Vertical Motion Simulator Experiment on Stall Recovery Guidance

Total Page:16

File Type:pdf, Size:1020Kb

Vertical Motion Simulator Experiment on Stall Recovery Guidance NASA/TP{2017{219733 Vertical Motion Simulator Experiment on Stall Recovery Guidance Stefan Schuet National Aeronautics and Space Administration Thomas Lombaerts Stinger Ghaffarian Technologies, Inc. Vahram Stepanyan Universities Space Research Association John Kaneshige, Kimberlee Shish, Peter Robinson National Aeronautics and Space Administration Gordon Hardy Retired Research Test Pilot Science Applications International Corporation October 2017 NASA STI Program. in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part or other meetings sponsored or in helping NASA maintain this important co-sponsored by NASA. role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the technical, or historical information from auspices of the Agency Chief Information NASA programs, projects, and missions, Officer. It collects, organizes, provides for often concerned with subjects having archiving, and disseminates NASA's STI. substantial public interest. The NASA STI Program provides access to the NASA Aeronautics and Space Database • TECHNICAL TRANSLATION. English- and its public interface, the NASA Technical language translations of foreign scientific Report Server, thus providing one of the and technical material pertinent to largest collection of aeronautical and space NASA's mission. science STI in the world. Results are Specialized services also include organizing published in both non-NASA channels and and publishing research results, distributing by NASA in the NASA STI Report Series, specialized research announcements and which includes the following report types: feeds, providing information desk and • TECHNICAL PUBLICATION. Reports of personal search support, and enabling data completed research or a major significant exchange services. phase of research that present the results For more information about the NASA STI of NASA programs and include extensive Program, see the following: data or theoretical analysis. Includes compilations of significant scientific and • Access the NASA STI program home page technical data and information deemed to at http://www.sti.nasa.gov be of continuing reference value. NASA counterpart of peer-reviewed formal • E-mail your question to professional papers, but having less [email protected] stringent limitations on manuscript length and extent of graphic presentations. • Phone the NASA STI Information Desk at 757-864-9658 • TECHNICAL MEMORANDUM. Scientific and technical findings that are • Write to: preliminary or of specialized interest, e.g., NASA STI Information Desk quick release reports, working papers, and Mail Stop 148 bibliographies that contain minimal NASA Langley Research Center annotation. Does not contain extensive Hampton, VA 23681-2199 analysis. • CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees. NASA/TP{2017{219733 Vertical Motion Simulator Experiment on Stall Recovery Guidance Stefan Schuet National Aeronautics and Space Administration Thomas Lombaerts Stinger Ghaffarian Technologies, Inc. Vahram Stepanyan Universities Space Research Association John Kaneshige, Kimberlee Shish, Peter Robinson National Aeronautics and Space Administration Gordon Hardy Retired Research Test Pilot Science Applications International Corporation National Aeronautics and Space Administration Ames Research Center Intelligent Systems Division Moffett Field, California 94035 October 2017 The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration. Available from: NASA STI Program / Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199 Fax: 757-864-6500 Abstract A stall recovery guidance system was designed to help pilots improve their stall recovery performance when the current aircraft state may be unrecognized under various complicating operational factors. Candidate guidance algorithms were con- nected to the split-cue pitch and roll flight directors that are standard on large transport commercial aircraft. A new thrust guidance algorithm and cue was also developed to help pilots prevent the combination of excessive thrust and nose-up stabilizer trim. The overall system was designed to reinforce the current FAA rec- ommended stall recovery procedure. A general transport aircraft model, similar to a Boeing 757, with an extended aerodynamic database for improved stall dynam- ics simulation fidelity was integrated into the Vertical Motion Simulator at NASA Ames Research Center. A detailed study of the guidance system was then conducted across four stall scenarios with 30 commercial and 10 research test pilots, and the results are reported. 