Lecture 2: Units and E&M

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 2: Units and E&M MSE 7025 Magnetic Materials (and Spintronics) Lecture 2: Magnetic Units and Basic E&M Chi-Feng Pai [email protected] Course Outline • Time Table Week Date Lecture 1 Feb 24 Introduction 2 March 2 Magnetic units and basic E&M 3 March 9 Magnetization: From classical to quantum 4 March 16 No class (APS March Meeting, Baltimore) 5 March 23 Category of magnetism 6 March 30 From atom to atoms: Interactions I (oxides) 7 April 6 From atom to atoms: Interactions II (metals) 8 April 13 Magnetic anisotropy 9 April 20 Mid-term exam 10 April 27 Domain and domain walls Course Outline • Time Table Week Date Lecture 11 May 4 Magnetization process (SW or Kondorsky) 12 May 11 Characterization: VSM, MOKE 13 May 18 Characterization: FMR 14 May 25 Transport measurements in materials I: Hall effect 15 June 1 Transport measurements in materials II: MR 16 June 8 MRAM: TMR and spin transfer torque 17 June 15 Guest lecture by Prof. S.Y. Huang (physics) 18 June 22 Final exam Magnetic Field • Magnetic field… what is it, anyway? Magnetic Field • Magnetic field… what is it, anyway? Magnetic Field • Magnetic field… what is it, anyway? http://hyperphysics.phy-astr.gsu.edu/ Magnetic Field • Magnetic field… what is it, anyway? – Exist in some certain metals – Can be induced by current Magnetic Field • Magnetic field… what is it, anyway? Magnetic Field • Magnetic field… what is it, anyway? Magnetic Field • Magnetic field… what is it, anyway? Magnetic Field • Magnetic field… what is it, anyway? – Something that can be measured and quantified. – A physical quantity that has a value for each point in space and time (definition of “field”). – The notation is “B” in this case. – And the unit of it is “G” (gauss) in this case. Magnetic Field • And when you read more papers, you will find… Magnetic Field • And when you read more papers, you will find… Growth and study of magnetostrictive FeSiBC thin films, for device applications, Mannan Ali (1999) Magnetic Field • And when you read more papers, you will find… Magnetic Field • And when you read more papers, you will find… Magnetic Field • And when you read more papers, you will find… Magnetic Field • And when you read more papers, you will find… Magnetic Field • And when you read more papers, you will find… Magnetic Field • And when you read more papers, you will find… Notation Unit H kG = 1000 G = 1000 gauss H Oe = oersted H A/m = ampere/meter B mT = 0.001 T = 0.001 tesla B G = gauss μ0H T = tesla Magnetic Field • And when you read more papers, you will find… Notation Unit H gauss (G) H oersted (Oe) H ampere/meter (A/m) B tesla (T) B gauss (G) μ0H tesla (T) What you gonna do first when you report to a new magnetism lab? Print out the units table! Units Table Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” Vacuum permeability (真空磁導率) Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” • In cgs (Gaussian) units • In SI units Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” • In cgs (Gaussian) units • In SI units (From wikipedia) Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” • In materials (SI units) Magnetization – With “magnetization” term – If linearly magnetized Magnetic susceptibility (磁化率) BHH0 r permeability Relative permeability Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” • In SI (MKS) units BHMHHHHH0 0 01 0 r • In Gaussian (cgs) units BHMHHH 4 4 1 4 Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” Notation Unit SI or cgs? H (B) kG = 1000 G = 1000 gauss cgs (symbol misused) H Oe = oersted cgs H A/m = ampere/meter SI B G = gauss cgs B mT = 0.001 T = 0.001 tesla SI μ0H T = tesla SI Units of B-field and H-field • “Magnetic flux density” and “magnetic field strength” Notation Unit SI or cgs? H (B) kG = 1000 G = 1000 gauss cgs (symbol misused) H oersted (Oe) cgs H ampere/meter (A/m) SI B gauss (G) cgs B tesla (T) SI μ0H tesla (T) SI Strength of magnetic fields • In terms of tesla Strength of magnetic fields • Levitation of a frog using a 16T-magnetic-field Levitating frog from the Nijmegen High Field Magnet Laboratory, which won the Ig Nobel Prize in 2000. But why frog? http://www.ru.nl/hfml/research/levit ation/diamagnetic/ Andre Geim 2000 