Design and Dynamic Analysis of a Variable-Sweep, Variable-Span Morphing UAV

Total Page:16

File Type:pdf, Size:1020Kb

Design and Dynamic Analysis of a Variable-Sweep, Variable-Span Morphing UAV Dissertations and Theses 12-2014 Design and Dynamic Analysis of a Variable-Sweep, Variable-Span Morphing UAV Nirmit Prabhakar Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerodynamics and Fluid Mechanics Commons Scholarly Commons Citation Prabhakar, Nirmit, "Design and Dynamic Analysis of a Variable-Sweep, Variable-Span Morphing UAV" (2014). Dissertations and Theses. 177. https://commons.erau.edu/edt/177 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. DESIGN AND DYNAMIC ANALYSIS OF A VARIABLE SWEEP, VARIABLE SPAN MORPHING UAV By Nirmit Prabhakar A Thesis Submitted to the College of Engineering Department of Aerospace Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida December 2014 i Dedication To my Grandfather and Grandmother, For shaping me into the person I’m today. iii Acknowledgements It gives me pleasure to acknowledge the following people for all the support and strength they gave me, which helped make this thesis possible: I would like to thank Dr. Richard J Prazenica and for the guidance, supervision, and patience he has shown to and with me for the last year and a half. I’d like to thank Prof. Snorri Gudmundsson for sharing his innovative ideas with me and helping me with the technical aspects of this thesis. I would like to show my gratitude for both my advisors for motivating me to achieve my potential and making me realize the importance of integrity of research. I would like to thank Dr. Ebenezer Gnanamanickam for all his advice and suggestions regarding the design and implementation of the experimental part of this thesis. I would like to share this achievement with my mother Dr. Manju Prabhakar, my father Vinod Prabhakar and my sister Bhavya and thank them for their love, motivation, support and faith in me. I would like to express deep appreciation towards my friends Sadaf Meghani and William Morgan for their support and encouragement throughout my thesis work. Finally, I would like to thank everyone at EFRC and FDCRL, my team for Design Build and Test, and all my friends and my relatives for all the support they have shown during this time. iv Abstract Researcher: Nirmit Prabhakar Title: Design and Dynamic Analysis of a Variable-Sweep, Variable-Span Morphing UAV Institution: Embry-Riddle Aeronautical University Degree: Master of Science in Aerospace Engineering Year: 2014 Morphing wings have the potential to optimize UAV performance for a variety of flight conditions and maneuvers. The ability to vary both the wing sweep and span can enable maximum performance for a diverse range of flight regimes. For example, low- speed missions can be optimized using a wing with high aspect ratio and no wing sweep whereas high-speed missions are optimized with low aspect ratio wings and large wing sweep. Different static morphing wing configurations clearly result in varying aerodynamics and, as a result, varying dynamic modes. Another important consideration, however, is the transient dynamics that occur when transitioning between morphing configurations, which is clearly a function of the rate of transition. For smaller-scale morphing UAVs, morphing transitions can take place on a time scale comparable to the dynamics of the vehicle, which implies that the transient dynamics must be taken into account when modeling the dynamics of such a vehicle. This thesis considers the dynamic effects of morphing for a variable-sweep, variable-span UAV. A scale model of such a morphing wing has been fabricated and tested in the low-speed wind tunnel at Embry-Riddle Aeronautical University. The focus v of this thesis is the development of a dynamic model for this morphing wing UAV that accounts for not only the varying dynamics resulting from different static morphing configurations, but also the transient dynamics associated with morphing. A Vortex Lattice Method (VLM) solver is used to model the aerodynamics of the morphing wing UAV over a two-dimensional array of static configurations corresponding to varying span and sweep. In this analysis, only symmetric morphing configurations are considered (i.e., in every configuration, both wings have the same span and sweep); therefore, the analysis focuses on the longitudinal dynamic modes (i.e., the long period and short period modes). The dynamic model of the morphing wing UAV is used to develop a simulation in which it is possible to specify different morphing configurations as well as varying rates of morphing transition. As such, the simulation provides an invaluable tool for analyzing the effects of wing morphing on the longitudinal flight dynamics of a morphing UAV. vi Table of Contents Dedication ........................................................................................................................... iii Acknowledgements ............................................................................................................. iv Abstract ................................................................................................................................v List of Figures ..................................................................................................................... ix List of Tables ...................................................................................................................... xi CHAPTER 1: INTRODUCTION ....................................................................................... 