1 Advisory Committee A committee of experts independently advised the design of the recovery guidance technology, and the experiment detailed in this report. Members of this committee provided impactful feedback on the experiment plan, and recommendations after flying fixed-base simulations at various points in time throughout the experiment development process. Any good idea in this report likely sprang from their feedback, and credit should be extended to them. We are sincerely grateful for their diligence and support. Gordon Hardy Retired Research Test Pilot, NASA Ames Research Center Science Applications International Corporation Mark Humphreys, Heather Ogburn Pilots, FAA Aircraft Evaluation Group, Long Beach, CA Scott Howe, David Fedors Research Test Pilots, NASA Armstrong Flight Research Center Jeffery Schroeder Engineer, FAA Chief Scientific and Technical Advisor for Flight Simulation Systems 2 Executive Summary Despite stall warning systems in most all commercial aircraft, full stalls do still sometimes occur. In several such cases, the pilots applied control in a direction op- posite to that required to recover the aircraft after it had stalled. After performing a detailed analysis of representative Loss-of-Control accident cases, including some that involved stall, an international Commercial Aviation Safety Team of govern- ment and industry experts recommended numerous safety enhancements to address the primary issues identified. Among these was a recommendation to conduct re- search into algorithms and display strategies to provide guidance for recovery from approach-to-stall and stall. The study detailed in this report examines one such stall recovery guidance system that has been designed to help pilots improve their stall recovery performance when the current aircraft state may be unrecognized in the presence of complicating operational factors. The focus of the study was on two candidate pitch guidance algorithms, in addition to a new thrust guidance system. The thrust guidance system was developed to help pilots avoid the loss of nose-down elevator authority caused by the application of too much thrust and nose-up stabilizer trim on aircraft with low mounted engines. A basic roll guidance strategy was also implemented to complete the pitch-roll-thrust guidance system. The outputs of the pitch and roll guidance computation were connected to split-cue pitch and roll flight directors that are standard on most large transport commercial aircraft. The overall system was designed to reinforce the current FAA recommended stall recovery procedure, and to potentially provide a benefit to that procedure when justified by the guidance computation. The objectives of the study were to investigate the degree to which the candidate stall recovery guidance algorithms and displays could improve pilot stall recovery performance criteria in four scenarios: a high altitude stall recovery, a low altitude stall recovery with and without a misaligned stabilizer, and an approach stall re- covery. The scenarios were designed specifically for baselining the potential safety benefits of the recovery strategy, computation, and display employed by the guid- ance system. In total, 30 commercial and 10 research test pilots flew three runs of each sce- nario, each with and without guidance, in the Vertical Motion Simulator at NASA Ames Research Center. A general transport aircraft model, similar to a Boeing 757, was implemented for the study. This model contained an important extended aerodynamic database with improved stall dynamics simulation fidelity. The main findings of the study were: (1) that aggressive pitch down guidance was effective at preventing secondary aerodynamic stall during the recovery, especially at high altitude, (2) pitch and thrust guidance helped prevent excessive altitude loss in the low altitude scenario, (3) pitch-up guidance had a minor effect on reducing flap overspeed conditions while recovering with full thrust in the approach scenario, and (4) the addition of thrust guidance was effective at preventing over thrust in combi- nation with excessive nose-up trim, but to the detriment of maintaining margin to secondary aerodynamic stall. 3 Contents 1 Introduction 9 1.1 Literature Survey . 11 1.2 Basic Flight Dynamics of Stall and Stall Recovery . 12 1.3 A Brief History of Stall Simulator Training . 16 1.4 The FAA's Revised Recovery Guidance . 18 1.5 Motivating Accidents and Incidents . 18 1.6 The Benefit of Stall Recovery Guidance . 26 1.7 Guidance System Design Criteria . 27 2 Recovery Guidance
Recommended publications
  • Initial Piloted Simulation Study of Geared Flap R Tilt-Wing V/STOL
