The Quantum Vacuum As the Origin of the Speed of Light

Total Page:16

File Type:pdf, Size:1020Kb

The Quantum Vacuum As the Origin of the Speed of Light EPJ manuscript No. (will be inserted by the editor) The quantum vacuum as the origin of the speed of light M. Urban1, F. Couchot1, X. Sarazin1 and A. Djannati-Atai2 1 LAL, Univ Paris-Sud, CNRS/IN2P3, Orsay, France 2 APC, Univ Paris Diderot, CNRS/IN2P3, Paris, France Received: / Accepted: Abstract. We show that the vacuum permeability µ0 and permittivity ǫ0 may originate from the magneti- zation and the polarization of continuously appearing and disappearing fermion pairs. We then show that if we simply model the propagation of the photon in vacuum as a series of transient captures within these ephemeral pairs, we can derive a finite photon velocity. Requiring that this velocity is equal to the speed of light constrains our model of vacuum. Within this approach, the propagation of a photon is a statistical process at scales much larger than the Planck scale. Therefore we expect its time of flight to fluctuate. We propose an experimental test of this prediction. PACS. 06.30.Ka Electromagnetic quantities – 06.20.Jr Determination of fundamental constants 1 Introduction 2 An effective description of the quantum vacuum The vacuum is assumed to be filled with continuously ap- pearing and disappearing charged fermion pairs (ephemeral particle-antiparticle pairs). We consider neither intermedi- ate bosons nor supersymmetric particles. All known species The vacuum permeability µ0, the vacuum permittivity ǫ0, of charged fermions are taken into account: the three fam- and the speed of light in vacuum c are widely considered ilies of charged leptons e, µ and τ and the three families of as being fundamental constants and their values, escaping quarks (u, d), (c, s) and (t, b), including their three color any physical explanation, are commonly assumed to be states. This gives a total of 21 pair species, noted i. invariant in space and time. In this paper, we propose a An ephemeral fermion pair is assumed to be the prod- mechanism based upon a ”natural” quantum vacuum de- uct of the fusion of two virtual photons of the vacuum. scription which leads to sensible estimations of these three Thus its total electric charge and total color are null. We electromagnetic constants. A consequence of this descrip- suppose also that the spins of the two fermions of a pair tion is that µ0, ǫ0 and c are not fundamental constants are antiparallel, and that they are on their mass shell. but observable parameters of the quantum vacuum: they The only quantity which is not conserved is therefore the can vary if the vacuum properties vary in space or in time. energy and this is the reason for the limited lifetime of A similar analysis of the quantum vacuum, as the phys- the pairs. We assume that first order properties can be ical origin of the electromagnetism constants, has been deduced assuming that pairs are created with an average proposed independently by Leuchs, Villar and Sanchez- energy, not taking into account a full probability density arXiv:1302.6165v1 [physics.gen-ph] 21 Feb 2013 Soto [1]. Although the two mechanisms are different, the of the pairs kinetic energy. Likewise, we will neglect the original idea is the same: the physical electromagnetic con- total momentum of the pair. stants emerge naturally from the quantum theory. The average energy Wi of a pair is taken proportional 2 to its rest mass energy 2micrel, where crel is the maxi- The paper is organized as follows. First we describe our mum velocity introduced in the Lorentz transformation. model of the quantum vacuum filled with continuously ap- We remind that crel is not necessarily equal to the speed pearing and disappearing fermion pairs. We show how µ0 of light. We note: and ǫ0 originate respectively from the magnetization and 2 the electric polarization of these pairs. We then derive the Wi = KW 2micrel (1) photon velocity in vacuum by modeling its propagation as a series of interactions with the pairs. Finally, we pre- where KW is a constant, assumed to be independent from dict statistical fluctuations of the transit time of photons the fermion type. We take KW as a free parameter; its across a fixed vacuum path. value could be calculated if we knew the energy spectrum 2 M. Urban, F. Couchot, X. Sarazin, A. Djannati-Atai: The quantum vacuum as the origin of the speed of light of the virtual photons together with their probability to magnetization induced in the material and