1 1.1 MORPHING.............................................................................................................. 5 1.1.1 Wing Planform Morphing................................................................................... 7 Wing planform morphing ............................................................................................ 7 1.1.2 Wing Out-of-Plane Transformation.................................................................... 7 1.1.3 Airfoil Morphing ................................................................................................ 9 1.2 TECHNICAL OBJECTIVES.................................................................................. 11 CHAPTER 2: SURFACES MODEL ................................................................................ 12 2.1 MODELING............................................................................................................ 13 2.2 SIMULATION ........................................................................................................ 16 2.3 ANALYSIS ............................................................................................................. 22 2.3.1 CL coefficients .................................................................................................. 22 2.3.2 CD coefficients ................................................................................................. 28 2.3.3 Cm coefficients .................................................................................................. 30 CHAPTER 3: SIMULATION DEVELOPMENT AND CONTROL DESIGN............... 34 3.1 NON-LINEAR SIMULINK MODEL .................................................................... 36 3.2 DYNAMIC MODE ANALYSIS ............................................................................ 37 3.3 CONTROLLER DESING....................................................................................... 43 3.4 SIMULATION RESULTS AND ANALYSIS ....................................................... 45 3.4.1 Open-loop Span change with Zero Sweep........................................................ 46 3.4.2 Open-loop Sweep change with Zero Span increase ......................................... 49 3.4.3 Open-loop Span and Sweep Morphing ............................................................. 53 3.4.4 Closed Loop Control Cases .............................................................................. 56 CHAPTER 4: CONCLUSIONS ....................................................................................... 58 4.1 Future Scope of Work ............................................................................................. 60 vii APPENDIX A ................................................................................................................... 62 A.1 DESIGN ................................................................................................................. 62 A.2 METHEDOLOGY ................................................................................................. 65 A.3 RESULTS............................................................................................................... 68 A.3.1 Span Morphing ................................................................................................ 68 A.3.2 Sweep Morphing .............................................................................................. 72 A.3.3 Condenser Microphone Results ....................................................................... 75 Appendix B ....................................................................................................................... 81 Bibliography.....................................................................................................................
Recommended publications
  • Flying Wing Concept for Medium Size Airplane
    ICAS 2002 CONGRESS FLYING WING CONCEPT FOR MEDIUM SIZE AIRPLANE Tjoetjoek Eko Pambagjo*, Kazuhiro Nakahashi†, Kisa Matsushima‡ Department of Aeronautics and Space Engineering Tohoku University, Japan Keywords: blended-wing-body, inverse design Abstract The flying wing is regarded as an alternate This paper describes a study on an alternate configuration to reduce drag and structural configuration for medium size airplane. weight. Since flying wing possesses no fuselage Blended-Wing-Body concept, which basically is it may have smaller wetted area than the a flying wing configuration, is applied to conventional airplane. In the conventional airplane for up to 224 passengers. airplane the primary function of the wing is to An aerodynamic design tools system is produce the lift force. In the flying wing proposed to realize such configuration. The configuration the wing has to carry the payload design tools comprise of Takanashi’s inverse and provides the necessary stability and control method, constrained target pressure as well as produce the lift. The fuselage has to specification method and RAPID method. The create lift without much penalty on the drag. At study shows that the combination of those three the same time the fuselage has to keep the cabin design methods works well. size comfortable for passengers. In the past years several flying wings have been designed and flown successfully. The 1 Introduction Horten, Northrop bombers and AVRO are The trend of airplane concept changes among of those examples. However the from time to time. Speed, size and range are application of the flying wing concepts were so among of the design parameters.
