Design of Canard Aircraft

Total Page:16

File Type:pdf, Size:1020Kb

Design of Canard Aircraft APPENDIX C2: Design of Canard Aircraft This appendix is a part of the book General Aviation Aircraft Design: Applied Methods and Procedures by Snorri Gudmundsson, published by Elsevier, Inc. The book is available through various bookstores and online retailers, such as www.elsevier.com, www.amazon.com, and many others. The purpose of the appendices denoted by C1 through C5 is to provide additional information on the design of selected aircraft configurations, beyond what is possible in the main part of Chapter 4, Aircraft Conceptual Layout. Some of the information is intended for the novice engineer, but other is advanced and well beyond what is possible to present in undergraduate design classes. This way, the appendices can serve as a refresher material for the experienced aircraft designer, while introducing new material to the student. Additionally, many helpful design philosophies are presented in the text. Since this appendix is offered online rather than in the actual book, it is possible to revise it regularly and both add to the information and new types of aircraft. The following appendices are offered: C1 – Design of Conventional Aircraft C2 – Design of Canard Aircraft (this appendix) C3 – Design of Seaplanes C4 – Design of Sailplanes C5 – Design of Unusual Configurations Figure C2-1: A single engine, four-seat Velocity 173 SE just before touch-down. (Photo by Phil Rademacher) GUDMUNDSSON – GENERAL AVIATION AIRCRAFT DESIGN APPENDIX C2 – DESIGN OF CANARD AIRCRAFT 1 ©2013 Elsevier, Inc. This material may not be copied or distributed without permission from the Publisher. C2.1 Design of Canard Configurations It has already been stated that preference explains why some aircraft designers (and manufacturers) choose to develop a particular configuration. In other situations such partiality is absent and the selection of the configuration actually presents an organizational conflict. However, while the selection of a particular tail configuration (e.g. conventional, T-tail, etc.) may pose a challenge, whether to place the horizontal tail in front of or aft of the wing is usually not up for debate. In either case, the location of the horizontal tail is indeed of primary importance and this calls for a deep understanding of the implications of its selection. Most frequently, the configuration options consist of a conventional tail-aft, canard, or a three-surface configuration. Figure C2-2 shows the layout of a typical canard aircraft. The configuration is unique in appearance and offers some good properties. This appendix discusses various issues that must be kept in mind when designing a canard aircraft. The canard configuration was discussed in some detail in Section 11.3.12, Canard Configuration. This section picks up where that discussion left off. Figure C2-2: A small canard configuration. C2.1.1 Pros and Cons of the Canard Configuration The first question to consider regarding the canard configuration has to do with stability and control. A horizontal lifting surface placed forward of the main wing results in a destabilizing pitching moment, which would render the vehicle unstable were it not for the forward placement of the CG. In fact, the CG must be placed far forward of the aerodynamic center of the Mean Geometric Chord in order to produce a stabilizing moment. This renders the aircraft stable, in other words, yields a Cm < 0. The challenge for the designer is to determine the geometry of the canard, which includes an airfoil selection, such that two conditions are satisfied: (1) the Cm is indeed negative and (2) Cmo is greater than zero. The former is controlled using the CG location and the latter using geometry, canard incidence angle, and airfoil selection. While downwash generally reduces the stability of a tail-aft aircraft (as it results in a nose-up pitching moment), it allows the HT to be installed at a much smaller Angle-of-Incidence (AOI) than possible with a canard (assuming symmetrical airfoils – cambered airfoils will be discussed later). Consider a canard featuring a symmetrical airfoil (i.e. Clo = 0). In order to satisfy condition (2) above (i.e. Cmo > 0) this airfoil would require a large AOI (or TED elevator deflection) to allow the aircraft to be trimmed at an AOA that generates positive CL. One of the reasons for this is the limited upwash in front of the main wing. This would hold even at modest Static Margin. This predicament is generally solved by selecting a highly cambered airfoil (which has Clo >> 0) and high AR planform shape (whose CL >> 0). Figure C2-3 highlights the difference in the location of the stick-fixed neutral points of a conventional tail-aft and a canard aircraft. Each configuration has two icons that represent the stick-fixed neutral point and CG location that GUDMUNDSSON – GENERAL