    R NASA Technical Memorandum 103872 Initial Piloted Simulation Study of Geared Flap Control r Tilt-Wing V/STOL Aircraft Lourdes M. Guerrero and Lloyd Da Corliss [NASA-TM-103872) INITIAL PILOTED N93-10741 ~~~U~A~~~NSTUDY QF GEARft) FLAP ~Q~~~~~ fOR TILT-WING V/STOL AIRCRAFT (NASA) 39 p Wncfas 63/08 01180?6 October 1991 National Aeronautics and Space Administration NASA Technical Memorandum 103872 Initial Piloted Simulation Study of Geared Flap Control For Tilt-Wing V/STOL Aircraft Lourdes M. Guerrero and Lloyd D Corliss, Ames Research Center, Moffett Field, California October 1991 National Aeronautics and Space Administration Ames Research Center Moffett Field, Califorrlia94035 -1000 SUMMARY A simulation model was developed for piloted evaluations of a representative tilt-wing V/STOL (Vertical/Short Takeoff and Landing) aircraft. Using this model an initial tilt-wing simulation study was conducted in 1990 on the Ames Vertical Motion Simulator In the past, all tilt-wing aircraft have required a horizontal tail rotor or reaction jets to provide pitch control in hover and low speeds. To alleviate this need, devices such as monocyclic propellers and a geared flap have been proposed for providing control at low speed. The geared flap is the sub- ject of this study and it is compared to the conventional flap used in previous tilt-wing aircraft. Objectives of the study were to simulate a tilt-wing V/STOL aircraft, to evaluate and compare the control effectiveness and handling qualities of both a conventional (programmed flap) and the geared flap control configurations, and to determine the feasibility of eliminating the horizontal tail rotor or reaction jets of prior designs through the use of the geared flap control configuration.
    [Show full text]
  • American Eagle Flight 3008 ALPA Submission
    SUBMISSION OF THE AIR LINE PILOTS ASSOCIATION TO THE NATIONAL TRANSPORTATION SAFETY BOARD REGARDING AN INCIDENT INVOLVING AMERICAN EAGLE AIRLINES FLIGHT 3008 Santa Maria, CA January 2, 2006 1 SUMMARY..........................................................................................................................................3 2 HISTORY OF FLIGHT......................................................................................................................3 3 WEATHER ..........................................................................................................................................5 3.1 WEATHER RADAR ........................................................................................................................ 5 3.2 AIRMETS ................................................................................................................................... 5 3.3 CONCLUSION................................................................................................................................5 4 OPERATIONS.....................................................................................................................................5 4.1 DEFERRED DE-ICE TIMER CONTROL SYSTEM .............................................................................. 5 4.2 STALL WARNING SYSTEM............................................................................................................ 6 4.3 STALL RECOVERY TRAINING ......................................................................................................
    [Show full text]
  • CANARD.WING LIFT INTERFERENCE RELATED to MANEUVERING AIRCRAFT at SUBSONIC SPEEDS by Blair B
    https://ntrs.nasa.gov/search.jsp?R=19740003706 2020-03-23T12:22:11+00:00Z NASA TECHNICAL NASA TM X-2897 MEMORANDUM CO CN| I X CANARD.WING LIFT INTERFERENCE RELATED TO MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS by Blair B. Gloss and Linwood W. McKmney Langley Research Center Hampton, Va. 23665 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • DECEMBER 1973 1.. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-2897 4. Title and Subtitle 5. Report Date CANARD-WING LIFT INTERFERENCE RELATED TO December 1973 MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. L-9096 Blair B. Gloss and Linwood W. McKinney 10. Work Unit No. 9. Performing Organization Name and Address • 760-67-01-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington , D . C . 20546 15. Supplementary Notes 16. Abstract An investigation was conducted at Mach numbers of 0.7 and 0.9 to determine the lift interference effect of canard location on wing planforms typical of maneuvering fighter con- figurations. The canard had an exposed area of 16.0 percent of the wing reference area and was located in the plane of the wing or in a position 18.5 percent of the wing mean geometric chord above the wing plane. In addition, the canard could be located at two longitudinal stations.
