Vacuum Permeability

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Vacuum permeability From Wikipedia, the free encyclopedia (Redirected from Permeability of free space) Vacuum permeability, permeability of free space, or magnetic constant is an ideal, (baseline) physical constant, which is the value of magnetic permeability in a classical vacuum, and this type of vacuum is merely an abstraction from nature. Vacuum permability is derived from production of a magnetic field by an electric current or by a moving electric charge and in all other formulas for magnetic-field production ,in a vacuum. When the permeability is that of the vacuum, denoted µ0 has an exact defined value:[1][2] −7 −2 −6 −1 −2 µ0 = 4π × 10 N·A ≈ 1.256 637 0614... × 10 H·m or N·A ; in the SI system of units, or using tesla·meter per ampere (T·m/A). As a constant, it can also be defined as a fundamental invariant quantity, and is also one of three components that defines free space through Maxwell's equations. In classical physics, free space is a concept of electromagnetic theory, corresponding to a theoretically perfect vacuum and sometimes referred to as the vacuum of free space, or as classical vacuum, and is appropriately viewed as a reference medium.[3][4] Contents 1 The ampere defines vacuum permeability 2 Terminology 3 Systems of units and historical origin of value of μ0 4 Significance in electromagnetism 5 References and Notes 6 See also The ampere defines vacuum permeability The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 × 10−7 newton per meter of length. Adopted in 1948, the effect of this definition is to fix the magnetic constant (permeability of vacuum) at exactly 4π × 10−7 H·m−1. [5] To further illustrate: Two thin, straight, stationary, parallel wires, a distance r apart in free space, each carrying a current I, will exert a force on each other. Ampère's force law states that the force per unit length is given by 1 of 5 . The ampere is defined such that if the wires are 1 m apart and the current in each wire is 1 A, the force between the two wires is 2 × 10−7 N·m−1. Hence the value of μ is defined to be exactly 0 μ = 4π × 10−7 N·A−2 ≈ 1.256 637 0614... × 10−6 N·A−2.[6][7] 0 Terminology Historically, the constant μ has had different names. In the 1987 IUPAP Red book, for example, this 0 constant was still called permeability of vacuum.[8] Another, now rather rare and obsolete, term is "magnetic permittivity of vacuum". See, for example, Servant et al.[9] The term "vacuum permeability" (and variations thereof, such as "permeability of free space") remains very widespread. However, Standards Organizations have recently moved to magnetic constant as the preferred name for μ , although the older name continues to be listed as a synonym.[7] 0 The name "magnetic constant" is used by standards organizations in order to avoid use of the terms "permeability" and "vacuum", which have physical meanings. This change of preferred name has been made because μ is a defined value, and is not the result of experimental measurement (see 0 below). Systems of units and historical origin of value of μ 0 In principle, there are several equation systems that could be used to set up a system of electrical quantities and units.[10] Since the late 1800's, the fundamental definitions of current units have been related to the definitions of mass, length and time units, using Ampère's force law. However, the precise way in which this has "officially" been done has changed many times, as measurement techniques and thinking on the topic developed. The overall history of the unit of electric current, and of the related question of how to define a set of equations for describing electromagnetic phenomena, is very complicated. Briefly, the basic reason why μ has the value it does is as follows. 0 Ampère's force law describes the experimentally-derived fact that, for two thin, straight, stationary, parallel wires, a distance r apart, in each of which a current I flows, the force per unit length, Fm, that one wire exerts upon the other in the vacuum of free space would be given by . Writing the constant of proportionality as km gives . The form of km needs to be chosen in order to set up a system of equations, and a value then needs to 2 of 5 be allocated in order to define the unit of current. In the old "electromagnetic (emu)" system of equations defined in the late 1800s, km was chosen to be a pure number, 2, distance was measured in centimetres, force was measured in the cgs unit dyne, and the currents defined by this equation were measured in the "electromagnetic unit (emu) of current" (also called the "abampere"). A practical unit to be used by electricians and engineers, the ampere, was then defined as equal to one tenth of the electromagnetic unit of current. In another system, the "rationalized-metre-kilogram-second (rmks) system" (or alternatively the "metre-kilogram-second-ampere (mksa) system"), k is written as μ /2π, where μ is a measurement- m 0 0 system constant called the "magnetic constant".