AVIATION AIRCRAFT DESIGN APPENDIX C2 – DESIGN OF CANARD AIRCRAFT 2 ©2013 Elsevier, Inc. This material may not be copied or distributed without permission from the Publisher. yields a 0.10 Static Margin. Note that adding a fuselage to would destabilize both configurations and push all points (neutral and, thus, the CG) forward. Figure C2-3: Comparing the stick-fixed neutral points and CG locations required for a Static Margin of 0.10 of a conventional tail aft (left) and canard (right) configurations. The neutral points were determined using potential flow theory. Note the numbers only apply to this specific geometry. Finally, since the CG is in front of the wing, moving it farther forward both shortens the balancing tail arm and increases the wing arm. Since the wing lift force is much greater than that of the canard, the CG cannot move too far forward before an uncontrollable nose-pitch down moment is generated. This limits the practical CG envelope of the configuration. For instance, the twin engine Beech Starship required a swing-wing style canard to increase its nose pitch-up authority when deploying flaps. Another issue is that the chord length of the canard is usually small enough to be subject to Reynolds number effects. One of the consequences can be a diminished pitch authority at low airspeeds, when the small-chord airfoil is subject to early flow separation that reduces its lift curve slope. This can also lead to noticeable longitudinal trim changes when flying in precipitation, as is reflected in a caution, placarded in the Pilot’s Operating Handbook for the Rutan Long-EZ1. The caution states that when entering visible precipitation, the Long-EZ may experience a significant pitch trim change, as experienced in the Long-EZ prototype (N79RA). It goes on to state that owners of Rutan’s earlier canard aircraft, report either nose up or nose down pitch changes. Builders are warned that each aircraft may react differently. It is recommended that airspeed above 90 knots be maintained in rain as this allows the aircraft to be trimmed with hands off the control stick. In spite of these shortcomings, many existing canard aircraft are well designed in the view of this author, including the Rutan LongEz, and the AASI Jetcruzer, the first aircraft to have been certified in the US under 14 CFR Part 23 as “spin-resistant.” C2.1.2 Modeling the Pitching Moment for a Simple Wing-Canard System Figure C2-4 shows a simple Wing-Canard system, intended to derive a few longitudinal static stability methods that are helpful when sizing a canard configuration aircraft. The longitudinal static stability of the configuration can be represented using Equation (11-10), repeated here for convenience: Cm Cmo Cm Cm e e (C2-1) GUDMUNDSSON – GENERAL AVIATION AIRCRAFT DESIGN APPENDIX C2 – DESIGN OF CANARD AIRCRAFT 3 ©2013 Elsevier, Inc. This material may not be copied or distributed without permission from the Publisher. Where: Cmo Coefficient of moment at zero AOA C Change in coefficient of pitching moment due to AOA m Cm Elevator authority; change in coefficient of pitching moment due to elevator deflection e Figure C2-4: Wing-Canard system used to derive Equation (C2-4). Both of the above terms can be determined for this system using the following expressions: Cmo VC CL Cmo Cmo (C2-2) 0C AC W hAC h Cm VC CL Cm CL (C2-3) C AC W CMGC Where: CMGC = Mean Geometric Chord hn = Physical location of the CG at which Cm = 0; i.e. the stick-fixed neutral point hAC = Physical location of the Aerodynamic Center lC = Arm between the aerodynamic center of the canard and CG lCW = Arm between the aerodynamic center of the canard and the wing S = Reference wing area SC = Planform area of the canard SC lC SC lCW h hAC VC = Canard volume S CMGC S CMGC C Longitudinal stability contribution of components other than the wing mo AC C C h h Wing pitching moment due to airfoil camber moW L0 AC CL = Canard lift coefficient at zero AOA 0C Cm = Longitudinal stability contribution of components other than the wing AC CL = Lift curve slope of the canard C CL = Wing lift curve slope W GUDMUNDSSON – GENERAL AVIATION AIRCRAFT DESIGN APPENDIX C2 – DESIGN OF CANARD AIRCRAFT 4 ©2013 Elsevier, Inc. This material may not be copied or distributed without permission from the Publisher. Note that the term refers to the stabilizing effects of components such as the fuselage, nacelles, landing gear, the wing itself, and so on, as a function of the AOA. If the sum of these moments acts to rotate the LE down, then M AC 0 (has a negative sign and is stabilizing). If it acts to rotate LE up, then M AC 0 (has a positive sign and is destabilizing). The sign ultimately depends on the aircraft configuration. Note that the destabilizing effects of fuselages and nacelles can be estimated using the so-called Munk-Multhopp method, which is presented in Appendix C1.6, Additional Tools for Tail Sizing.