Ig Nobel Prize 2010 Nobel Prize in Physics Strength of magnetic fields • Fractional Quantum Hall Effect, discovered using a 23T- magnetic field (Bitter magnet) The Physics Nobel Prize 1998 was given for the discovery and theory of the Fractional Quantum Hall Effect to Daniel Tsui, Horst Stormer and Bob Laughlin Strength of magnetic fields • NdFeB (Neo, NIB) magnets (B ~ 1 Tesla) – Nd2Fe14B https://www.youtube.com/watch?v=Y1MDOerruDU Interesting experiment using Neodymium-Iron-Boron magnets More on B-field • Lorentz force equation – The force on a charged particle by EM fields – Dimension analysis More on B-field • The Biot-Savart law – The magnetic field B generated by an electric current I Magnetization “M” and magnetic susceptibility “χ” • Magnetization (per unit volume) Magnetization “M” and magnetic susceptibility “χ” • Magnetic susceptibility Magnetization “M” and magnetic susceptibility “χ” • Magnetic susceptibility Ferromagnetism 0 0 0 Magnetization “M” and magnetic susceptibility “χ” • Magnetic susceptibility (T-dependence) Diamagnetism Maxwell’s Equations • Gauss’s law • Gauss’s law for magnetism • Faraday’s law of induction • Ampere’s circuit law Maxwell’s Equations • Gauss’s law • Gauss’s law for magnetism • Faraday’s law of induction • Ampere’s circuit law Maxwell’s Equations • Ampere’s circuit law Maxwell’s Equations • Typically, within the scope of magnetic materials – Magneto-quasi-static – Simplified Maxwell’s equations (differential form) Maxwell’s Equations • Typically, within the scope of magnetic materials – Magneto-quasi-static – Simplified Maxwell’s equations (integral form) Maxwell’s Equations in materials • Have to consider “bound charges” and “bound currents” Maxwell’s Equations in materials • Have to consider “bound charges” and “bound currents” BKM00b B 0 nI Magnetic dipole moment • Similar to the concept of electrical dipole moment, but... • Magnetism comes from moving charges Magnetic dipole moment • A heuristic approach – Ampere’s current loop concept (Unit) ~ Magnetic dipole moment • Magnetic moment unit conversion • Magnetization unit conversion emu/cm3 = 103 A/m Torque, energy, and force • Dipole moment in a magnetic field • Magnetic potential energy Torque, energy, and force • Force experienced by the moment • Since the moment is typically independent of position • Dimension analysis .
Recommended publications
  • Basic Magnetic Measurement Methods
    Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It
    [Show full text]
  • On the Covariant Representation of Integral Equations of the Electromagnetic Field
    On the covariant representation of integral equations of the electromagnetic field Sergey G. Fedosin PO box 614088, Sviazeva str. 22-79, Perm, Perm Krai, Russia E-mail: [email protected] Gauss integral theorems for electric and magnetic fields, Faraday’s law of electromagnetic induction, magnetic field circulation theorem, theorems on the flux and circulation of vector potential, which are valid in curved spacetime, are presented in a covariant form. Covariant formulas for magnetic and electric fluxes, for electromotive force and circulation of the vector potential are provided. In particular, the electromotive force is expressed by a line integral over a closed curve, while in the integral, in addition to the vortex electric field strength, a determinant of the metric tensor also appears. Similarly, the magnetic flux is expressed by a surface integral from the product of magnetic field induction by the determinant of the metric tensor. A new physical quantity is introduced – the integral scalar potential, the rate of change of which over time determines the flux of vector potential through a closed surface. It is shown that the commonly used four-dimensional Kelvin-Stokes theorem does not allow one to deduce fully the integral laws of the electromagnetic field and in the covariant notation requires the addition of determinant of the metric tensor, besides the validity of the Kelvin-Stokes theorem is limited to the cases when determinant of metric tensor and the contour area are independent from time. This disadvantage is not present in the approach that uses the divergence theorem and equation for the dual electromagnetic field tensor.