[11] The value of μ was chosen such that the rmks 0 unit of current is equal in size to the ampere in the emu system: μ is defined to be 4π × 10−7 N 0 A−2.[5] Historically, several different systems (including the two described above) were in use simultaneously. In particular, physicists and engineers used different systems, and physicists used three different systems for different parts of physics theory and a fourth different system (the engineers' system) for laboratory experiments. In the 1948, international decisions were made by standards organizations to adopt the rmks system, and its related set of electrical quantities and units, as the single main international system for describing electromagnetic phenomena in the International System of Units. Obviously, Ampère's law as stated above describes a physical property of the world. However, the choices about the form of k and the value of μ are totally human decisions, taken by international m 0 bodies composed of representatives of the national standards organizations of all participating countries. The parameter μ is a measurement-system constant, not a physical constant that can be 0 measured. It does not, in any meaningful sense, describe a physical property of the vacuum.[12] This is why the relevant Standards Organizations prefer the name "magnetic constant", rather than any name that carries the hidden and misleading implication that μ describes some physical property of 0 the vacuum. Significance in electromagnetism The magnetic constant μ appears in Maxwell's equations, which describe the properties of electric 0 and magnetic fields and electromagnetic radiation, and relate them to their sources. In particular, it appears in relationship to quantities such as permeability and magnetization density, such as the relationship that defines the magnetic H-field in terms of the magnetic B-field. In real media, this relationship has the form: , where M is the magnetization density. In free space, M = 0. Maxwell's laws show that speed of light in a vacuum, c is related to the magnetic constant and the 0 electric constant (vacuum permittivity), ε , by the formula 0 3 of 5 References and Notes 1. ^ CODATA. "Magnetic constants" (http://physics.nist.gov/cgi-bin/cuu/Value?mu0) (2006 CODATA reccomended values: Source of the CODATA internationally recommended values (http://physics.nist.gov/cuu/Constants/bibliography.html) ). Fundamental Physical Constants. NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mu0. Retrieved 2010-02-04. 2. ^ Rosen, Joe. "Permeability (Physics)." Encyclopedia of Physics. New York: Facts On File, Inc., 2004. Science Online. Facts On File, Inc. http://www.fofweb.com/Science/default.asp?ItemID=WE40 (accessed 2010-02-04) 3. ^ CODATA. "Introduction to the constants for nonexperts" (http://physics.nist.gov/cuu/Constants /introduction.html) (2006 CODATA reccomended values: Source of the CODATA internationally recommended values (http://physics.nist.gov/cuu/Constants/bibliography.html) ). Fundamental Physical Constants. NIST. http://physics.nist.gov/cuu/Constants/introduction.html. Retrieved 2010-02-04. 4. ^ Werner S. Weiglhofer and Akhlesh Lakhtakia (2003). "§ 4.1 The classical vacuum as reference medium" (http://books.google.com/books?id=QtIP_Lr3gngC&pg=PA34) . Introduction to complex mediums for optics and electromagnetics. SPIE Press. p. 34 ff. ISBN 9780819449474. http://books.google.com/books?id=QtIP_Lr3gngC&pg=PA34. 5. ^ a b This choice defines the SI unit of current, the ampere: "Unit of electric current (ampere)" (http://physics.nist.gov/cuu/Units/ampere.html) . Historical context of the SI. NIST. http://physics.nist.gov/cuu/Units/ampere.html. Retrieved 2007-08-11. 6. ^ "Magnetic constant" (http://physics.nist.gov/cgi-bin/cuu/Value?mu0) . 2006 CODATA recommended values. NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mu0. Retrieved 2007-08-08. 7. ^ a b "CODATA Recommended Values of the Fundamental Physical Constants: 2006" (http://physics.nist.gov/cuu/Constants/codata.pdf) . Committee on Data for Science and Technology (CODATA): See Table 1. NIST. http://physics.nist.gov/cuu/Constants/codata.pdf. 8. ^ SUNAMCO Commission (1987), "Recommended values of the fundamental physical constants" (http://www-v2.sp.se/metrology/IUPAP_SUNAMCO/IUPAP%20SUNAMCO%20Commission_files /IUPAP_Red_book_1987/SUNAMCO%20Red%20book%201987 /6_Recommended_fundamental_constants_iupap_sunamco_red_book_1987.pdf) , Symbols, Units, Nomenclature and Fundamental Constants in Physics (http://www-v2.sp.se/metrology /IUPAP_SUNAMCO/IUPAP%20SUNAMCO%20Commission_files/IUPAP_Red_book_1987 /SUNAMCO%20Red%20book%201987/index_red_book_iupap_sunamco_1987.htm) , pp.
Recommended publications
  • Basic Magnetic Measurement Methods