Recommended publications
  • Enhancing General Aviation Aircraft Safety with Supplemental Angle of Attack Systems
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Enhancing General Aviation Aircraft aS fety With Supplemental Angle Of Attack Systems David E. Kugler Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Kugler, David E., "Enhancing General Aviation Aircraft aS fety With Supplemental Angle Of Attack Systems" (2015). Theses and Dissertations. 1793. https://commons.und.edu/theses/1793 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. ENHANCING GENERAL AVIATION AIRCRAFT SAFETY WITH SUPPLEMENTAL ANGLE OF ATTACK SYSTEMS by David E. Kugler Bachelor of Science, United States Air Force Academy, 1983 Master of Arts, University of North Dakota, 1991 Master of Science, University of North Dakota, 2011 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota May 2015 Copyright 2015 David E. Kugler ii PERMISSION Title Enhancing General Aviation Aircraft Safety With Supplemental Angle of Attack Systems Department Aviation Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies.
    [Show full text]
  • Sailing for Performance
    SD2706 Sailing for Performance Objective: Learn to calculate the performance of sailing boats Today: Sailplan aerodynamics Recap User input: Rig dimensions ‣ P,E,J,I,LPG,BAD Hull offset file Lines Processing Program, LPP: ‣ Example.bri LPP_for_VPP.m rigdata Hydrostatic calculations Loading condition ‣ GZdata,V,LOA,BMAX,KG,LCB, hulldata ‣ WK,LCG LCF,AWP,BWL,TC,CM,D,CP,LW, T,LCBfpp,LCFfpp Keel geometry ‣ TK,C Solve equilibrium State variables: Environmental variables: solve_Netwon.m iterative ‣ VS,HEEL ‣ TWS,TWA ‣ 2-dim Netwon-Raphson iterative method Hydrodynamics Aerodynamics calc_hydro.m calc_aero.m VS,HEEL dF,dM Canoe body viscous drag Lift ‣ RFC ‣ CL Residuals Viscous drag Residuary drag calc_residuals_Newton.m ‣ RR + dRRH ‣ CD ‣ dF = FAX + FHX (FORCE) Keel fin drag ‣ dM = MH + MR (MOMENT) Induced drag ‣ RF ‣ CDi Centre of effort Centre of effort ‣ CEH ‣ CEA FH,CEH FA,CEA The rig As we see it Sail plan ≈ Mainsail + Jib (or genoa) + Spinnaker The sail plan is defined by: IMSYC-66 P Mainsail hoist [m] P E Boom leech length [m] BAD Boom above deck [m] I I Height of fore triangle [m] J Base of fore triangle [m] LPG Perpendicular of jib [m] CEA CEA Centre of effort [m] R Reef factor [-] J E LPG BAD D Sailplan modelling What is the purpose of the sails on our yacht? To maximize boat speed on a given course in a given wind strength ‣ Max driving force, within our available righting moment Since: We seek: Fx (Thrust vs Resistance) ‣ Driving force, FAx Fy (Side forces, Sails vs. Keel) ‣ Heeling force, FAy (Mx (Heeling-righting moment)) ‣ Heeling arm, CAE Aerodynamics of sails A sail is: ‣ a foil with very small thickness and large camber, ‣ with flexible geometry, ‣ usually operating together with another sail ‣ and operating at a large variety of angles of attack ‣ Environment L D V Each vertical section is a differently cambered thin foil Aerodynamics of sails TWIST due to e.g.