    [Show full text]
  • Conceptual Design Study of a Hydrogen Powered Ultra Large Cargo Aircraft
    Conceptual Design Study of a Hydrogen Powered Ultra Large Cargo Aircraft R.A.J. Jansen University of Technology Technology of University Delft Delft Conceptual Design Study of a Hydrogen Powered Ultra Large Cargo Aircraft Towards a competitive and sustainable alternative of maritime transport by R.A.J. Jansen to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Tuesday January 10, 2017 at 9:00 AM. Student number: 4036093 Thesis registration: 109#17#MT#FPP Project duration: January 11, 2016 – January 10, 2017 Thesis committee: Dr. ir. G. La Rocca, TU Delft, supervisor Dr. A. Gangoli Rao, TU Delft Dr. ir. H. G. Visser, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Acknowledgements This report presents the research performed to complete the master track Flight Performance and Propulsion at the Technical University of Delft. I am really grateful to the people who supported me both during the master thesis as well as during the rest of my student life. First of all, I would like to thank my supervisor, Gianfranco La Rocca. He supported and motivated me during the entire graduation project and provided valuable feedback during all the status meeting we had. I would also like to thank the exam committee, Arvind Gangoli Rao and Dries Visser, for their flexibility and time to assess my work. Moreover, I would like to thank Ali Elham for his advice throughout the project as well as during the green light meeting. Next to these people, I owe also thanks to the fellow students in room 2.44 for both their advice, as well as the enjoyable chats during the lunch and coffee breaks.
    [Show full text]
  • University of Oklahoma Graduate College Design and Performance Evaluation of a Retractable Wingtip Vortex Reduction Device a Th
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE DESIGN AND PERFORMANCE EVALUATION OF A RETRACTABLE WINGTIP VORTEX REDUCTION DEVICE A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements for the Degree of Master of Science Mechanical Engineering By Tausif Jamal Norman, OK 2019 DESIGN AND PERFORMANCE EVALUATION OF A RETRACTABLE WINGTIP VORTEX REDUCTION DEVICE A THESIS APPROVED FOR THE SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING BY THE COMMITTEE CONSISTING OF Dr. D. Keith Walters, Chair Dr. Hamidreza Shabgard Dr. Prakash Vedula ©Copyright by Tausif Jamal 2019 All Rights Reserved. ABSTRACT As an airfoil achieves lift, the pressure differential at the wingtips trigger the roll up of fluid which results in swirling wakes. This wake is characterized by the presence of strong rotating cylindrical vortices that can persist for miles. Since large aircrafts can generate strong vortices, airports require a minimum separation between two aircrafts to ensure safe take-off and landing. Recently, there have been considerable efforts to address the effects of wingtip vortices such as the categorization of expected wake turbulence for commercial aircrafts to optimize the wait times during take-off and landing. However, apart from the implementation of winglets, there has been little effort to address the issue of wingtip vortices via minimal changes to airfoil design. The primary objective of this study is to evaluate the performance of a newly proposed retractable wingtip vortex reduction device for commercial aircrafts. The proposed design consists of longitudinal slits placed in the streamwise direction near the wingtip to reduce the pressure differential between the pressure and the suction sides.
    [Show full text]
  • CANARD.WING LIFT INTERFERENCE RELATED to MANEUVERING AIRCRAFT at SUBSONIC SPEEDS by Blair B
    https://ntrs.nasa.gov/search.jsp?R=19740003706 2020-03-23T12:22:11+00:00Z NASA TECHNICAL NASA TM X-2897 MEMORANDUM CO CN| I X CANARD.WING LIFT INTERFERENCE RELATED TO MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS by Blair B. Gloss and Linwood W. McKmney Langley Research Center Hampton, Va. 23665 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • DECEMBER 1973 1.. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-2897 4. Title and Subtitle 5. Report Date CANARD-WING LIFT INTERFERENCE RELATED TO December 1973 MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. L-9096 Blair B. Gloss and Linwood W. McKinney 10. Work Unit No. 9. Performing Organization Name and Address • 760-67-01-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington , D . C . 20546 15. Supplementary Notes 16. Abstract An investigation was conducted at Mach numbers of 0.7 and 0.9 to determine the lift interference effect of canard location on wing planforms typical of maneuvering fighter con- figurations. The canard had an exposed area of 16.0 percent of the wing reference area and was located in the plane of the wing or in a position 18.5 percent of the wing mean geometric chord above the wing plane. In addition, the canard could be located at two longitudinal stations.