    Basic Magnetic Measurement Methods

    Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It
  • Chapter 16 – Electrostatics-I

    Chapter 16 – Electrostatics-I

    Chapter 16 Electrostatics I Electrostatics – NOT Really Electrodynamics Electric Charge – Some history •Historically people knew of electrostatic effects •Hair attracted to amber rubbed on clothes •People could generate “sparks” •Recorded in ancient Greek history •600 BC Thales of Miletus notes effects •1600 AD - William Gilbert coins Latin term electricus from Greek ηλεκτρον (elektron) – Greek term for Amber •1660 Otto von Guericke – builds electrostatic generator •1675 Robert Boyle – show charge effects work in vacuum •1729 Stephen Gray – discusses insulators and conductors •1730 C. F. du Fay – proposes two types of charges – can cancel •Glass rubbed with silk – glass charged with “vitreous electricity” •Amber rubbed with fur – Amber charged with “resinous electricity” A little more history • 1750 Ben Franklin proposes “vitreous” and “resinous” electricity are the same ‘electricity fluid” under different “pressures” • He labels them “positive” and “negative” electricity • Proposaes “conservation of charge” • June 15 1752(?) Franklin flies kite and “collects” electricity • 1839 Michael Faraday proposes “electricity” is all from two opposite types of “charges” • We call “positive” the charge left on glass rubbed with silk • Today we would say ‘electrons” are rubbed off the glass Torsion Balance • Charles-Augustin de Coulomb - 1777 Used to measure force from electric charges and to measure force from gravity = - - “Hooks law” for fibers (recall F = -kx for springs) General Equation with damping - angle I – moment of inertia C – damping
  • Magnetism Some Basics: a Magnet Is Associated with Magnetic Lines of Force, and a North Pole and a South Pole

    Magnetism Some Basics: a Magnet Is Associated with Magnetic Lines of Force, and a North Pole and a South Pole

    Materials 100A, Class 15, Magnetic Properties I Ram Seshadri MRL 2031, x6129 [email protected]; http://www.mrl.ucsb.edu/∼seshadri/teach.html Magnetism Some basics: A magnet is associated with magnetic lines of force, and a north pole and a south pole. The lines of force come out of the north pole (the source) and are pulled in to the south pole (the sink). A current in a ring or coil also produces magnetic lines of force. N S The magnetic dipole (a north-south pair) is usually represented by an arrow. Magnetic fields act on these dipoles and tend to align them. The magnetic field strength H generated by N closely spaced turns in a coil of wire carrying a current I, for a coil length of l is given by: NI H = l The units of H are amp`eres per meter (Am−1) in SI units or oersted (Oe) in CGS. 1 Am−1 = 4π × 10−3 Oe. If a coil (or solenoid) encloses a vacuum, then the magnetic flux density B generated by a field strength H from the solenoid is given by B = µ0H −7 where µ0 is the vacuum permeability. In SI units, µ0 = 4π × 10 H/m. If the solenoid encloses a medium of permeability µ (instead of the vacuum), then the magnetic flux density is given by: B = µH and µ = µrµ0 µr is the relative permeability. Materials respond to a magnetic field by developing a magnetization M which is the number of magnetic dipoles per unit volume. The magnetization is obtained from: B = µ0H + µ0M The second term, µ0M is reflective of how certain materials can actually concentrate or repel the magnetic field lines.
  • APPENDICES 206 Appendices