is the sum of create fermion pairs. the induced magnetic moments divided by the correspond- As a reminiscence of the Heisenberg principle, the pairs ing volume. In an experiment where the current I is kept lifetime τi is assumed to be given by a constant and where we lower the quantity of matter in the torus, B decreases. As we remove all matter, B gets to ¯h 1 ¯h a non zero value: B = µ0nI showing experimentally that τi = = 2 (2) 2Wi KW 4micrel the vacuum is paramagnetic with a vacuum permeability −7 2 µ0 =4π 10 N/A . We assume that the ephemeral fermion pairs densities Ni We propose a physical mechanism to produce the vac- are driven by the Pauli Exclusion Principle. Two pairs uum permeability from the elementary magnetization of containing two identical fermions in the same spin state the charged fermion pairs under a magnetic stress. Each cannot show up at the same time at the same place. How- charged ephemeral fermion carries a magnetic moment ever at a given location we may find 21 charged fermion proportional to the Bohr magneton pairs since different fermions can superpose spatially. In solid state physics the successful determination of Fermi e Qi¯h e Qi crel λCi energies[2] implies that one electron spin state occupies a µi = = . (7) 2mi 4π hyper volume h3. We assume that concerning the Pauli principle, the ephemeral fermions are similar to the real We assume the orbital moment and the spin of the ones. Noting ∆xi the spacing between identical i-type pair to be zero. Since the fermion and the anti fermion fermions and pi their average momentum, the one dimen- have opposite electric charges, the pair carries twice the sion hyper volume is pi∆xi and dividing by h should give magnetic moment of one fermion. the number of states which we take as one per spin de- If no external magnetic field is present, the magnetic gree of freedom. The relation between pi and ∆xi reads moments point randomly in any direction resulting in a pi∆xi/h = 1, or ∆xi =2π¯h/pi. null global average magnetic moment. In the presence of We can express ∆xi as a function of Wi if we suppose an external magnetic field B, the coupling energy of the the relativity to hold for the ephemeral pairs i-type pair to this field is 2µiB cos θ, where θ is the angle between the magnetic moment− and the magnetic field B. 2π¯hc λ ∆x = rel = Ci (3) The energy of the pair is modified by this term and the i 2 2 2 2 (Wi/2) (mic ) K 1 pair lifetime is therefore a function of the orientation of − rel W − its magnetic moment with respect to the applied magnetic p p where λCi is the Compton length associated to fermion i field: and is given by. ¯h/2 τ (θ)= . (8) h i W 2µ B cos θ λCi = (4) i i micrel − The pairs having their magnetic moment aligned with The pair density is defined as: the field last a bit longer than the anti-aligned pairs. The 3 resulting average magnetic moment i of a pair is there- 1 K2 1 fore different from zero1 and is alignedhM i with the applied N = W − (5) i ≈ ∆x3 λ field. Its value is obtained integrating over θ with a weight i p Ci ! proportional to the pairs lifetime: Each pair can be produced only in the two fermion- π antifermion spin combinations up-down and down-up. We 0 2µi cos θ τi(θ) 2π sin θ dθ = . (9) define N as the density of pairs for a given spin combina- i π i hM i R 0 τi(θ) 2π sin θ dθ tion. Finally, we use the notation Qi = qi/e, where qi is the To first order in B,R one gets: i-type fermion electric charge and e the modulus of the 2 electron charge. 4µi i B. (10) hM i≃ 3Wi 3 The vacuum permeability The magnetic moment per unit volume produced by the i-type fermions is Mi = 2Ni i , since one takes When a torus of a material is energized through a winding into account the two spin states perhM cell.i The contribution carrying a current I, the resulting magnetic flux density µ˜0,i of the i-type fermions to the vacuum permeability B is expressed as: is thus given by B =µ ˜0,iMi or 1/µ˜0,i = Mi/B. Each species of fermions increases the induced magnetization B = µ0nI + µ0M. (6) and therefore the magnetic moment. By summing over where n is the number of turns per unit of length and nI 1 As a referee puts it:“this is a kind of averaged Zeeman is the magnetic intensity in A/m. M is the corresponding effect” M. Urban, F. Couchot, X. Sarazin, A. Djannati-Atai: The quantum vacuum as the origin of the speed of light 3 all pair species, one gets the estimation of the vacuum E. Furthermore the opposite charges separation stays fi- permeability: nite because they are bound in a molecule.