    [Show full text]
  • Units and Magnitudes (Lecture Notes)
    physics 8.701 topic 2 Frank Wilczek Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second part is a quasi-philosophical discussion of deep issues around unit systems, including a comparison of atomic, particle ("strong") and Planck units. For a more extended, profound treatment of the second part issues, see arxiv.org/pdf/0708.4361v1.pdf . Because special relativity and quantum mechanics permeate modern particle physics, it is useful to employ units so that c = ħ = 1. In other words, we report velocities as multiples the speed of light c, and actions (or equivalently angular momenta) as multiples of the rationalized Planck's constant ħ, which is the original Planck constant h divided by 2π. 27 August 2013 physics 8.701 topic 2 Frank Wilczek In classical physics one usually keeps separate units for mass, length and time. I invite you to think about why! (I'll give you my take on it later.) To bring out the "dimensional" features of particle physics units without excess baggage, it is helpful to keep track of powers of mass M, length L, and time T without regard to magnitudes, in the form When these are both set equal to 1, the M, L, T system collapses to just one independent dimension. So we can - and usually do - consider everything as having the units of some power of mass. Thus for energy we have while for momentum 27 August 2013 physics 8.701 topic 2 Frank Wilczek and for length so that energy and momentum have the units of mass, while length has the units of inverse mass.
    [Show full text]
  • Magnetism Some Basics: a Magnet Is Associated with Magnetic Lines of Force, and a North Pole and a South Pole
    Materials 100A, Class 15, Magnetic Properties I Ram Seshadri MRL 2031, x6129 [email protected]; http://www.mrl.ucsb.edu/∼seshadri/teach.html Magnetism Some basics: A magnet is associated with magnetic lines of force, and a north pole and a south pole. The lines of force come out of the north pole (the source) and are pulled in to the south pole (the sink). A current in a ring or coil also produces magnetic lines of force. N S The magnetic dipole (a north-south pair) is usually represented by an arrow. Magnetic fields act on these dipoles and tend to align them. The magnetic field strength H generated by N closely spaced turns in a coil of wire carrying a current I, for a coil length of l is given by: NI H = l The units of H are amp`eres per meter (Am−1) in SI units or oersted (Oe) in CGS. 1 Am−1 = 4π × 10−3 Oe. If a coil (or solenoid) encloses a vacuum, then the magnetic flux density B generated by a field strength H from the solenoid is given by B = µ0H −7 where µ0 is the vacuum permeability. In SI units, µ0 = 4π × 10 H/m. If the solenoid encloses a medium of permeability µ (instead of the vacuum), then the magnetic flux density is given by: B = µH and µ = µrµ0 µr is the relative permeability. Materials respond to a magnetic field by developing a magnetization M which is the number of magnetic dipoles per unit volume. The magnetization is obtained from: B = µ0H + µ0M The second term, µ0M is reflective of how certain materials can actually concentrate or repel the magnetic field lines.
    [Show full text]
  • Weberˇs Planetary Model of the Atom
    Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S.
    [Show full text]
  • The Concept of Field in the History of Electromagnetism
    The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”.
    [Show full text]
  • 08. Ampère and Faraday Darrigol (2000), Chap 1
    08. Ampère and Faraday Darrigol (2000), Chap 1. A. Pre-1820. (1) Electrostatics (frictional electricity) • 1780s. Coulomb's description: ! Two electric fluids: positive and negative. ! Inverse square law: It follows therefore from these three tests, that the repulsive force that the two balls -- [which were] electrified with the same kind of electricity -- exert on each other, Charles-Augustin de Coulomb follows the inverse proportion of (1736-1806) the square of the distance."" (2) Magnetism: Coulomb's description: • Two fluids ("astral" and "boreal") obeying inverse square law. • No magnetic monopoles: fluids are imprisoned in molecules of magnetic bodies. (3) Galvanism • 1770s. Galvani's frog legs. "Animal electricity": phenomenon belongs to biology. • 1800. Volta's ("volatic") pile. Luigi Galvani (1737-1798) • Pile consists of alternating copper and • Charged rod connected zinc plates separated by to inner foil. brine-soaked cloth. • Outer foil grounded. • A "battery" of Leyden • Inner and outer jars that can surfaces store equal spontaeously recharge but opposite charges. themselves. 