    [Show full text]
  • Airframe Integration
    Aerodynamic Design of the Hybrid Wing Body Propulsion- Airframe Integration May-Fun Liou1, Hyoungjin Kim2, ByungJoon Lee3, and Meng-Sing Liou4 NASA Glenn Research Center, Cleveland, Ohio, 44135 Abstract A hybrid wingbody (HWB) concept is being considered by NASA as a potential subsonic transport aircraft that meets aerodynamic, fuel, emission, and noise goals in the time frame of the 2030s. While the concept promises advantages over conventional wing-and-tube aircraft, it poses unknowns and risks, thus requiring in-depth and broad assessments. Specifically, the configuration entails a tight integration of the airframe and propulsion geometries; the aerodynamic impact has to be carefully evaluated. With the propulsion nacelle installed on the (upper) body, the lift and drag are affected by the mutual interference effects between the airframe and nacelle. The static margin for longitudinal stability is also adversely changed. We develop a design approach in which the integrated geometry of airframe (HWB) and propulsion is accounted for simultaneously in a simple algebraic manner, via parameterization of the planform and airfoils at control sections of the wingbody. In this paper, we present the design of a 300-passenger transport that employs distributed electric fans for propulsion. The trim for stability is achieved through the use of the wingtip twist angle. The geometric shape variables are determined through the adjoint optimization method by minimizing the drag while subject to lift, pitch moment, and geometry constraints. The design results clearly show the influence on the aerodynamic characteristics of the installed nacelle and trimming for stability. A drag minimization with the trim constraint yields a reduction of 10 counts in the drag coefficient.
    [Show full text]
  • Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications”
    UNIVERSITY OF NAPLES “FEDERICO II” PhD course in Aerospace, Naval and Quality Engineering PhD Thesis in Aerospace Engineering “ELECTRICALLY HEATED COMPOSITE LEADING EDGES FOR AIRCRAFT ANTI-ICING APPLICATIONS” by Francesco De Rosa 2010 To my girlfriend Tiziana for her patience and understanding precious and rare human virtues University of Naples Federico II Department of Aerospace Engineering DIAS PhD Thesis in Aerospace Engineering Author: F. De Rosa Tutor: Prof. G.P. Russo PhD course in Aerospace, Naval and Quality Engineering XXIII PhD course in Aerospace Engineering, 2008-2010 PhD course coordinator: Prof. A. Moccia ___________________________________________________________________________ Francesco De Rosa - Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications 2 Abstract An investigation was conducted in the Aerospace Engineering Department (DIAS) at Federico II University of Naples aiming to evaluate the feasibility and the performance of an electrically heated composite leading edge for anti-icing and de-icing applications. A 283 [mm] chord NACA0012 airfoil prototype was designed, manufactured and equipped with an High Temperature composite leading edge with embedded Ni-Cr heating element. The heating element was fed by a DC power supply unit and the average power densities supplied to the leading edge were ranging 1.0 to 30.0 [kW m-2]. The present investigation focused on thermal tests experimentally performed under fixed icing conditions with zero AOA, Mach=0.2, total temperature of -20 [°C], liquid water content LWC=0.6 [g m-3] and average mean volume droplet diameter MVD=35 [µm]. These fixed conditions represented the top icing performance of the Icing Flow Facility (IFF) available at DIAS and therefore it has represented the “sizing design case” for the tested prototype.