Recommended publications
  • Basic Magnetic Measurement Methods
    Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It
    [Show full text]
  • Chapter 16 – Electrostatics-I
    Chapter 16 Electrostatics I Electrostatics – NOT Really Electrodynamics Electric Charge – Some history •Historically people knew of electrostatic effects •Hair attracted to amber rubbed on clothes •People could generate “sparks” •Recorded in ancient Greek history •600 BC Thales of Miletus notes effects •1600 AD - William Gilbert coins Latin term electricus from Greek ηλεκτρον (elektron) – Greek term for Amber •1660 Otto von Guericke – builds electrostatic generator •1675 Robert Boyle – show charge effects work in vacuum •1729 Stephen Gray – discusses insulators and conductors •1730 C. F. du Fay – proposes two types of charges – can cancel •Glass rubbed with silk – glass charged with “vitreous electricity” •Amber rubbed with fur – Amber charged with “resinous electricity” A little more history • 1750 Ben Franklin proposes “vitreous” and “resinous” electricity are the same ‘electricity fluid” under different “pressures” • He labels them “positive” and “negative” electricity • Proposaes “conservation of charge” • June 15 1752(?) Franklin flies kite and “collects” electricity • 1839 Michael Faraday proposes “electricity” is all from two opposite types of “charges” • We call “positive” the charge left on glass rubbed with silk • Today we would say ‘electrons” are rubbed off the glass Torsion Balance • Charles-Augustin de Coulomb - 1777 Used to measure force from electric charges and to measure force from gravity = - - “Hooks law” for fibers (recall F = -kx for springs) General Equation with damping - angle I – moment of inertia C – damping
    [Show full text]
  • Magnetism Some Basics: a Magnet Is Associated with Magnetic Lines of Force, and a North Pole and a South Pole
    Materials 100A, Class 15, Magnetic Properties I Ram Seshadri MRL 2031, x6129 [email protected]; http://www.mrl.ucsb.edu/∼seshadri/teach.html Magnetism Some basics: A magnet is associated with magnetic lines of force, and a north pole and a south pole. The lines of force come out of the north pole (the source) and are pulled in to the south pole (the sink). A current in a ring or coil also produces magnetic lines of force. N S The magnetic dipole (a north-south pair) is usually represented by an arrow. Magnetic fields act on these dipoles and tend to align them. The magnetic field strength H generated by N closely spaced turns in a coil of wire carrying a current I, for a coil length of l is given by: NI H = l The units of H are amp`eres per meter (Am−1) in SI units or oersted (Oe) in CGS. 1 Am−1 = 4π × 10−3 Oe. If a coil (or solenoid) encloses a vacuum, then the magnetic flux density B generated by a field strength H from the solenoid is given by B = µ0H −7 where µ0 is the vacuum permeability. In SI units, µ0 = 4π × 10 H/m. If the solenoid encloses a medium of permeability µ (instead of the vacuum), then the magnetic flux density is given by: B = µH and µ = µrµ0 µr is the relative permeability. Materials respond to a magnetic field by developing a magnetization M which is the number of magnetic dipoles per unit volume. The magnetization is obtained from: B = µ0H + µ0M The second term, µ0M is reflective of how certain materials can actually concentrate or repel the magnetic field lines.