    [Show full text]
  • CANARD.WING LIFT INTERFERENCE RELATED to MANEUVERING AIRCRAFT at SUBSONIC SPEEDS by Blair B
    https://ntrs.nasa.gov/search.jsp?R=19740003706 2020-03-23T12:22:11+00:00Z NASA TECHNICAL NASA TM X-2897 MEMORANDUM CO CN| I X CANARD.WING LIFT INTERFERENCE RELATED TO MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS by Blair B. Gloss and Linwood W. McKmney Langley Research Center Hampton, Va. 23665 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • DECEMBER 1973 1.. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-2897 4. Title and Subtitle 5. Report Date CANARD-WING LIFT INTERFERENCE RELATED TO December 1973 MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. L-9096 Blair B. Gloss and Linwood W. McKinney 10. Work Unit No. 9. Performing Organization Name and Address • 760-67-01-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington , D . C . 20546 15. Supplementary Notes 16. Abstract An investigation was conducted at Mach numbers of 0.7 and 0.9 to determine the lift interference effect of canard location on wing planforms typical of maneuvering fighter con- figurations. The canard had an exposed area of 16.0 percent of the wing reference area and was located in the plane of the wing or in a position 18.5 percent of the wing mean geometric chord above the wing plane. In addition, the canard could be located at two longitudinal stations.
    [Show full text]
  • Aerodynamic Characteristics of Naca 0012 Airfoil Section at Different Angles of Attack
    AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction………………………………………………………………………………………………………………………………………...1 2) Methodology……………………………………………………………………………………………………………………………………….3 3) Results……………………………………………………………………………………………………………………………………………......5 4) Conclusion …………………………………………………………………………………………………………………………………………..9 5) References…………………………………………………………………………………………………………………………………………10 List of Figures Figure 1: Basic nomenclature of an airfoil………………………………………………………………………………………………...1 Figure 2: Computational domain………………………………………………………………………………………………………………4 Figure 3: Static Pressure Contours for different angles of attack……………………………………………………………..5 Figure 4: Velocity Magnitude Contours for different angles of attack………………………………………………………………………7 Fig 5: Variation of Cl and Cd with alpha……………………………………………………………………………………………………8 Figure 6: Lift Coefficient and Drag Coefficient Ratio for Re = 50000…………………………………………………………8 List of Tables Table 1: Lift and Drag coefficients as calculated from lift and drag forces from formulae given above……7 Introduction It is a fact of common experience that a body in motion through a fluid experience a resultant force which, in most cases is mainly a resistance to the motion. A class of body exists, However for which the component of the resultant force normal to the direction to the motion is many time greater than the component resisting the motion, and the possibility of the flight of an airplane depends on the use of the body of this class for wing structure. Airfoil is such an aerodynamic shape that when it moves through air, the air is split and passes above and below the wing. The wing’s upper surface is shaped so the air rushing over the top speeds up and stretches out. This decreases the air pressure above the wing. The air flowing below the wing moves in a comparatively straighter line, so its speed and air pressure remain the same.
    [Show full text]
  • Aerodynamics of High-Performance Wing Sails
    Aerodynamics of High-Performance Wing Sails J. otto Scherer^ Some of tfie primary requirements for tiie design of wing sails are discussed. In particular, ttie requirements for maximizing thrust when sailing to windward and tacking downwind are presented. The results of water channel tests on six sail section shapes are also presented. These test results Include the data for the double-slotted flapped wing sail designed by David Hubbard for A. F. Dl Mauro's lYRU "C" class catamaran Patient Lady II. Introduction The propulsion system is probably the single most neglect­ ed area of yacht design. The conventional triangular "soft" sails, while simple, practical, and traditional, are a long way from being aerodynamically desirable. The aerodynamic driving force of the sails is, of course, just as large and just as important as the hydrodynamic resistance of the hull. Yet, designers will go to great lengths to fair hull lines and tank test hull shapes, while simply drawing a triangle on the plans to define the sails. There is no question in my mind that the application of the wealth of available airfoil technology will yield enormous gains in yacht performance when applied to sail design. Re­ cent years have seen the application of some of this technolo­ gy in the form of wing sails on the lYRU "C" class catamar­ ans. In this paper, I will review some of the aerodynamic re­ quirements of yacht sails which have led to the development of the wing sails. For purposes of discussion, we can divide sail require­ ments into three points of sailing: • Upwind and close reaching.