1745 Leyden jar. • Volta: Pile is an electric phenomenon and belongs to physics. • But: Nicholson and Carlisle use voltaic current to decompose Alessandro Volta water into hydrogen and oxygen. Pile belongs to chemistry! (1745-1827) • Are electricity and magnetism different phenomena? ! Electricity involves violent actions and effects: sparks, thunder, etc. ! Magnetism is more quiet... Hans Christian • 1820. Oersted's Experimenta circa effectum conflictus elecrici in Oersted (1777-1851) acum magneticam ("Experiments on the effect of an electric conflict on the magnetic needle"). ! Galvanic current = an "electric conflict" between decompositions and recompositions of positive and negative electricities. ! Experiments with a galvanic source, connecting wire, and rotating magnetic needle: Needle moves in presence of pile! "Otherwise one could not understand how Oersted's Claims the same portion of the wire drives the • Electric conflict acts on magnetic poles.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • A Collection of Definitions and Fundamentals for a Design-Oriented
    A collection of definitions and fundamentals for a design-oriented inductor model 1st Andr´es Vazquez Sieber 2nd M´onica Romero * Departamento de Electronica´ * Departamento de Electronica´ Facultad de Ciencias Exactas, Ingenier´ıa y Agrimensura Facultad de Ciencias Exactas, Ingenier´ıa y Agrimensura Universidad Nacional de Rosario (UNR) Universidad Nacional de Rosario (UNR) ** Grupo Simulacion´ y Control de Sistemas F´ısicos ** Grupo Simulacion´ y Control de Sistemas F´ısicos CIFASIS-CONICET-UNR CIFASIS-CONICET-UNR Rosario, Argentina Rosario, Argentina [email protected] [email protected] Abstract—This paper defines and develops useful concepts related to the several kinds of inductances employed in any com- prehensive design-oriented ferrite-based inductor model, which is required to properly design and control high-frequency operated electronic power converters. It is also shown how to extract the necessary parameters from a ferrite material datasheet in order to get inductor models useful for a wide range of core temperatures and magnetic induction levels. Index Terms—magnetic circuit, ferrite core, major magnetic loop, minor magnetic loop, reversible inductance, amplitude inductance I. INTRODUCTION Errite-core based low-frequency-current biased inductors F are commonly found, for example, in the LC output filter of voltage source inverters (VSI) or step-down DC/DC con- verters. Those inductors have to effectively filter a relatively Fig. 1. General magnetic circuit low-amplitude high-frequency current being superimposed on a relatively large-amplitude low-frequency current. It is of practitioner. A design-oriented inductor model can be based paramount importance to design these inductors in a way that on the core magnetic model described in this paper which a minimum inductance value is always ensured which allows allows to employ the concepts of reversible inductance Lrevˆ , the accurate control and the safe operation of the electronic amplitude inductance La and initial inductance Li, to further power converter.
    [Show full text]
  • Magnetic Properties of Materials Part 1. Introduction to Magnetism
    Magnetic properties of materials JJLM, Trinity 2012 Magnetic properties of materials John JL Morton Part 1. Introduction to magnetism 1.1 Origins of magnetism The phenomenon of magnetism was most likely known by many ancient civil- isations, however the first recorded description is from the Greek Thales of Miletus (ca. 585 B.C.) who writes on the attraction of loadstone to iron. By the 12th century, magnetism is being harnessed for navigation in both Europe and China, and experimental treatises are written on the effect in the 13th century. Nevertheless, it is not until much later that adequate explanations for this phenomenon were put forward: in the 18th century, Hans Christian Ørsted made the key discovery that a compass was perturbed by a nearby electrical current. Only a week after hearing about Oersted's experiments, Andr´e-MarieAmp`ere, presented an in-depth description of the phenomenon, including a demonstration that two parallel wires carrying current attract or repel each other depending on the direction of current flow. The effect is now used to the define the unit of current, the amp or ampere, which in turn defines the unit of electric charge, the coulomb. 1.1.1 Amp`ere's Law Magnetism arises from charge in motion, whether at the microscopic level through the motion of electrons in atomic orbitals, or at macroscopic level by passing current through a wire. From the latter case, Amp`ere'sobservation was that the magnetising field H around any conceptual loop in space was equal to the current enclosed by the loop: I I = Hdl (1.1) By symmetry, the magnetising field must be constant if we take concentric circles around a current-carrying wire.
