<<

Airfoil selection

• Aerodynamic characteristics (Kmax , CLmax , characteristics) • Structural reasons;

1 geometry

Airfoil geometry

Camber line

Leading Chord Maximum edge thickness

Trailing edge Maximum Maximum camber thickness position Maximum camber position

2 definition

AoA V∞

Stall

AoA=0° Separation point

AoA=10°

AoA=15°

AoA=20°

3 Airfoil aerodynamic characteristics

Lift coefficient (Cz or C L) coefficient (Cx or C D ) C LMAX Stall

dC /d α ≡≡≡ a α l 0

α KR

Airfoil aerodynamic characteristics

Design Cz

4 Airfoil aerodynamic characteristics

Gliding ratio (C / C ) Power factor z x 3 2 1,5 (C z / C x lub C z /Cx)

Airfoil aerodynamic characteristics

Pitching moment coefficient C m

Derivative dCm/dCz is an indicator of stability.

It is negative for stable aeroplanes and positive for unstable aeroplanes.

5 Maximum thickness – t/c

Maximum thickness - t

Chord - c

Effect of airfoil thickness on coefficient

6% 8%

10%

12%

14%

16%

18%

20%

6 Effect of airfoil thickness on lift coefficient

Effect of airfoil thickness on

6% 8%

10%

12%

14%

16%

18%

20%

7 Effect of airfoil thickness on gliding ratio

6% 8%

10%

12%

14%

16%

18%

20%

Effect of airfoil thickness on power factor

6% 8%

10%

12%

14%

16%

18%

20%

8 Camber

Camber line

Maximum camber

Effect of airfoil camber on lift coefficient

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

9 Effect of airfoil camber on drag coefficient

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

Effect of airfoil camber on gliding ratio

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

10 Effect of airfoil camber on power factor

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

Effect of airfoil camber on moment coefficient

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

11 Position of maximum thickness

Maximum thickness

Position of maximum thickness

Boundary layer development

laminar turbulent

separated

transition

separation

12 Effect of airfoil „laminarity” on drag coefficient

15%

20%

25%

30%

35%

40%

45%

50%

Effect of airfoil „laminarity” on lift coefficient

15%

20%

25%

30%

35%

40%

45%

50%

13 Effect of camber line shape on moment coefficient

0° 35%

28%

22%

15%

Effect of camber line shape on gliding ratio

35% 0%

2%

4%

6%

28%

22%

15%

14 effect on aerodynamic coefficients

Effect of on lift coefficient

15 Effect of Mach number on drag coefficient

Effect of Mach number on moment coefficient

16 Critical Mach number

Historical values of an aeroplane airfoil thickness as a function of Mach number

17 Critical Mach number

Critical Mach number

18 Calculate Reynolds number for design airspeed Airfoil selection

Re>3 000 000 3 000 000>Re>500 000 500 000>Re

Calculate Mach number Wortmann catalogue Selig catalogue for maximum airspeed „Stuttgarter „Summary of low speed Profilkatalog” Vol.1 i 2 airfoil data” Vol.1-3 „ at low speeds”

Mmax >0,75

Supercritical airfoil eg. NASA SC(2) 714 NASA TM X-1109 M <0,75 max NASA TM X-2977 NASA TP 2969

Abbot catalogue „Theory of the wing section”, raport NACA 824, NASA TN D-7428

Calculate Reynolds number for design Airfoil airspeed selection

Find characteristics for Re des i Mdes

Calculate C L for design airspeed

Compare C D for CLdes of available airfoils and select few best airfoils

Compare CLmax of selected airfoils

Compare stall character of selected airfoils

Compare C M of selected airfoils

Select an airfoil with a combination of above features best suiting to the aeroplane mission

19 Remaining wing features

• Wing incidence; • Mean aerodynamic chord mac, c • Wing area (reference area) S; • Wing span b; • Wing aspect ratio A; • Wing dihedral; Λ • Wing sweep angle ( LE , Λ quarter chord c/4 ); • Taper ratio λ; • Geometrical and aerodynamic twist; • Winglets • Leading edges extensions;

Wing incidence angle

An angle between root chord and longitudinal axis

20 Taper ratio

b/2

cT c λλλ === R S c T cR

W S === W / S Straight : === ⋅⋅⋅ b A S λ=0.4÷0.5 2⋅⋅⋅S c === Swept wings: R [[[][b ⋅⋅⋅ ((()(1+++ λλλ)))]]] λ=0.2÷0.3 === λλλ ⋅⋅⋅λ ⋅ cT cR

Mean aerodynamic chord mac, c

 2  (((1+++ λλλ +++ λλλ2 ))) c ===   ⋅⋅⋅ c ⋅⋅⋅ ;  3  ROOT ((()(1+++ λλλ )))

cR 0,25mac cR  b  Y =  ⋅[](1+ 2⋅λ )(1+ λ ) ; c  6 

cT cT

Y

21 Vortices generated by a wing

Vortices generated by a wing and effect of aspect ratio on drag coefficient

b2 C2 A === C === C +++ L S D D0 πππ ⋅⋅⋅π ⋅ A ⋅⋅⋅e

22 Effect of aspect ratio (A, AR) on lift coefficient

=== ⋅⋅⋅ A CLααα Clααα  C   C 2 lααα lααα 2   +++   +++ A  πππ   πππ 

Helmbolt equation

b2 A === S

Wing dihedral

ϕϕϕ

b 1 b2

b3

b3

b4

Wing position Wing dihedral angle low mid high φ – an angle between Unswept 5 ÷ 7 2 ÷ 4 0 ÷ 2 chords’ plane and Subsonic swept 3 ÷ 7 -2 ÷ 2 -5÷-2 horizontal plane Supersonic swept 0 ÷ 5 -5 ÷ 0 -5 ÷ 0

23 ΛΛΛ ΛΛΛ ΛΛΛ Wing sweep LE , 4/c , c/t

ΛΛΛ === ΛΛΛ +++ [[[((( −−− λλλ))) ⋅⋅⋅ ((( +++ λλλ)))]]] tan LE tan 4/c 1 / A 1

ΛΛΛ ΛΛΛ c/4 LE

Line connecting quarter chords along the wing span

Wing sweep

ΛΛΛ Meff =M ∞cos( LE )

m ΛΛΛ Mkryt ~1/cos ( LE )

Wing sweep reduces effective Mach number. M

ΛΛΛ Mcos ΛΛΛ LE LE

ΛΛΛ t/c 2 ΛΛΛ qeff =q ∞cos ( LE )

2 ΛΛΛ W~tan ( LE )

24 α Wing sweep effect on dC L/d

dC 2⋅⋅⋅ πππ⋅ ⋅⋅⋅π ⋅ A L === α 2 dαα  tan ((()(ΛΛΛ ))) +++ +++ ((()( ⋅⋅⋅βββ⋅β)))2 ⋅⋅⋅ +++ c/t  2 4 A 1 2   βββ 

βββ === −−− 2 1 Meff

=== ΛΛΛ Meff M∞∞∞ cos LE

Wing sweep effect on separation

25 Wing sweep at supersonic speeds

Winglets

26 Wing twist

Aerodynamic twist Geometric twist

Wing twist

Aerodynamic twist

Geometric twist

27 Delta wings

AoA

V

Leading Edge eXtensions

28 LEX effect on lift coefficient

Vortex generators RAF Museum Hendon

29 30