    APPENDICES 206 Appendices

    AAPPENDICES 206 Appendices CONTENTS A.1 Units 207-208 A.2 Abbreviations 209 SUMMARY A description is given of the units used in this thesis, and a list of frequently used abbreviations with the corresponding term is given. Units Description of units used in this thesis and conversion factors for A.1 transformation into other units The formulas and properties presented in this thesis are reported in atomic units unless explicitly noted otherwise; the exceptions to this rule are energies, which are most frequently reported in kcal/mol, and distances that are normally reported in Å. In the atomic units system, four frequently used quantities (Planck’s constant h divided by 2! [h], mass of electron [me], electron charge [e], and vacuum permittivity [4!e0]) are set explicitly to 1 in the formulas, making these more simple to read. For instance, the Schrödinger equation for the hydrogen atom is in SI units: È 2 e2 ˘ Í - h —2 - ˙ f = E f (1) ÎÍ 2me 4pe0r ˚˙ In atomic units, it looks like: È 1 1˘ - —2 - f = E f (2) ÎÍ 2 r ˚˙ Before a quantity can be used in the atomic units equations, it has to be transformed from SI units into atomic units; the same is true for the quantities obtained from the equations, which can be transformed from atomic units into SI units. For instance, the solution of equation (2) for the ground state of the hydrogen atom gives an energy of –0.5 atomic units (Hartree), which can be converted into other units quite simply by multiplying with the appropriate conversion factor (see table A.1.1).
  • Gauss' Theorem (See History for Rea- Son)

    Gauss' Theorem (See History for Rea- Son)

    Gauss’ Law Contents 1 Gauss’s law 1 1.1 Qualitative description ......................................... 1 1.2 Equation involving E field ....................................... 1 1.2.1 Integral form ......................................... 1 1.2.2 Differential form ....................................... 2 1.2.3 Equivalence of integral and differential forms ........................ 2 1.3 Equation involving D field ....................................... 2 1.3.1 Free, bound, and total charge ................................. 2 1.3.2 Integral form ......................................... 2 1.3.3 Differential form ....................................... 2 1.4 Equivalence of total and free charge statements ............................ 2 1.5 Equation for linear materials ...................................... 2 1.6 Relation to Coulomb’s law ....................................... 3 1.6.1 Deriving Gauss’s law from Coulomb’s law .......................... 3 1.6.2 Deriving Coulomb’s law from Gauss’s law .......................... 3 1.7 See also ................................................ 3 1.8 Notes ................................................. 3 1.9 References ............................................... 3 1.10 External links ............................................. 3 2 Electric flux 4 2.1 See also ................................................ 4 2.2 References ............................................... 4 2.3 External links ............................................. 4 3 Ampère’s circuital law 5 3.1 Ampère’s original
  • A Collection of Definitions and Fundamentals for a Design-Oriented

    A collection of definitions and fundamentals for a design-oriented inductor model 1st Andr´es Vazquez Sieber 2nd M´onica Romero * Departamento de Electronica´ * Departamento de Electronica´ Facultad de Ciencias Exactas, Ingenier´ıa y Agrimensura Facultad de Ciencias Exactas, Ingenier´ıa y Agrimensura Universidad Nacional de Rosario (UNR) Universidad Nacional de Rosario (UNR) ** Grupo Simulacion´ y Control de Sistemas F´ısicos ** Grupo Simulacion´ y Control de Sistemas F´ısicos CIFASIS-CONICET-UNR CIFASIS-CONICET-UNR Rosario, Argentina Rosario, Argentina [email protected] [email protected] Abstract—This paper defines and develops useful concepts related to the several kinds of inductances employed in any com- prehensive design-oriented ferrite-based inductor model, which is required to properly design and control high-frequency operated electronic power converters. It is also shown how to extract the necessary parameters from a ferrite material datasheet in order to get inductor models useful for a wide range of core temperatures and magnetic induction levels. Index Terms—magnetic circuit, ferrite core, major magnetic loop, minor magnetic loop, reversible inductance, amplitude inductance I. INTRODUCTION Errite-core based low-frequency-current biased inductors F are commonly found, for example, in the LC output filter of voltage source inverters (VSI) or step-down DC/DC con- verters. Those inductors have to effectively filter a relatively Fig. 1. General magnetic circuit low-amplitude high-frequency current being superimposed on a relatively large-amplitude low-frequency current. It is of practitioner. A design-oriented inductor model can be based paramount importance to design these inductors in a way that on the core magnetic model described in this paper which a minimum inductance value is always ensured which allows allows to employ the concepts of reversible inductance Lrevˆ , the accurate control and the safe operation of the electronic amplitude inductance La and initial inductance Li, to further power converter.
  • Magnetic Properties of Materials Part 1. Introduction to Magnetism

