Design of Parametric Winglets and Wing Tip Devices – a Conceptual Design Approach
Total Page:16
File Type:pdf, Size:1020Kb
Linkoping studies in Science and Technology Design of Parametric Winglets and Wing tip devices – A Conceptual Design Approach Saravanan Rajendran Linkoping University Institute of Technology Department of Management and Engineering (IEI) SE-58183 Linköping, Sweden Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke¬kommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan be skrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se för lagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet – or its possible replacement – from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/hers own use and to use it unchanged for non- commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. © Saravanan Rajendran. Linkoping studies in Science and Technology Design of Parametric Winglets and Wing tip devices – A Conceptual Design Approach Saravanan Rajendran LIU-IEI-TEK-A--12/01371--SE Linkoping University Institute of Technology Department of Management and Engineering (IEI) SE-58183 Linkoping, Sweden Supervisor Raghu Chaitanya M V PhD Student – Linkoping University Examiner Christopher Jouannet Assistant Professor, Linkoping University Linkoping 2012 Acknowledgement I wish to thank the Division of Fluid and Mechatronic Systems (FLUMES), Department of Management and Engineering (IEI), Linkoping University, Sweden for providing the facilities to carry out this master thesis work. My sincere thanks to Dr. Christopher Jouannet for giving me the opportunity to learn about design technology in aircraft field. I express my sincere gratitude to Mr. Raghu Chaitanya for providing continuous support and persistent guidance throughout my project period. Furthermore, I would also like to thank Mr.Patrick Berry for giving suggestions and feedbacks regarding this project. The valuable comments and reviews from the above mentioned people were very helpful in making this a complete work. Finally, I am very grateful to all my friends who supported and motivated me regarding this thesis work. Saravanan Rajendran Linköping, May 2012 Abstract Winglets being a small structure play an important role in reducing the induced drag in aircraft. Many types of winglets have been designed and their significance in reducing the drag is published. One of the main objectives of this master thesis work is to study about the winglet design and about their contribution in reducing induced drag. A brief overview of wing tip devices and their performance from the manufacturers as well as from airliner’s point of view are discussed. Moreover, the role of winglet in reducing the drag of commercial civil jet aircraft is studied and the percentage of drag reduction is calculated by a conceptual approach. A320 specifications are taken to perform induced drag reduction calculation with and without winglets. Indeed, the total drag count reduced with the help of winglets accounts for additional payload which will be an advantage for the aircraft operator. Reducing the process time in design is one of the important criteria for any field and hence automation with help of CAD tools is very significant in reducing time. This study also aims at developing an automated model for different types of winglets and wing tip devices with the help of CAD technology focused on reducing design time during the initial design process. Knowledge based approach is used in this work and all the models are parameterized so each model could be varied with associated parameters. The generic model created would take different shapes and switches between different types of wing tip devices as per the user’s requirement with the help of available parameters. Knowledge Pattern (KP) approach is used to develop the automation process. User Defined Features (UDFs) are created for each type of winglet and tip devices. CATIA V5 R18 software is used to develop the models of winglets and tip devices. Keywords: Winglet, Induced drag, CATIA V5, Knowledge Pattern, Parameterization. ii List of abbreviations NASA – National Aeronautics and Space Administration CATIA - Computer Aided Three dimensional Interactive Application VB – Visual Basic KP – Knowledge Pattern API – Aviation Partner Inc. APB – Aviation Partners Boeing CAE – Computer Aided Engineering Cd0 – Profile drag coefficient Cdi – Induced drag coefficient Cd–Total drag coefficient F–Form factor Q–Interference factor Swet–Wetted area of the surface Sref –Wing area Rec = Reynolds number of the component V = Velocity l = component characteristics length u = kinematic viscosity for that flight condition e – Ostwald’s efficiency factor AR – Aspect ratio Cl – Lift coefficient Λ – Sweep angle UDF – User Defined Feature iii Contents Acknowledgement ....................................................................................................................... i Abstract ...................................................................................................................................... ii List of abbreviations .................................................................................................................. iii List of Figures ........................................................................................................................... vi 1. Introduction ......................................................................................................................... 1 1.1. Induced drag reduction ................................................................................................ 1 1.2. Computer Aided Design .............................................................................................. 1 1.3. Aim .............................................................................................................................. 1 2. Literature review ................................................................................................................. 3 2.1. History of Wingtip devices and Winglets .................................................................... 3 2.2. Types of Winglets and Wingtip devices ...................................................................... 3 2.2.1. Blended Winglet ................................................................................................... 3 2.2.2. Spiroid Winglet .................................................................................................... 4 2.2.3. Wing-grid as wing tip ........................................................................................... 4 2.2.4. Wing tip devices ................................................................................................... 5 2.3. Advantages claimed on Winglets and tip devices ....................................................... 6 2.4. Induced drag phenomena ............................................................................................. 7 3. Methodology ....................................................................................................................... 9 3.1. Method for induced drag calculation ........................................................................... 9 3.2. Method for take-off performance calculation ............................................................ 10 3.3. CAD Methodology .................................................................................................... 11 3.3.1. Blended Winglet Template ................................................................................. 11 3.3.2. Wing Fence ........................................................................................................ 12 3.3.3. Raked Wingtip .................................................................................................... 13 3.3.4. Wing Grid ........................................................................................................... 14