    [Show full text]
  • Aircraft Winglet Design
    DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2020 Aircraft Winglet Design Increasing the aerodynamic efficiency of a wing HANLIN GONGZHANG ERIC AXTELIUS KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES 1 Abstract Aerodynamic drag can be decreased with respect to a wing’s geometry, and wingtip devices, so called winglets, play a vital role in wing design. The focus has been laid on studying the lift and drag forces generated by merging various winglet designs with a constrained aircraft wing. By using computational fluid dynamic (CFD) simulations alongside wind tunnel testing of scaled down 3D-printed models, one can evaluate such forces and determine each respective winglet’s contribution to the total lift and drag forces of the wing. At last, the efficiency of the wing was furtherly determined by evaluating its lift-to-drag ratios with the obtained lift and drag forces. The result from this study showed that the overall efficiency of the wing varied depending on the winglet design, with some designs noticeable more efficient than others according to the CFD-simulations. The shark fin-alike winglet was overall the most efficient design, followed shortly by the famous blended design found in many mid-sized airliners. The worst performing designs were surprisingly the fenced and spiroid designs, which had efficiencies on par with the wing without winglet. 2 Content Abstract 2 Introduction 4 Background 4 1.2 Purpose and structure of the thesis 4 1.3 Literature review 4 Method 9 2.1 Modelling
    [Show full text]
  • February 2002 Alerts
    February 2002 FAA AC 43-16A CONTENTS AIRPLANES AERONCA ................................................................................................................................. 1 BEECH ........................................................................................................................................ 2 CESSNA ..................................................................................................................................... 6 EXTRA........................................................................................................................................ 9 MAULE..................................................................................................................................... 10 PIPER........................................................................................................................................ 10 SOCATA .................................................................................................................................. 13 HELICOPTERS BELL ......................................................................................................................................... 14 EUROCOPTER ......................................................................................................................... 14 MCDONNELL DOUGLAS ...................................................................................................... 15 AMATEUR, EXPERIMENTAL, AND SPORT AIRCRAFT AVID FLYER ...........................................................................................................................
    [Show full text]
  • Self-Actuating Flaps on Bird and Aircraft Wings 437
    Self-actuating flaps on bird and aircraft wings D.W. Bechert, W. Hage & R. Meyer Department of Turbulence Research, German Aerospace Center (DLR), Berlin, Germany. Abstract Separation control is also an important issue in biology. During the landing approach of birds and in flight through very turbulent air, one observes that the covering feathers on the upper side of bird wings tend to pop up. The raised feathers impede the spreading of the flow separation from the trailing edge to the leading edge of the wing. This mechanism of separation control by bird feathers is described in detail. Self-activated movable flaps (= artificial bird feathers) represent a high-lift system enhancing the maximum lift of airfoils up to 20%. This is achieved without perceivable deleterious effects under cruise conditions. Several data of wind tunnel experiments as well as flight experiments with an aircraft with laminar wing and movable flaps are shown. 1 Movable flaps on wings: artificial bird feathers The issue of artificial feathers on wings, has an almost anecdotal origin. Wolfgang Liebe, the inventor of the boundary layer fence once observed mountain crows in the Alps in the 1930s. He noticed that the covering feathers on the upper side of the wings tend to pop up when the birds were on landing approach or in other situations with high angle of attack, like flight through gusts. Once the attention of the observer is drawn to it, it is comparatively easy to observe this behaviour in almost any bird (see, for example, the feathers on the left-hand wing of a Skua in Fig.
    [Show full text]
  • Evolving the Oblique Wing
    NASA AERONAUTICS BOOK SERIES A I 3 A 1 A 0 2 H D IS R T A O W RY T A Bruce I. Larrimer MANUSCRIP . Bruce I. Larrimer Library of Congress Cataloging-in-Publication Data Larrimer, Bruce I. Thinking obliquely : Robert T. Jones, the Oblique Wing, NASA's AD-1 Demonstrator, and its legacy / Bruce I. Larrimer. pages cm Includes bibliographical references. 1. Oblique wing airplanes--Research--United States--History--20th century. 2. Research aircraft--United States--History--20th century. 3. United States. National Aeronautics and Space Administration-- History--20th century. 4. Jones, Robert T. (Robert Thomas), 1910- 1999. I. Title. TL673.O23L37 2013 629.134'32--dc23 2013004084 Copyright © 2013 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks. Introduction v Chapter 1: American Genius: R.T. Jones’s Path to the Oblique Wing .......... ....1 Chapter 2: Evolving the Oblique Wing ............................................................ 41 Chapter 3: Design and Fabrication of the AD-1 Research Aircraft ................75 Chapter 4: Flight Testing and Evaluation of the AD-1 ................................... 101 Chapter 5: Beyond the AD-1: The F-8 Oblique Wing Research Aircraft ....... 143 Chapter 6: Subsequent Oblique-Wing Plans and Proposals ....................... 183 Appendices Appendix 1: Physical Characteristics of the Ames-Dryden AD-1 OWRA 215 Appendix 2: Detailed Description of the Ames-Dryden AD-1 OWRA 217 Appendix 3: Flight Log Summary for the Ames-Dryden AD-1 OWRA 221 Acknowledgments 230 Selected Bibliography 231 About the Author 247 Index 249 iii This time-lapse photograph shows three of the various sweep positions that the AD-1's unique oblique wing could assume.