    Magnetic Properties of Materials Part 1. Introduction to Magnetism

    Magnetic properties of materials JJLM, Trinity 2012 Magnetic properties of materials John JL Morton Part 1. Introduction to magnetism 1.1 Origins of magnetism The phenomenon of magnetism was most likely known by many ancient civil- isations, however the first recorded description is from the Greek Thales of Miletus (ca. 585 B.C.) who writes on the attraction of loadstone to iron. By the 12th century, magnetism is being harnessed for navigation in both Europe and China, and experimental treatises are written on the effect in the 13th century. Nevertheless, it is not until much later that adequate explanations for this phenomenon were put forward: in the 18th century, Hans Christian Ørsted made the key discovery that a compass was perturbed by a nearby electrical current. Only a week after hearing about Oersted's experiments, Andr´e-MarieAmp`ere, presented an in-depth description of the phenomenon, including a demonstration that two parallel wires carrying current attract or repel each other depending on the direction of current flow. The effect is now used to the define the unit of current, the amp or ampere, which in turn defines the unit of electric charge, the coulomb. 1.1.1 Amp`ere's Law Magnetism arises from charge in motion, whether at the microscopic level through the motion of electrons in atomic orbitals, or at macroscopic level by passing current through a wire. From the latter case, Amp`ere'sobservation was that the magnetising field H around any conceptual loop in space was equal to the current enclosed by the loop: I I = Hdl (1.1) By symmetry, the magnetising field must be constant if we take concentric circles around a current-carrying wire.
  • Ee334lect37summaryelectroma

    Ee334lect37summaryelectroma

    EE334 Electromagnetic Theory I Todd Kaiser Maxwell’s Equations: Maxwell’s equations were developed on experimental evidence and have been found to govern all classical electromagnetic phenomena. They can be written in differential or integral form. r r r Gauss'sLaw ∇ ⋅ D = ρ D ⋅ dS = ρ dv = Q ∫∫ enclosed SV r r r Nomagneticmonopoles ∇ ⋅ B = 0 ∫ B ⋅ dS = 0 S r r ∂B r r ∂ r r Faraday'sLaw ∇× E = − E ⋅ dl = − B ⋅ dS ∫∫S ∂t C ∂t r r r ∂D r r r r ∂ r r Modified Ampere'sLaw ∇× H = J + H ⋅ dl = J ⋅ dS + D ⋅ dS ∫ ∫∫SS ∂t C ∂t where: E = Electric Field Intensity (V/m) D = Electric Flux Density (C/m2) H = Magnetic Field Intensity (A/m) B = Magnetic Flux Density (T) J = Electric Current Density (A/m2) ρ = Electric Charge Density (C/m3) The Continuity Equation for current is consistent with Maxwell’s Equations and the conservation of charge. It can be used to derive Kirchhoff’s Current Law: r ∂ρ ∂ρ r ∇ ⋅ J + = 0 if = 0 ∇ ⋅ J = 0 implies KCL ∂t ∂t Constitutive Relationships: The field intensities and flux densities are related by using the constitutive equations. In general, the permittivity (ε) and the permeability (µ) are tensors (different values in different directions) and are functions of the material. In simple materials they are scalars. r r r r D = ε E ⇒ D = ε rε 0 E r r r r B = µ H ⇒ B = µ r µ0 H where: εr = Relative permittivity ε0 = Vacuum permittivity µr = Relative permeability µ0 = Vacuum permeability Boundary Conditions: At abrupt interfaces between different materials the following conditions hold: r r r r nˆ × (E1 − E2 )= 0 nˆ ⋅(D1 − D2 )= ρ S r r r r r nˆ × ()H1 − H 2 = J S nˆ ⋅ ()B1 − B2 = 0 where: n is the normal vector from region-2 to region-1 Js is the surface current density (A/m) 2 ρs is the surface charge density (C/m ) 1 Electrostatic Fields: When there are no time dependent fields, electric and magnetic fields can exist as independent fields.
  • Lesson 9: Coulomb's Law