    [Show full text]
  • Vertical Motion Simulator Experiment on Stall Recovery Guidance
    NASA/TP{2017{219733 Vertical Motion Simulator Experiment on Stall Recovery Guidance Stefan Schuet National Aeronautics and Space Administration Thomas Lombaerts Stinger Ghaffarian Technologies, Inc. Vahram Stepanyan Universities Space Research Association John Kaneshige, Kimberlee Shish, Peter Robinson National Aeronautics and Space Administration Gordon Hardy Retired Research Test Pilot Science Applications International Corporation October 2017 NASA STI Program. in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part or other meetings sponsored or in helping NASA maintain this important co-sponsored by NASA. role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the technical, or historical information from auspices of the Agency Chief Information NASA programs, projects, and missions, Officer. It collects, organizes, provides for often concerned with subjects having archiving, and disseminates NASA's STI. substantial public interest. The NASA STI Program provides access to the NASA Aeronautics and Space Database • TECHNICAL TRANSLATION. English- and its public interface, the NASA Technical language translations of foreign scientific Report Server, thus providing one of the and technical material pertinent to largest collection of aeronautical and space NASA's mission. science STI in the world. Results are Specialized services also include organizing published in both non-NASA channels and and publishing research results, distributing by NASA in the NASA STI Report Series, specialized research announcements and which includes the following report types: feeds, providing information desk and • TECHNICAL PUBLICATION. Reports of personal search support, and enabling data completed research or a major significant exchange services.
    [Show full text]
  • Glider Handbook, Chapter 2: Components and Systems
    Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil.
    [Show full text]
  • ICE PROTECTION Incomplete
    ICE PROTECTION GENERAL The Ice and Rain Protection Systems allow the aircraft to operate in icing conditions or heavy rain. Aircraft Ice Protection is provided by heating in critical areas using either: Hot Air from the Pneumatic System o Wing Leading Edges o Stabilizer Leading Edges o Engine Air Inlets Electrical power o Windshields o Probe Heat . Pitot Tubes . Pitot Static Tube . AOA Sensors . TAT Probes o Static Ports . ADC . Pressurization o Service Nipples . Lavatory Water Drain . Potable Water Rain removal from the Windshields is provided by two fully independent Wiper Systems. LEADING EDGE THERMAL ANTI ICE SYSTEM Ice protection for the wing and horizontal stabilizer leading edges and the engine air inlet lips is ensured by heating these surfaces. Hot air supplied by the Pneumatic System is ducted through perforated tubes, called Piccolo tubes. Each Piccolo tube is routed along the surface, so that hot air jets flowing through the perforations heat the surface. Dedicated slots are provided for exhausting the hot air after the surface has been heated. Each subsystem has a pressure regulating/shutoff valve (PRSOV) type of Anti-icing valve. An airflow restrictor limits the airflow rate supplied by the Pneumatic System. The systems are regulated for proper pressure and airflow rate. Differential pressure switches and low pressure switches monitor for leakage and low pressures. Each Wing's Anti Ice System is supplied by its respective side of the Pneumatic System. The Stabilizer Anti Ice System is supplied by the LEFT side of the Pneumatic System. The APU cannot provide sufficient hot air for Pneumatic Anti Ice functions.
    [Show full text]
  • V-Tails for Aeromodels
    Please see the V-Tails for Aeromodels recommendations for Yet Another Attempt to Explain Them the browser settings Watching the RCSE forum during November 1998 I felt, that the discussion on V-tails is not always governed by facts and knowledge, but feelings and sometimes even by irritation. I think, some theory of V-tails should be compiled and written down for aeromodellers such that we can answer most of the questions by ourselves. V- tails are almost never used with full scale airplanes but not all of the reasons for this are also valid for aeromodels. As a consequence V-tails are not treated appropriately in standard literature. This article contains well known and also some not so well known facts on V-tails and theoretical explanations for them; I don't claim anything to be "new". I also list some occasionally to be heard statements, which are simply not true. If something is wrong or missing: Please let me know ([email protected]), or, if you think that this article is a valuable contribution to make V- tails clearer for aeromodellers. Introduction Almost always designing a V-tail means converting a standard tail into a V-tail; the reasons are clear: Calculations yield specifications of a standard tail or an existing model is really to be converted (the photo above documents the end of the 2nd life of this glider;-). The task is to find a V-tail, which behaves "exactly like its corresponding" standard- or T-tail - we will see, that this is not possible. We can design the V-tail to have the same behaviour in many respects, we might get some advantages, but we have to pay a price.