    [Show full text]
  • APPENDICES 206 Appendices
    AAPPENDICES 206 Appendices CONTENTS A.1 Units 207-208 A.2 Abbreviations 209 SUMMARY A description is given of the units used in this thesis, and a list of frequently used abbreviations with the corresponding term is given. Units Description of units used in this thesis and conversion factors for A.1 transformation into other units The formulas and properties presented in this thesis are reported in atomic units unless explicitly noted otherwise; the exceptions to this rule are energies, which are most frequently reported in kcal/mol, and distances that are normally reported in Å. In the atomic units system, four frequently used quantities (Planck’s constant h divided by 2! [h], mass of electron [me], electron charge [e], and vacuum permittivity [4!e0]) are set explicitly to 1 in the formulas, making these more simple to read. For instance, the Schrödinger equation for the hydrogen atom is in SI units: È 2 e2 ˘ Í - h —2 - ˙ f = E f (1) ÎÍ 2me 4pe0r ˚˙ In atomic units, it looks like: È 1 1˘ - —2 - f = E f (2) ÎÍ 2 r ˚˙ Before a quantity can be used in the atomic units equations, it has to be transformed from SI units into atomic units; the same is true for the quantities obtained from the equations, which can be transformed from atomic units into SI units. For instance, the solution of equation (2) for the ground state of the hydrogen atom gives an energy of –0.5 atomic units (Hartree), which can be converted into other units quite simply by multiplying with the appropriate conversion factor (see table A.1.1).
    [Show full text]
  • Gauss' Theorem (See History for Rea- Son)
    Gauss’ Law Contents 1 Gauss’s law 1 1.1 Qualitative description ......................................... 1 1.2 Equation involving E field ....................................... 1 1.2.1 Integral form ......................................... 1 1.2.2 Differential form ....................................... 2 1.2.3 Equivalence of integral and differential forms ........................ 2 1.3 Equation involving D field ....................................... 2 1.3.1 Free, bound, and total charge ................................. 2 1.3.2 Integral form ......................................... 2 1.3.3 Differential form ....................................... 2 1.4 Equivalence of total and free charge statements ............................ 2 1.5 Equation for linear materials ...................................... 2 1.6 Relation to Coulomb’s law ....................................... 3 1.6.1 Deriving Gauss’s law from Coulomb’s law .......................... 3 1.6.2 Deriving Coulomb’s law from Gauss’s law .......................... 3 1.7 See also ................................................ 3 1.8 Notes ................................................. 3 1.9 References ............................................... 3 1.10 External links ............................................. 3 2 Electric flux 4 2.1 See also ................................................ 4 2.2 References ............................................... 4 2.3 External links ............................................. 4 3 Ampère’s circuital law 5 3.1 Ampère’s original
    [Show full text]
  • A Collection of Definitions and Fundamentals for a Design-Oriented
    A collection of definitions and fundamentals for a design-oriented inductor model 1st Andr´es Vazquez Sieber 2nd M´onica Romero * Departamento de Electronica´ * Departamento de Electronica´ Facultad de Ciencias Exactas, Ingenier´ıa y Agrimensura Facultad de Ciencias Exactas, Ingenier´ıa y Agrimensura Universidad Nacional de Rosario (UNR) Universidad Nacional de Rosario (UNR) ** Grupo Simulacion´ y Control de Sistemas F´ısicos ** Grupo Simulacion´ y Control de Sistemas F´ısicos CIFASIS-CONICET-UNR CIFASIS-CONICET-UNR Rosario, Argentina Rosario, Argentina [email protected] [email protected] Abstract—This paper defines and develops useful concepts related to the several kinds of inductances employed in any com- prehensive design-oriented ferrite-based inductor model, which is required to properly design and control high-frequency operated electronic power converters. It is also shown how to extract the necessary parameters from a ferrite material datasheet in order to get inductor models useful for a wide range of core temperatures and magnetic induction levels. Index Terms—magnetic circuit, ferrite core, major magnetic loop, minor magnetic loop, reversible inductance, amplitude inductance I. INTRODUCTION Errite-core based low-frequency-current biased inductors F are commonly found, for example, in the LC output filter of voltage source inverters (VSI) or step-down DC/DC con- verters. Those inductors have to effectively filter a relatively Fig. 1. General magnetic circuit low-amplitude high-frequency current being superimposed on a relatively large-amplitude low-frequency current. It is of practitioner. A design-oriented inductor model can be based paramount importance to design these inductors in a way that on the core magnetic model described in this paper which a minimum inductance value is always ensured which allows allows to employ the concepts of reversible inductance Lrevˆ , the accurate control and the safe operation of the electronic amplitude inductance La and initial inductance Li, to further power converter.