    Lesson 9: Coulomb's Law

    Lesson 9: Coulomb's Law Charles Augustin de Coulomb Before getting into all the hardcore physics that surrounds him, it’s a good idea to understand a little about Coulomb. ● He was born in 1736 in Angoulême, France. ● He received the majority of his higher education at the Ecole du Genie at Mezieres (a french military university with a very high reputation, similar to universities like Oxford, Harvard, etc.) from which he graduated in 1761. ● He then spent some time serving as a military engineer in the West Indies and other French outposts, until 1781 when he was permanently stationed in Illustration 1: Paris and was able to devote more time to scientific research. Charles Coulomb Between 1785-91 he published seven memoirs (papers) on physics. ● One of them, published in 1785, discussed the inverse square law of forces between two charged particles. This just means that as you move charges apart, the force between them starts to decrease faster and faster (exponentially). ● In a later memoir he showed that the force is also proportional to the product of the charges, a relationship now called “Coulomb’s Law”. ● For his work, the unit of electrical charge is named after him. This is interesting in that Coulomb was one of the first people to help create the metric system. ● He died in 1806. The Torsion Balance When Coulomb was doing his original experiments he decided to use a torsion balance to measure the forces between charges. ● You already learned about a torsion balance in Physics 20 when you discussed Henry Cavendish’s experiment to measure the value of “G” , the universal gravitational constant.
  • Lecture 12 Molecular Dynamics

    Lecture 12 Molecular Dynamics

    Lecture 12 Molecular Dynamics Required reading: Chapter 6: 6.22 –6.23 Karplus, M., and Petsko, G. A. (1990) Molecular dynamics simulations in biology. Nature 347: 631‐639. For further reading on the 2013 Nobel Prize, history and current state of computational methods like MD: Smith and Roux. Structure 21: 2102‐2105. Wednesday: Midterm 1 Reading for Friday: Chapter 7, sections 7.1‐7.19 MCB65 2/22/16 1 Today’s goals • Explain how solvent influences electrostatics • Dielectric constant models polarizability of solvent • Electrostatics influence interactions of ligands • Describe the basic principles behind to molecular dynamics (MD) • Computational simulation of motions of molecules • Challenges and limitations of MD • Examples of insights into protein function from MD MCB65 2/22/16 2 Energy of macromolecules • Component energy terms are assumed to be additive • parameter values – typically pulled from data on small molecules –are assumed to be transferable • Assumptions are likely reasonable for van der Waals and bonded energy terms, but less so for electrostatics Utotal Ubonds U angles U dihedrals U vdw U elec MCB65 Figure from The Molecules of Life (© Garland Science 2008) 2/22/16 3 Solvent effects • Measurements of H‐bonds in gases: • ~10‐20 kJ mol‐1 • ~40 kJ mol‐1 when one partner is charged • Calculations for peptide bond to peptide bond H‐bond in vacuum: • ~20 kJ mol‐1 • Measurement of H‐bond energy in proteins in aqueous buffer: • ~2‐4 kJ mol‐1 • ~4‐8 kJ mol‐1 when one partner is charged • Where does the difference come from? • MCB65 Solvent effect – competition with water 2/22/16 4 Interactions with water weaken H‐bonds • H‐bond energy in solvated proteins: • ~2‐4 kJ mol‐1 (~4‐8 kJ mol‐1 when one partner is charged) • Energy difference between H‐bond with water vs.
  • NOTES Maxwell’S Equations ( Incomplete So Far)

    NOTES Maxwell’S Equations ( Incomplete So Far)

