complex, yet wonderfully adaptable organ system. How is it done? Recent studies of rare genetic diseases have identified many of the critical transcription factors and signalling pathways specifying the normal development of bones, confirming the wisdom of William Harvey when he said: “nature is nowhere accustomed more openly to display her secret mysteries than in cases where she shows traces of her workings apart from the beaten path”. enetic studies of diseases that affect skeletal differentiation to cartilage cells (chondrocytes) or bone cells development and growth are providing (osteoblasts) within the condensations. Subsequent growth invaluable insights into the roles not only of during the organogenesis phase generates cartilage models individual genes, but also of entire (anlagen) of future bones (as in limb bones) or membranous developmental pathways. Different mutations bones (as in the cranial vault) (Fig. 1). The cartilage anlagen Gin the same gene may result in a range of abnormalities, are replaced by bone and marrow in a process called endo- and disease ‘families’ are frequently caused by mutations in chondral ossification. Finally, a process of growth and components of the same pathway.
    [Show full text]
  • Spectrum of PEX1 and PEX6 Variants in Heimler Syndrome
    European Journal of Human Genetics (2016) 24, 1565–1571 Official Journal of The European Society of Human Genetics www.nature.com/ejhg ARTICLE Spectrum of PEX1 and PEX6 variants in Heimler syndrome Claire EL Smith1, James A Poulter1, Alex V Levin2,3,4, Jenina E Capasso4, Susan Price5, Tamar Ben-Yosef6, Reuven Sharony7, William G Newman8,9, Roger C Shore10, Steven J Brookes10, Alan J Mighell1,11,12 and Chris F Inglehearn*,1,12 Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6,both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G4A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families.
    [Show full text]
  • Practitioners' Section
    407 408 GENETICS OF MENTAL RETARDATION [2] [4] PRACTITIONERS’ SECTION epiphenomena. A specific cause for mental a group heritability of 0.49. The aetiology of retardation can be identified in approximately idiopathic mental retardation is usually 80% of people with SMR (IQ<50) and 50% of explained in terms of the ‘polygenic GENETICS OF MENTAL RETARDATION people with MMR (IQ 50–70). multifactorial model.’ The difficulty is that there A. S. AHUJA, ANITA THAPAR, M. J. OWEN are too few studies to provide sufficiently In this article, we will begin by considering precise estimates of the likely role of genes ABSTRACT what is known about the genetics of idiopathic and environment in determining idiopathic mental retardation and then move onto discuss mental retardation. Given the dearth of Mental retardation can follow any of the biological, environmental and psychological events that are capable of producing deficits in cognitive functions. specific genetic causes of mental retardation. published literature we are reliant on Recent advances in molecular genetic techniques have enabled us to understand attempting to draw conclusions from family and more about the molecular basis of several genetic syndromes associated with mental Search methodology twin studies, most of which are very old and retardation. In contrast, where there is no discrete cause, the interplay of genetic Electronic searching was done and the which report widely varying recurrence risks.[5] and environmental influences remains poorly understood. This article presents a relevant studies were identified by searching Recent studies of MMR have shown high rates critical review of literature on genetics of mental retardation.
    [Show full text]
  • Disease Reference Book
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Ebf Factors and Myod Cooperate to Regulate Muscle Relaxation Via Atp2a1
    ARTICLE Received 12 Feb 2014 | Accepted 2 Apr 2014 | Published 2 May 2014 DOI: 10.1038/ncomms4793 Ebf factors and MyoD cooperate to regulate muscle relaxation via Atp2a1 Saihong Jin1, Jeehee Kim1, Torsten Willert1, Tanja Klein-Rodewald2, Mario Garcia-Dominguez3,4, Matias Mosqueira5, Rainer Fink5, Irene Esposito2,6, Lorenz C. Hofbauer7, Patrick Charnay3 & Matthias Kieslinger1 Myogenic regulatory factors such as MyoD and Myf5 lie at the core of vertebrate muscle differentiation. However, E-boxes, the cognate binding sites for these transcription factors, are not restricted to the promoters/enhancers of muscle cell-specific genes. Thus, the specificity in myogenic transcription is poorly defined. Here we describe the transcription factor Ebf3 as a new determinant of muscle cell-specific transcription. In the absence of Ebf3 the lung does not unfold at birth, resulting in respiratory failure and perinatal death. This is due to a hypercontractile diaphragm with impaired Ca2 þ efflux-related muscle functions. Expression of the Ca2 þ pump Serca1 (Atp2a1) is downregulated in the absence of Ebf3, and its transgenic expression rescues this phenotype. Ebf3 binds directly to the promoter of Atp2a1 and synergises with MyoD in the induction of Atp2a1. In skeletal muscle, the homologous family member Ebf1 is strongly expressed and together with MyoD induces Atp2a1. Thus, Ebf3 is a new regulator of terminal muscle differentiation in the diaphragm, and Ebf factors cooperate with MyoD in the induction of muscle-specific genes. 1 Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum Mu¨nchen, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany. 2 Institute of Pathology, Helmholtz Zentrum Mu¨nchen, National Research Center for Environmental Health, Ingolsta¨dter Landstr.
    [Show full text]