    [Show full text]
  • Magnetic Properties of Materials Part 1. Introduction to Magnetism
    Magnetic properties of materials JJLM, Trinity 2012 Magnetic properties of materials John JL Morton Part 1. Introduction to magnetism 1.1 Origins of magnetism The phenomenon of magnetism was most likely known by many ancient civil- isations, however the first recorded description is from the Greek Thales of Miletus (ca. 585 B.C.) who writes on the attraction of loadstone to iron. By the 12th century, magnetism is being harnessed for navigation in both Europe and China, and experimental treatises are written on the effect in the 13th century. Nevertheless, it is not until much later that adequate explanations for this phenomenon were put forward: in the 18th century, Hans Christian Ørsted made the key discovery that a compass was perturbed by a nearby electrical current. Only a week after hearing about Oersted's experiments, Andr´e-MarieAmp`ere, presented an in-depth description of the phenomenon, including a demonstration that two parallel wires carrying current attract or repel each other depending on the direction of current flow. The effect is now used to the define the unit of current, the amp or ampere, which in turn defines the unit of electric charge, the coulomb. 1.1.1 Amp`ere's Law Magnetism arises from charge in motion, whether at the microscopic level through the motion of electrons in atomic orbitals, or at macroscopic level by passing current through a wire. From the latter case, Amp`ere'sobservation was that the magnetising field H around any conceptual loop in space was equal to the current enclosed by the loop: I I = Hdl (1.1) By symmetry, the magnetising field must be constant if we take concentric circles around a current-carrying wire.
    [Show full text]
  • Ee334lect37summaryelectroma
    EE334 Electromagnetic Theory I Todd Kaiser Maxwell’s Equations: Maxwell’s equations were developed on experimental evidence and have been found to govern all classical electromagnetic phenomena. They can be written in differential or integral form. r r r Gauss'sLaw ∇ ⋅ D = ρ D ⋅ dS = ρ dv = Q ∫∫ enclosed SV r r r Nomagneticmonopoles ∇ ⋅ B = 0 ∫ B ⋅ dS = 0 S r r ∂B r r ∂ r r Faraday'sLaw ∇× E = − E ⋅ dl = − B ⋅ dS ∫∫S ∂t C ∂t r r r ∂D r r r r ∂ r r Modified Ampere'sLaw ∇× H = J + H ⋅ dl = J ⋅ dS + D ⋅ dS ∫ ∫∫SS ∂t C ∂t where: E = Electric Field Intensity (V/m) D = Electric Flux Density (C/m2) H = Magnetic Field Intensity (A/m) B = Magnetic Flux Density (T) J = Electric Current Density (A/m2) ρ = Electric Charge Density (C/m3) The Continuity Equation for current is consistent with Maxwell’s Equations and the conservation of charge. It can be used to derive Kirchhoff’s Current Law: r ∂ρ ∂ρ r ∇ ⋅ J + = 0 if = 0 ∇ ⋅ J = 0 implies KCL ∂t ∂t Constitutive Relationships: The field intensities and flux densities are related by using the constitutive equations. In general, the permittivity (ε) and the permeability (µ) are tensors (different values in different directions) and are functions of the material. In simple materials they are scalars. r r r r D = ε E ⇒ D = ε rε 0 E r r r r B = µ H ⇒ B = µ r µ0 H where: εr = Relative permittivity ε0 = Vacuum permittivity µr = Relative permeability µ0 = Vacuum permeability Boundary Conditions: At abrupt interfaces between different materials the following conditions hold: r r r r nˆ × (E1 − E2 )= 0 nˆ ⋅(D1 − D2 )= ρ S r r r r r nˆ × ()H1 − H 2 = J S nˆ ⋅ ()B1 − B2 = 0 where: n is the normal vector from region-2 to region-1 Js is the surface current density (A/m) 2 ρs is the surface charge density (C/m ) 1 Electrostatic Fields: When there are no time dependent fields, electric and magnetic fields can exist as independent fields.