    [Show full text]
  • For Improved Airplane Performance
    BLENDED WINGLETS FORFOR IMPROVEDIMPROVED AIRPLANEAIRPLANE PERFORMANCEPERFORMANCE New blended winglets on the Boeing Business Jet and the 737-800 commercial airplane offer operational benefits to customers. Besides giving the airplanes a distinctive appear- ance, the winglets create more efficient flight characteristics in cruise and during takeoff and climbout, which translate into additional range with the same fuel and payload. ROBERT FAYE ROBERT LAPRETE MICHAEL WINTER TECHNICAL DIRECTOR ASSOCIATE TECHNICAL FELLOW PRINCIPAL ENGINEER BOEING BUSINESS JETS AERODYNAMICS TECHNOLOGY STATIC AEROELASTIC LOADS BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES TECHNOLOGY/PRODUCT DEVELOPMENT AERO 16 vertical height of the lifting system (i.e., increasing the length of the TE that sheds the vortices). The winglets increase the spread of the vortices along the TE, creating more lift at the wingtips (figs. 2 and 3). The result is a reduction in induced drag (fig. 4). The maximum benefit of the induced drag reduction depends on the spanwise lift distribution on the wing. Theoretically, for a planar wing, induced drag is opti- mized with an elliptical lift distribution that minimizes the change in vorticity along the span. For the same amount of structural material, nonplanar wingtip 737-800 TECHNICAL CHARACTERISTICS devices can achieve a similar induced drag benefit as a planar span increase; however, new Boeing airplane designs Passengers focus on minimizing induced drag with 3-class configuration Not applicable The 737-800 commercial airplane wingspan influenced by additional 2-class configuration 162 is one of four 737s introduced BBJ TECHNICAL CHARACTERISTICS The Boeing Business Jet design benefits. 1-class configuration 189 in the late 1990s for short- to (BBJ) was launched in 1996 On derivative airplanes, performance Cargo 1,555 ft3 (44 m3) medium-range commercial air- Passengers Not applicable as a joint venture between can be improved by using wingtip Boeing and General Electric.
    [Show full text]
  • [4910-13-P] DEPARTMENT of TRANSPORTATION Federal
    This document is scheduled to be published in the Federal Register on 05/13/2021 and available online at federalregister.gov/d/2021-10015, and on govinfo.gov [4910-13-P] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2021-0366; Project Identifier MCAI-2021-00080-T] RIN 2120-AA64 Airworthiness Directives; ATR – GIE Avions de Transport Régional Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: The FAA proposes to supersede Airworthiness Directive (AD) 2020-23-13, which applies to all ATR – GIE Avions de Transport Régional Model ATR42-200, -300, and -320 airplanes. AD 2020-23-13 requires a one-time inspection for discrepancies of the wire bundles between the left- and right-hand angle of attack (AOA) probes and the crew alerting computer, and, depending on findings, applicable corrective actions. Since the FAA issued AD 2020-23-13, a wiring modification for the captain stick shaker has been developed, along with an update to the aircraft flight manual (AFM). This proposed AD would continue to require the actions in AD 2020-23-13. This proposed AD would also require, for certain airplanes, modifying the captain stick shaker wiring, and for all airplanes, revising the existing AFM and applicable corresponding operational procedures to incorporate procedures for the stick pusher/shaker, as specified in a European Union Aviation Safety Agency (EASA), which is proposed for incorporation by reference. The FAA is proposing this AD to address the unsafe condition on these products. DATES: The FAA must receive comments on this proposed AD by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER].