    [Show full text]
  • Flexfloil Shape Adaptive Control Surfaces—Flight Test and Numerical Results
    FLEXFLOIL SHAPE ADAPTIVE CONTROL SURFACES—FLIGHT TEST AND NUMERICAL RESULTS Sridhar Kota∗ , Joaquim R. R. A. Martins∗∗ ∗FlexSys Inc. , ∗∗University of Michigan Keywords: FlexFoil, adaptive compliant trailing edge, flight testing, aerostructural optimization Abstract shape-changing control surface technologies has been realized by the ACTE program in which the The U.S Air Force and NASA recently concluded high-lift flaps of the Gulfstream III test aircraft a series of flight tests, including high speed were replaced by a 19-foot spanwise FlexFoilTM (M = 0:85) and acoustic tests of a Gulfstream III variable-geometry control surfaces on each wing, business jet retrofitted with shape adaptive trail- including a 2 ft wide compliant fairings at each ing edge control surfaces under the Adaptive end, developed by FlexSys Inc. The flight tests Compliant Trailing Edge (ACTE) program. The successfully demonstrated the flight-worthiness long-sought goal of practical, seamless, shape- of the variable geometry control surfaces. changing control surface technologies has been Modern aircraft wings and engines have realized by the ACTE program in which the high- reached near-peak levels of efficiency, making lift flaps of the Gulfstream III test aircraft were further improvements exceedingly difficult. The replaced with 23 ft spanwise FlexFoilTM variable next frontier in improving aircraft efficiency is to geometry control surfaces on each wing. The change the shape of the aircraft wing in-flight to flight tests successfully demonstrated the flight- maximize performance under all operating con- worthiness of the variable geometry control sur- ditions. Modern aircraft wing design is a com- faces. We provide an overview of structural and promise between several constraints and flight systems design requirements, test flight envelope conditions with best performance occurring very (including critical design and test points), re- rarely or purely by chance.
    [Show full text]
  • B-52, the “Stratofortress”
    B-52, The “StratoFortress” Aerodynamics and Performance Build-up Service • Crew – Upper Deck • 2 Pilots • Electronic Warfare Officer • Latest Model – Lower Deck – B-52H • Bombardier – Last B-52H delivered in 1962 • Radar Navigator • Transonic Bomber – Nuclear Payload capable • Deployment – 20 Cruise Missiles – 102 B-52H’s • AGM-86C – 192 B-52G’s • AGM-12 Have Nap • AGM-84 Harpoon – All in Service of USAF as – Up to 50,000 lb ordnance far as we can tell payload – $53.4 million each [1998$] – 51 bombs of 750-lb class Additional Payload • In addition to attack ordnance, B-52H carries: – Norden APQ-156 Multi-mode targeting radar – Terrain Avoidance Radar – Electro-Optical Viewing System (EVS) • Infra-red and low light display used in conjunction with terrain avoidance sensors to navigate in bad weather at low altitudes, or with the nuclear windscreen shielding in place – ECM • ALT-28 jammer • ALQ-117, -115, -172 deception jammers – Optional Stinger Air to Air missiles in aft gun-turret Weight Breakdown • Max TOGW – 505,000 lb • Fuel Weight – 299,434 lb internal – 9,114 lb on non-jettisonable under- wing pylons • Ordnance Weight – 50,000 lb • Airframe operational empty – 146452 lb Basic Geometry • Length: 160.9 ft • Tail Plane • Wing – Horizontal Tail Span: – Span: 185 ft 55.625 ft – Horizontal Tail Plan Area: – Area: 4000 ft^2 ~1004 ft^2 – Root Chord: ~34.5 ft – Mean Chord: 21.62 ft – Vertical Tail Height: – Taper Ratio: 0.37 24.339 ft – Leading Edge Sweep: – Vertical Tail Plan Area: 35° ~451 ft^2 – AR: 8.56 Wing Geometry • Wing Root: 14%
    [Show full text]