    [Show full text]
  • Lesson 9: Coulomb's Law
    Lesson 9: Coulomb's Law Charles Augustin de Coulomb Before getting into all the hardcore physics that surrounds him, it’s a good idea to understand a little about Coulomb. ● He was born in 1736 in Angoulême, France. ● He received the majority of his higher education at the Ecole du Genie at Mezieres (a french military university with a very high reputation, similar to universities like Oxford, Harvard, etc.) from which he graduated in 1761. ● He then spent some time serving as a military engineer in the West Indies and other French outposts, until 1781 when he was permanently stationed in Illustration 1: Paris and was able to devote more time to scientific research. Charles Coulomb Between 1785-91 he published seven memoirs (papers) on physics. ● One of them, published in 1785, discussed the inverse square law of forces between two charged particles. This just means that as you move charges apart, the force between them starts to decrease faster and faster (exponentially). ● In a later memoir he showed that the force is also proportional to the product of the charges, a relationship now called “Coulomb’s Law”. ● For his work, the unit of electrical charge is named after him. This is interesting in that Coulomb was one of the first people to help create the metric system. ● He died in 1806. The Torsion Balance When Coulomb was doing his original experiments he decided to use a torsion balance to measure the forces between charges. ● You already learned about a torsion balance in Physics 20 when you discussed Henry Cavendish’s experiment to measure the value of “G” , the universal gravitational constant.
    [Show full text]
  • Lecture 12 Molecular Dynamics
    Lecture 12 Molecular Dynamics Required reading: Chapter 6: 6.22 –6.23 Karplus, M., and Petsko, G. A. (1990) Molecular dynamics simulations in biology. Nature 347: 631‐639. For further reading on the 2013 Nobel Prize, history and current state of computational methods like MD: Smith and Roux. Structure 21: 2102‐2105. Wednesday: Midterm 1 Reading for Friday: Chapter 7, sections 7.1‐7.19 MCB65 2/22/16 1 Today’s goals • Explain how solvent influences electrostatics • Dielectric constant models polarizability of solvent • Electrostatics influence interactions of ligands • Describe the basic principles behind to molecular dynamics (MD) • Computational simulation of motions of molecules • Challenges and limitations of MD • Examples of insights into protein function from MD MCB65 2/22/16 2 Energy of macromolecules • Component energy terms are assumed to be additive • parameter values – typically pulled from data on small molecules –are assumed to be transferable • Assumptions are likely reasonable for van der Waals and bonded energy terms, but less so for electrostatics Utotal Ubonds U angles U dihedrals U vdw U elec MCB65 Figure from The Molecules of Life (© Garland Science 2008) 2/22/16 3 Solvent effects • Measurements of H‐bonds in gases: • ~10‐20 kJ mol‐1 • ~40 kJ mol‐1 when one partner is charged • Calculations for peptide bond to peptide bond H‐bond in vacuum: • ~20 kJ mol‐1 • Measurement of H‐bond energy in proteins in aqueous buffer: • ~2‐4 kJ mol‐1 • ~4‐8 kJ mol‐1 when one partner is charged • Where does the difference come from? • MCB65 Solvent effect – competition with water 2/22/16 4 Interactions with water weaken H‐bonds • H‐bond energy in solvated proteins: • ~2‐4 kJ mol‐1 (~4‐8 kJ mol‐1 when one partner is charged) • Energy difference between H‐bond with water vs.