    NOTES Maxwell’s Equations ( incomplete so far) Gauss’s law Gauss’ law for magnetism Faraday’s law Ampere’s law Parallel-Plate Capacitor Revisited For surface S , I = I, B=0 ? Not -Q 1 s experimentally! but for surface S2, Is = 0 Q Wait, LHS is the same (because C is the same)! ?? You could make this work if a fictitious current Id is added to Is in such a way that Id is zero for S1 but is equal to I for S2. will work. Displacement Current James Clerk Maxwell proposed that a changing electric field induces a magnetic field, in analogy to Faraday’s law: where a changing magnetic field induces an electric field. Ampere’s law is revised to become Ampere-Maxwell law where is the displacement current. MAXWELL’S EQUATIONS “COMPLETED” Basis for Electromagnetic Waves! The equations are often written in slightly different (and more convenient) forms when dielectric and/or magnetic materials are present. MAXWELLS EQUATIONS James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish theoretical physicist] His most prominent achievement was formulating a set of equations that united previously unrelated observations, experiments, and equations of electricity, magnetism, and optics into a consistent theory. His theory of classical electromagnetism demonstrates that electricity, magnetism and light are all manifestations of the same phenomenon, namely the electromagnetic field. Maxwell's achievements concerning electromagnetism have been called the "second great unification in physics” after the first one realized by Isaac Newton. Maxwell demonstrated that electric and magnetic fields travel through space in the form of waves at the speed of light in 1865, with the publication of A Dynamical Theory of the Electromagnetic Field.
  • Advanced Placement Physics 2 Table of Information

    Advanced Placement Physics 2 Table of Information

    ADVANCED PLACEMENT PHYSICS 2 TABLE OF INFORMATION CONSTANTS AND CONVERSION FACTORS Proton mass, mp = 1.67 x 10-27 kg Electron charge magnitude, e = 1.60 x 10-19 C !!" Neutron mass, mn = 1.67 x 10-27 kg 1 electron volt, 1 eV = 1.60 × 10 J Electron mass, me = 9.11 x 10-31 kg Speed of light, c = 3.00 x 108 m/s !" !! - Avogadro’s numBer, �! = 6.02 � 10 mol Universal gravitational constant, G = 6.67 x 10 11 m3/kg•s2 Universal gas constant, � = 8.31 J/ mol • K) Acceleration due to gravity at Earth’s surface, g !!" 2 Boltzmann’s constant, �! = 1.38 ×10 J/K = 9.8 m/s 1 unified atomic mass unit, 1 u = 1.66 × 10!!" kg = 931 MeV/�! Planck’s constant, ℎ = 6.63 × 10!!" J • s = 4.14 × 10!!" eV • s ℎ� = 1.99 × 10!!" J • m = 1.24 × 10! eV • nm !!" ! ! Vacuum permittivity, �! = 8.85 × 10 C /(N • m ) CoulomB’s law constant, k = 1/4π�0 = 9.0 x 109 N•m2/C2 !! Vacuum permeability, �! = 4� × 10 (T • m)/A ! Magnetic constant, �‘ = ! = 1 × 10!! (T • m)/A !! ! 1 atmosphere pressure, 1 atm = 1.0 × 10! = 1.0 × 10! Pa !! meter, m mole, mol watt, W farad, F kilogram, kg hertz, Hz coulomB, C tesla, T UNIT SYMBOLS second, s newton, N volt, V degree Celsius, ˚C ampere, A pascal, Pa ohm, Ω electron volt, eV kelvin, K joule, henry, H PREFIXES Factor Prefix SymBol VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES 10!" tera T � 0˚ 30˚ 37˚ 45˚ 53˚ 60˚ 90˚ 109 giga G sin� 0 1/2 3/5 4/5 1 106 mega M 2/2 3/2 103 kilo k cos� 1 3/2 4/5 2/2 3/5 1/2 0 10-2 centi c tan� 0 3/3 ¾ 1 4/3 3 ∞ 10-3 milli m 10-6 micro � 10-9 nano n 10-12 pico p 1 ADVANCED PLACEMENT PHYSICS 2 EQUATIONS MECHANICS Equation Usage �! = �!! + �!� Kinematic relationships for an oBject accelerating uniformly in one 1 dimension.