    [Show full text]
  • Appendix H: Common Units and Conversions Appendices 215
    Appendix H: Common Units and Conversions Appendices 215 Appendix H: Common Units and Conversions Temperature Length Fahrenheit to Celsius: °C = (°F-32)/1.8 1 micrometer (sometimes referred centimeter (cm) meter (m) inch (in) Celsius to Fahrenheit: °F = (1.8 × °C) + 32 to as micron) = 10-6 m Fahrenheit to Kelvin: convert °F to °C, then add 273.15 centimeter (cm) 1 1.000 × 10–2 0.3937 -3 Celsius to Kelvin: add 273.15 meter (m) 100 1 39.37 1 mil = 10 in Volume inch (in) 2.540 2.540 × 10–2 1 –3 3 1 liter (l) = 1.000 × 10 cubic meters (m ) = 61.02 Area cubic inches (in3) cm2 m2 in2 circ mil Mass cm2 1 10–4 0.1550 1.974 × 105 1 kilogram (kg) = 1000 grams (g) = 2.205 pounds (lb) m2 104 1 1550 1.974 × 109 Force in2 6.452 6.452 × 10–4 1 1.273 × 106 1 newton (N) = 0.2248 pounds (lb) circ mil 5.067 × 10–6 5.067 × 10–10 7.854 × 10–7 1 Electric resistivity Pressure 1 micro-ohm-centimeter (µΩ·cm) pascal (Pa) millibar (mbar) torr (Torr) atmosphere (atm) psi (lbf/in2) = 1.000 × 10–6 ohm-centimeter (Ω·cm) –2 –3 –6 –4 = 1.000 × 10–8 ohm-meter (Ω·m) pascal (Pa) 1 1.000 × 10 7.501 × 10 9.868 × 10 1.450 × 10 = 6.015 ohm-circular mil per foot (Ω·circ mil/ft) millibar (mbar) 1.000 × 102 1 7.502 × 10–1 9.868 × 10–4 1.450 × 10–2 2 0 –3 –2 Heat flow rate torr (Torr) 1.333 × 10 1.333 × 10 1 1.316 × 10 1.934 × 10 5 3 2 1 1 watt (W) = 3.413 Btu/h atmosphere (atm) 1.013 × 10 1.013 × 10 7.600 × 10 1 1.470 × 10 1 British thermal unit per hour (Btu/h) = 0.2930 W psi (lbf/in2) 6.897 × 103 6.895 × 101 5.172 × 101 6.850 × 10–2 1 1 torr (Torr) = 133.332 pascal (Pa) 1 pascal (Pa) = 0.01 millibar (mbar) 1.33 millibar (mbar) 0.007501 torr (Torr) –6 A Note on SI 0.001316 atmosphere (atm) 9.87 × 10 atmosphere (atm) 2 –4 2 The values in this catalog are expressed in 0.01934 psi (lbf/in ) 1.45 × 10 psi (lbf/in ) International System of Units, or SI (from the Magnetic induction B French Le Système International d’Unités).
    [Show full text]
  • Automatic Irrigation : Sensors and System
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1970 Automatic Irrigation : Sensors and System Herman G. Hamre Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Hamre, Herman G., "Automatic Irrigation : Sensors and System" (1970). Electronic Theses and Dissertations. 3780. https://openprairie.sdstate.edu/etd/3780 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. AUTOMATIC IRRIGATION: SENSORS AND SYSTEM BY HERMAN G. HAMRE A thesis submitted in partial fulfillment of the requirements for the degree Master of Science, Major in Electrical Engineering, South Dakota State University 1970 SOUTH DAKOTA STATE UNIVERSITY LIBRARY AUTOMATIC IRRIGATION: SENSORS AND SYSTEM This thesis is approved as a creditable and independent investi­ gation by a candidate for the degree, Master of Science, and is accept­ able as meeting the thesis requirements for this degree, but without implying that the conclusions reached by the candidate are necessarily the conclusions of the major department. �--- -"""'" _ _ -���--- - _ _ _ _____ -A>� - 7 7 T b � s/./ifjvisor ate Head, Electrical -r-oate Engineering Department ACKNOWLE GEMENTS The author wishes to express his sincere appreciation to Dr. A. J. Kurtenbach for his patient guidance and helpful suggestions, and to the Water Resources Institute for their support of this research.
    [Show full text]