    [Show full text]
  • Airplane Icing
    Federal Aviation Administration Airplane Icing Accidents That Shaped Our Safety Regulations Presented to: AE598 UW Aerospace Engineering Colloquium By: Don Stimson, Federal Aviation Administration Topics Icing Basics Certification Requirements Ice Protection Systems Some Icing Generalizations Notable Accidents/Resulting Safety Actions Readings – For More Information AE598 UW Aerospace Engineering Colloquium Federal Aviation 2 March 10, 2014 Administration Icing Basics How does icing occur? Cold object (airplane surface) Supercooled water drops Water drops in a liquid state below the freezing point Most often in stratiform and cumuliform clouds The airplane surface provides a place for the supercooled water drops to crystalize and form ice AE598 UW Aerospace Engineering Colloquium Federal Aviation 3 March 10, 2014 Administration Icing Basics Important Parameters Atmosphere Liquid Water Content and Size of Cloud Drop Size and Distribution Temperature Airplane Collection Efficiency Speed/Configuration/Temperature AE598 UW Aerospace Engineering Colloquium Federal Aviation 4 March 10, 2014 Administration Icing Basics Cloud Characteristics Liquid water content is generally a function of temperature and drop size The colder the cloud, the more ice crystals predominate rather than supercooled water Highest water content near 0º C; below -40º C there is negligible water content Larger drops tend to precipitate out, so liquid water content tends to be greater at smaller drop sizes The average liquid water content decreases with horizontal
    [Show full text]
  • CAP High Ground 18.03
    The High Ground A Newsletter From Wyoming Wing Standards/Evaluation 15 March, 2018 Hot Topics Pilot Proficiency Profiles… The New Reality! With the implementation of CAPR 70-1 Flight Management, the Air Force came out with new requirements for documentation of training sorties. The AF now requires us to document what is planned, and what we actually accomplished during that sortie, per the Pilot Prof iciency Profile. We are required to accomplish all of the REQUIRED items listed in the PPP Checklist. We have to document each item and upload/note supporting documentation, or document why we did not accomplish the required item. Please review the preamble of the Pilot Proficiency Profiles (first page) and the specific Profile which you are planning on flying. Unfortunately, we can’t “just wing it” anymore. (Sigh) This ain’t my idea, this is from “On High”. Pilot Proficiency Profiles To review, the Pilot Proficiency Profiles, dated 01 January 2018, have changes. Best to print out a copy and keep it handy while operating under any one of these Profiles. And the Profiles are now to be documented in the “Profile Used” in WMIRS as P#, i.e. Profile number 1 would be entered as “P1”. Note that each Profile has a header which dictates the PIC qualifications to operate under that Profile. Read these before you attempt to fly the Profile. Now the BIG CHANGE is in the details of each Profile, what we are expected to do, and what we have to document for each Pilot Proficiency Profile sortie. Each PPP has in its description “Routine” and “Required” Items.
    [Show full text]
  • Teng Tianhang 201606 MAS T
    Representative Post-Stall Modeling of T-tailed Regional Jets and Turboprops for Upset Recovery Training by Tianhang Teng A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Aerospace Science and Engineering University of Toronto c Copyright 2016 by Tianhang Teng Abstract Representative Post-Stall Modeling of T-tailed Regional Jets and Turboprops for Upset Recovery Training Tianhang Teng Master of Applied Science Graduate Department of Aerospace Science and Engineering University of Toronto 2016 Loss-of-control resulting from airplane upset is a leading cause of worldwide commer- cial aircraft accidents. In order to provide pilots with sufficient stall recovery training using ground simulators, flight models will need to be improved. In this thesis, a methodology for generating a generic representative post-stall aircraft model is developed. Current type specific post-stall models are too expensive to generate, and are not practical for routine training. The representative model offers a much cheaper way to train crew for upset conditions, at the same time providing sufficiently realistic cues seen in an upset condition. The methodology provides a foundation for generating full scale representative models using wind tunnel data and physics-based approaches. An example of applying the methodology to predict stall regime aircraft behavior is provided for one aerodynamic coefficient. ii Acknowledgements First, I would like to express my sincere gratitude to my thesis supervisor Professor Peter Grant for the continuous support of my MASc study and related research, for his patience, motivation, and immense knowledge. His guidance helped me throughout the entire research and writing portions of this thesis.