    [Show full text]
  • NOTES Maxwell’S Equations ( Incomplete So Far)
    NOTES Maxwell’s Equations ( incomplete so far) Gauss’s law Gauss’ law for magnetism Faraday’s law Ampere’s law Parallel-Plate Capacitor Revisited For surface S , I = I, B=0 ? Not -Q 1 s experimentally! but for surface S2, Is = 0 Q Wait, LHS is the same (because C is the same)! ?? You could make this work if a fictitious current Id is added to Is in such a way that Id is zero for S1 but is equal to I for S2. will work. Displacement Current James Clerk Maxwell proposed that a changing electric field induces a magnetic field, in analogy to Faraday’s law: where a changing magnetic field induces an electric field. Ampere’s law is revised to become Ampere-Maxwell law where is the displacement current. MAXWELL’S EQUATIONS “COMPLETED” Basis for Electromagnetic Waves! The equations are often written in slightly different (and more convenient) forms when dielectric and/or magnetic materials are present. MAXWELLS EQUATIONS James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish theoretical physicist] His most prominent achievement was formulating a set of equations that united previously unrelated observations, experiments, and equations of electricity, magnetism, and optics into a consistent theory. His theory of classical electromagnetism demonstrates that electricity, magnetism and light are all manifestations of the same phenomenon, namely the electromagnetic field. Maxwell's achievements concerning electromagnetism have been called the "second great unification in physics” after the first one realized by Isaac Newton. Maxwell demonstrated that electric and magnetic fields travel through space in the form of waves at the speed of light in 1865, with the publication of A Dynamical Theory of the Electromagnetic Field.
    [Show full text]
  • Advanced Placement Physics 2 Table of Information
    ADVANCED PLACEMENT PHYSICS 2 TABLE OF INFORMATION CONSTANTS AND CONVERSION FACTORS Proton mass, mp = 1.67 x 10-27 kg Electron charge magnitude, e = 1.60 x 10-19 C !!" Neutron mass, mn = 1.67 x 10-27 kg 1 electron volt, 1 eV = 1.60 × 10 J Electron mass, me = 9.11 x 10-31 kg Speed of light, c = 3.00 x 108 m/s !" !! - Avogadro’s numBer, �! = 6.02 � 10 mol Universal gravitational constant, G = 6.67 x 10 11 m3/kg•s2 Universal gas constant, � = 8.31 J/ mol • K) Acceleration due to gravity at Earth’s surface, g !!" 2 Boltzmann’s constant, �! = 1.38 ×10 J/K = 9.8 m/s 1 unified atomic mass unit, 1 u = 1.66 × 10!!" kg = 931 MeV/�! Planck’s constant, ℎ = 6.63 × 10!!" J • s = 4.14 × 10!!" eV • s ℎ� = 1.99 × 10!!" J • m = 1.24 × 10! eV • nm !!" ! ! Vacuum permittivity, �! = 8.85 × 10 C /(N • m ) CoulomB’s law constant, k = 1/4π�0 = 9.0 x 109 N•m2/C2 !! Vacuum permeability, �! = 4� × 10 (T • m)/A ! Magnetic constant, �‘ = ! = 1 × 10!! (T • m)/A !! ! 1 atmosphere pressure, 1 atm = 1.0 × 10! = 1.0 × 10! Pa !! meter, m mole, mol watt, W farad, F kilogram, kg hertz, Hz coulomB, C tesla, T UNIT SYMBOLS second, s newton, N volt, V degree Celsius, ˚C ampere, A pascal, Pa ohm, Ω electron volt, eV kelvin, K joule, henry, H PREFIXES Factor Prefix SymBol VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES 10!" tera T � 0˚ 30˚ 37˚ 45˚ 53˚ 60˚ 90˚ 109 giga G sin� 0 1/2 3/5 4/5 1 106 mega M 2/2 3/2 103 kilo k cos� 1 3/2 4/5 2/2 3/5 1/2 0 10-2 centi c tan� 0 3/3 ¾ 1 4/3 3 ∞ 10-3 milli m 10-6 micro � 10-9 nano n 10-12 pico p 1 ADVANCED PLACEMENT PHYSICS 2 EQUATIONS MECHANICS Equation Usage �! = �!! + �!� Kinematic relationships for an oBject accelerating uniformly in one 1 dimension.
    [Show full text]