    [Show full text]
  • Airplane Icing
    Federal Aviation Administration Airplane Icing Accidents That Shaped Our Safety Regulations Presented to: AE598 UW Aerospace Engineering Colloquium By: Don Stimson, Federal Aviation Administration Topics Icing Basics Certification Requirements Ice Protection Systems Some Icing Generalizations Notable Accidents/Resulting Safety Actions Readings – For More Information AE598 UW Aerospace Engineering Colloquium Federal Aviation 2 March 10, 2014 Administration Icing Basics How does icing occur? Cold object (airplane surface) Supercooled water drops Water drops in a liquid state below the freezing point Most often in stratiform and cumuliform clouds The airplane surface provides a place for the supercooled water drops to crystalize and form ice AE598 UW Aerospace Engineering Colloquium Federal Aviation 3 March 10, 2014 Administration Icing Basics Important Parameters Atmosphere Liquid Water Content and Size of Cloud Drop Size and Distribution Temperature Airplane Collection Efficiency Speed/Configuration/Temperature AE598 UW Aerospace Engineering Colloquium Federal Aviation 4 March 10, 2014 Administration Icing Basics Cloud Characteristics Liquid water content is generally a function of temperature and drop size The colder the cloud, the more ice crystals predominate rather than supercooled water Highest water content near 0º C; below -40º C there is negligible water content Larger drops tend to precipitate out, so liquid water content tends to be greater at smaller drop sizes The average liquid water content decreases with horizontal
    [Show full text]
  • The Aerodynamic Design of Wings with Cambered Span Having Minimum Induced Drag
    https://ntrs.nasa.gov/search.jsp?R=19640006060 2020-03-24T06:40:56+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server TR R-152 NASA- ..ZC_ L mm-4 -0-= I NATIONAL AERONAUTICS AND -----I- SPACE ADMINISTRATION LC)A~\c;i)p E AFW Wm* EP1 KIRTLANi =$= MS; TECHNICAL REPORT R-152 THE AERODYNAMIC DESIGN OF WINGS WITH CAMBERED SPAN HAVING MINIMUM INDUCED DRAG BY CLARENCE D. CONE, JR. 1963 ~ For -le by the Superintendent of Documents. US. Government Printing OIBce. Wasbingbn. D.C. 20402. Single copy price, 35 cents TECH LIBRARY KAFB, NM 00b8223 TECHNICAL REPORT R-152 THE AERODYNAMIC DESIGN OF WINGS WITH CAMBERED SPAN HAVING MINIMUM INDUCED DRAG By CLARENCE D. CONE, JR. Langley Research Center Langley Station, Hampton, Va. I CONTENTS Page SU~MMARY-________._...-.--..--.---------------------------------------- 1 INTRODUCTION __.._.._..__..___..~___.__._.._....~....~~-_--~~--~-------1 SYMBOLS___._____.___------.----------.---.--.---.---------------.--.--- 2 THE ])RAG POLAR OF CAMBERED-SPAN WINGS-_- - ...______________.__ 3 PROPERTIES OF CAMBERED WINGS HAVING MINIMUM INDUCED DRAG_._.._.___.~._.___~_._.___.._.____..__.__.-~~_-~---_---~~---------4 The Optimum Circulation IXstribution.. - -.- - -.- - - - - - - - - - - - - - - -.- - - - - - -.- - 4 The Effective Aspect Ratio ______________._._._____________________------5 THE DESIGN OF CAMBERED WINGS ____________________________________ 6 I>et,erininationof the Wing Shape for Maximum LID- - -.--_-___-___-___--__ 7 Specification of design requirements- - - - - - - - - - - - - - - -.-. - - - - - - - - - - - - - - - - 8 1)eterniination of minimum value of chord function- - - -.- - - - - - - - - - - - - - 8 Determination of wing profile-drag coefficient and optimum chord function- - 9 The optimum cruise altitude- -.
    [Show full text]
  • 10. Supersonic Aerodynamics
    Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited.
    [Show full text]