    [Show full text]
  • Stall Warnings in High Capacity Aircraft: the Australian Context 2008 to 2012
    Stall warnings in high capacityInsert document aircraft: title The Australian context Location2008 to 2012 | Date ATSB Transport Safety Report InvestigationResearch [InsertAviation Mode] Research Occurrence Report Investigation XX-YYYY-####AR-2012-172 Final – 1 November 2013 Publishing information Published by: Australian Transport Safety Bureau Postal address: PO Box 967, Civic Square ACT 2608 Office: 62 Northbourne Avenue Canberra, Australian Capital Territory 2601 Telephone: 1800 020 616, from overseas +61 2 6257 4150 (24 hours) Accident and incident notification: 1800 011 034 (24 hours) Facsimile: 02 6247 3117, from overseas +61 2 6247 3117 Email: [email protected] Internet: www.atsb.gov.au © Commonwealth of Australia 2013 Ownership of intellectual property rights in this publication Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia. Creative Commons licence With the exception of the Coat of Arms, ATSB logo, and photos and graphics in which a third party holds copyright, this publication is licensed under a Creative Commons Attribution 3.0 Australia licence. Creative Commons Attribution 3.0 Australia Licence is a standard form license agreement that allows you to copy, distribute, transmit and adapt this publication provided that you attribute the work. The ATSB’s preference is that you attribute this publication (and any material sourced from it) using the following wording: Source: Australian Transport Safety Bureau Copyright in material obtained from other agencies, private individuals or organisations, belongs to those agencies, individuals or organisations. Where you want to use their material you will need to contact them directly.
    [Show full text]
  • SM11188 Standard Modification Page : 1 of 6 Issue 1 Compiled : S Brown Approved : F Donaldson
    Mod No. SM11188 Standard Modification Page : 1 of 6 Issue 1 Compiled : S Brown Approved : F Donaldson TITLE : Main Wing Trailing Edge Flow Straighteners AIRCRAFT TYPE : Vari-Eze Mod Type: Retro-fit 1. Introduction The Rutan Aircraft Factory approved the (later to be mandatory) installation of leading edge vortilons on all Vari-Ezes in the October 1984 edition of the Canard Pusher ( CP 42 pages 5/6) to improve the swept main wing stall margins, increase visibility over the nose on final approach and enable reduced approach speeds without the risk of low speed wing rock or deep stall. The vortilons generate vortices over the main wing at high angles of attack that reduce lift-losing span-wise flow. There is negligible speed or drag penalty Flow straighteners positioned on the trailing edge of the swept main wing further reduce span wise flow at high angles of attack. It has been demonstrated that the addition of trailing edge flow straighteners enable the wing to produce more lift at a given angle of attack enabling lower approach speeds with no loss of view over the nose. The result is a reduced sink rate for a given airspeed and an increased margin between main wing and canard stall speeds. 2. Parts List Qty Part No. Description Source 2 SM11188-1 Outboard Fence Manufacture 2 SM11188-2 Middle Fence Manufacture 2 SM11188-3 Inboard Fence Manufacture White RTV Silicone Hardware store Flocked Cotton / BID / Aircraft Spruce Epoxy Resin List of related drawings / photos Drawing No. Title / Description Issue SM11188-D1 Drawing of Flow Straighteners dimensions SM11188-D2 Drawing of installation on main wing and fitting detail SM11188-D3 Photograph of Gary Hertzler’s fences installation on N99VE 3.
    [Show full text]
  • FAA-H-8083-3A, Airplane Flying Handbook -- 3 of 7 Files
    Ch 04.qxd 5/7/04 6:46 AM Page 4-1 NTRODUCTION Maneuvering during slow flight should be performed I using both instrument indications and outside visual The maintenance of lift and control of an airplane in reference. Slow flight should be practiced from straight flight requires a certain minimum airspeed. This glides, straight-and-level flight, and from medium critical airspeed depends on certain factors, such as banked gliding and level flight turns. Slow flight at gross weight, load factors, and existing density altitude. approach speeds should include slowing the airplane The minimum speed below which further controlled smoothly and promptly from cruising to approach flight is impossible is called the stalling speed. An speeds without changes in altitude or heading, and important feature of pilot training is the development determining and using appropriate power and trim of the ability to estimate the margin of safety above the settings. Slow flight at approach speed should also stalling speed. Also, the ability to determine the include configuration changes, such as landing gear characteristic responses of any airplane at different and flaps, while maintaining heading and altitude. airspeeds is of great importance to the pilot. The student pilot, therefore, must develop this awareness in FLIGHT AT MINIMUM CONTROLLABLE order to safely avoid stalls and to operate an airplane AIRSPEED This maneuver demonstrates the flight characteristics correctly and safely at slow airspeeds. and degree of controllability of the airplane at its minimum flying speed. By definition, the term “flight SLOW FLIGHT at minimum controllable airspeed” means a speed at Slow flight could be thought of, by some, as a speed which any further increase in angle of attack or load that is less than cruise.
    [Show full text]
  • Systems Study for an Integrated Digital/Electric Aircraft (IDEA)
    NASA-CR-3840 19850007405 NASA Contractor Report 3840 t i Systems Study for an Integrated Digital/Electric Aircraft (IDEA) G. E. Tagge, L. A. Irish, and A. R.Bailey CONTRACT NAS1-17528 JANUARY 1985 R [_.._ _ _ _'l _ €__!7 . ','7:2! ' ;: ;; 11) LANGLEY RESEJtRCHCEI",I_ER LIBRARY, NASA H;_4MPTO_JVIRG_N!A, NASA Contractor Report 3840 Systems Study for an Integrated Digital/Electric Aircraft (IDEA) G. E. Tagge, L. A. Irish, and A. R. Bailey Boeing Commercial Airplane Company Seattle, Washington Prepared for Langley Research Center under Contract NAS1-17528 N/ A NationalAeronautics and SpaceAdministration Scientific and Technical IntormatlonBranch 1985 FOREWORD This document constitutes the final report of the Integrated Digital/Electric Aircraft (IDEA)Program,ContractNASI-17528. The major studyobjectiveweres to definethe configurationof an IDEA aircraftd,efine technicalrisksassociatedwith the IDEA systemsconcepts,and identifytheresearchand developmentrequiredto reducetheserisksforpotentialapplicationto transporatircraft intheearly1990s. The NASA TechnicalRepresentativeforthistaskwas Cary R. SF1tzer;the Contracting Officerwas James Y. Taylor,of theLangleyResearchCenter. The work was accompUshed withinthe PreUmlnaryDesign Department of the Boeing Commercial AirplaneCompany. Key personnelwho contrlbutewdere: G. E.Tagge ProgramManager L.A. Irish StudyManager J.D.Vachal AerodynamicsTechnology L.A. Ostrom AerodynamicsTechnology R. H. Johnson PropulslonTeclmology G. G. Redfield PropulsionTechnology A. R. Bailey WeightsTechnology K. E. Siedentopf We_,_htsTechnology D. L.Grande StructuresTechnology C. B. Crumb Electronic FlightControlDesign F.Byford Mechanical FlightControlDesign W. F. Shivttz Flight Systems Technology C. W. Lee Flight Systems Technology P.J.Campbell FUght Systems Technology J. W. Harper Airframe Systems Technology-Electrlcal K. T. Tanemura AirframeSystemsTechnology-ECS E. C. Lim AirframeSystemsTechnology-ECS R. A. Johnson AirframeSystemsTechnology-ECS D. E. Cozby AirframeSystemsTechnology-lcing J.R.
    [Show full text]